
Online variable-length source coding for minimum bitrate LQG control

Travis C. Cuvelier, Takashi Tanaka, and Robert W. Heath, Jr.

Abstract— We propose an adaptive coding approach to
achieve linear-quadratic-Gaussian (LQG) control with near-
minimum bitrate prefix-free feedback. Our approach combines
a recent analysis of a quantizer design for minimum rate
LQG control with work on universal lossless source coding for
sources on countable alphabets. It was recently demonstrated
that the aforementioned quantizer’s outputs are an asymptoti-
cally stationary, ergodic process. To enable LQG control with
provably near-minimum bitrate, the quantizer outputs must
be encoded into binary codewords efficiently. This is possible
given knowledge of the quantizations’ probability distributions,
or of their limiting distribution. Obtaining such knowledge is
challenging; the distributions do not readily admit closed form
descriptions. This motivates the application of universal source
coding. Our main theoretical contribution in this work is a
proof that (after an invertible transformation), the quantizer
outputs are random variables that fall within an exponential
or power-law envelope class (depending on the plant dimension).
Using ideas from universal coding on envelope classes, we
develop a practical, zero-delay, fixed precision source code for
the quantizer outputs. We evaluate the performance of this
approach numerically, and demonstrate competitive results with
respect to fundamental tradeoffs between bitrate and LQG
control performance.

I. INTRODUCTION

In this work, we propose an algorithmic framework to
achieve any feasible discrete-time LQG control performance
with near minimum bitrate variable-length feedback. Our
motivation is feedback control where sensors and actuators
are not co-located, and measurements must be fed back from
a sensor to a controller over digital communications. In such
settings, the feedback bitrate is an effective surrogate for
the true cost of communication. For many communication
architectures, a link’s bitrate corresponds directly to the
physical layer resources it uses.

While there are several results in the literature that pertain
to LQG control with minimum (variable-length) feedback
bitrate [1]–[4], there are barriers to applying these results
in practice. This work aims to bridge this gap. We propose
practical algorithms that combine the approach to minimum
rate LQG control from [4] with approaches to universal
coding on countably infinite alphabets from [5]–[8]. A nu-
merically precise implementation of our algorithm follows
from a classical approach to arithmetic coding with fixed-
precision arithmetic via [9] as well as Elias’s “penultimate”
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(omega) encoding for integers [10]. We evaluate the proposed
algorithms numerically on a model for an inverted pendulum
system [11]. The results demonstrate that our approach
achieves good performance with respect to the fundamental
directed information bitrate lower bound (cf. [12]).

A. Literature Review

For the single-input linear quadratic regulator problem it
was shown in [13] that quantizers with logarithmic level
spacing achieve stabilization with a minimal “quantization
density”. It is also shown how to achieve stability with a
finite number of quantizer levels. The LQG problem we
treat in this work is quite different; we consider stochastic
plants with unbounded, Gaussian disturbances (which rule
out static, finite quantizers, cf. [14]) and aim to attain a fixed
quadratic system performance. Furthermore, we consider a
“bitrate” notion of communication cost; e.g. quantizations
are encoded for tranmission over a binary channel.

Data compression architectures for LQG control with near-
minimum bitrate variable-length feedback were proposed
in [1]–[4]. These approaches propose to quantize sensor
measurements with prescribed lattice quantizer designs, and
assume that the quantizers’ outputs are efficiently losslessly
encoded into (variable-length) binary packets. If this can be
accomplished, the architectures in [1]–[4] provably attain
bitrates close to established directed information (DI) lower
bounds (cf. [3], [12]). To our knowledge, such results has not
been obtained with logarithmic quantizers. Accomplishing
the efficient lossless encoding in [1]–[4] is quite difficult
in practice. In [1]–[4] the quantizer outputs are random
variables with countable support, and form a non-stationary
random process. In [1]–[3] the lossless encoding is assumed
to be adapted precisely to the output distribution. While [4]
demonstrated that it suffices to use a time-invariant encoding
adapted to the limiting distribution of the quantizer’s outputs;
it remains a challenging problem to estimate, and design a
code for, this limiting distribution. In contrast to some recent
work on LQG control with fixed-rate feedback (cf. e.g. [15]),
there are few results on practical algorithms that have been
shown to exhibit competitive performance with respect to
established fundamental tradeoffs between bitrate and control
performance (cf. [3], [12]) in the LQG setting.

Despite recent positive results on LQG control with fixed-
length feedback, the less restrictive setting of variable-length
feedback offers some advantages. It is well established that
a linear plant driven by unbounded process noise cannot be
stabilized in the mean square sense with feedback that under-
goes time-invariant, memoryless, fixed-length quantization
[14]. While several works on control with adaptive fixed-
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length quantization guarantee stability, e.g. [16], [17], they
are not guaranteed to operate near the fundamental rate-cost
tradeoff for LQG problems. In [15], fixed-length quantizers
that optimize LQG control performance were designed via
the Lloyd-Max algorithm. While numerical experiments ex-
hibited competitive performance was achieved with respect
to fundamental tradeoffs, the approach in [15] requires the
Lloyd-Max quantizer to be “re-designed” at every timestep.
Stability is not guaranteed. In contrast, it is relatively easy
to guarantee a fixed LQG performance with variable-length
feedback; rare events that would effectively saturate fixed-
length quantizers are encoded into long bitstrings. In this
work, we use variable-length feedback, which allows us to
give long-term guarantees on control performance.

In this work, we combine the quantizer design and analysis
from [4] with relatively recent work on universal lossless
source coding on countable alphabets. Broadly speaking,
“universal coding” refers to techniques for the design of
lossless codes for sources with unknown distributions. The
quantizer outputs from [4] are an asymptotically stationary
random process with countable support. Their limiting dis-
tribution evades closed form description. While there is a
wealth of literature devoted to universal coding on alphabets
with finite support, there are comparatively fewer results
for alphabets with countably infinite support [5]–[8]. In
particular, [5] introduced the notion of universal coding on
envelope classes. An envelope class is a set of probabil-
ity mass functions on N+ (interpreted as potential source
distributions) that are upper bounded by a monotonically
decreasing, ℓ1, envelope functions. Relevant envelope func-
tions include power-laws and exponentials. Universal block
coding techniques for independent and identically distributed
(IID) stationary sources with marginals that fall into envelope
classes are introduced in [5]–[8]. The coding algorithms in
[5]–[8] take a censoring approach; symbols that are below
a (time-varying) cutoff are encoded using arithmetic coding,
and large-valued symbol realizations that exceed the cutoff
are treated differently. If the symbol value exceeds the cutoff,
an escape symbol is encoded arithmetically and the observed
symbol value (or the difference between the symbol value
and the cuttoff) is encoded via one of Elias’s universal
prefix codes for integers [10]. The probability model used
for arithmetic coding is an essentially an estimator of the
source probability mass function. The particular model used
in [5]–[8] was investigated in [18]. It is memoryless and
empirically adapted to reflect the source.

While the algorithms in [5]–[8] permit sequential encoding
and decoding, they are fundamentally block codes. Arith-
metic coding sometimes requires that bits from n encoded
symbols be received before the first symbol can be decoded.
Given a block of n symbols to encode, the algorithms in
[5] and [6] can be shown to achieve a redundancy (e.g. a
codeword length in excess of the entropy of the source) that
has o(n). If, instead of using arithmetic coding, the symbols
below the cuttoff are encoded with a Shannon-Fano-Elias
(SFE) code ( [4, Section IV.A.1]) using the empirical source
model, the encoding schemes in [5]–[8] can be made to incur

zero encoding and decoding delay at the expense of at most
1 bit per encoded symbol. We discuss [5]–[8] in the context
of our present work in the next subsection.

B. Our contributions

This work makes one theoretical and one practical con-
tribution. On the theoretical side, we prove that, after a
transformation, the limiting distribution of the quantizer
outputs in [4]’s source coding architecture fall into an expo-
nential or power-law envelope class (depending on the plant
dimension). The approaches in [5]–[8] apply to stationary
sources in envelope classes. Given the asymptotic stationarity
and the Kullback–Leibler (KL) sense convergence of the
quantizer’s outputs to their limiting distribution in [4], we
conjecture that using a “zero-delay version” of an algorithm
from [5] or [6] to encode the quantizer’s outputs will achieve
the same bitrates predicted by [4, Theorem IV.3 (ii)]. The
proof of this conjecture is left to future work.

The coding schemes in [5]–[8] are not strictly practical,
as they require arithmetic-style prefix coding to be per-
formed on larger and larger alphabets. This requires the
(arithmetic) precision with which calculations are performed
at the encoder and decoder to likewise expand [9]. We
devise a simplified, zero-delay version of the censoring codes
using fixed-precision arithmetic. We demonstrate competitive
performance with respect to the lower bounds from [12] and
the upper bounds in [4].

C. Notation

We use lower case serif letters for vectors v, upper case
serif letters for matrices V , and sans serif lower case letters
v for scalars. Random variables are in boldface v. For
sequences {x0, x1, . . . } we let xn denote {x0, . . . , xn}. If
x ∈ Rm, let [x]i denote the element of x in entry i (we use
zero-based indexing). If x is a discrete random variable, we
let Px(x) = Px[x = x]. The entropy of the discrete random
variable q, in bits, is denoted H(q). The Kullback–Leibler
(KL) divergence between Pa and Pb, in bits, is denoted
DKL(a||b). We write x

D
= y if x and y are identically

distributed. Denote the max singular value of the matrix
X via ∥X∥2 and the spectral radius (largest magnitude
eigenvalue) by ρmax(X). We use standard notation for vector
norms. The set of finite length binary strings is denoted
{0, 1}∗, and the length of a ∈ {0, 1}∗, in bits, is ℓ(a).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the system model depicted in Figure 1, which
depicts a discrete-time, Gauss-Markov plant that is controlled
using feedback that is encoded into variable-length binary
strings (or packets). Denote the state vector xt ∈ Rm, the
control input ut ∈ Ru, and let wt ∼ N (0m,W ) denote
processes noise assumed to be IID over time. We assume
W ≻ 0m×m. We assume the initial state has x0 ∼ N (0, X0),
for X0 ⪰ 0. For some A ∈ Rm×m and B ∈ Rm×u, the
plant dynamics for t ≥ 0 are xt+1 = Axt + But +wt. To
ensure finite control cost is attainable, we assume (A,B) is
stabilizable. The plant is fully observable to a sensor/encoder
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Fig. 1. The codeword at can be generated randomly conditioned
on the information known at the encoder at time t. Likewise, af-
ter receiving at, decoder can randomly generate ut given at and
its previous knowledge. The dither δt is generated independently of
all past system variables. Under the dynamics, xt

0 is a deterministic
function of x0, at−1

0 , ut−1
0 , and wt−1

0 . For t ≥ 0 we assume
the factorizations Pat+1,ut+1|at

0,δ
t
0,u

t
0,w

t
0,x0

= PE,t+1PC,t+1 and
Pat+1,δt+1,ut+1,wt+1|at

0,δ
t
0,u

t
0,w

t
0,x0

= PE,t+1PC,t+1PδPw , where
Pw and Pδ are the marginal distributions of the process noise and dither.
We assume that initially Pa0,δ0,u0,w0|x0

= PE,0PC,0PδPw . These fac-
torizations encode assumed conditional independence assumptions between
system variables. The lower bounds in [12] follow as a consequence.

block. At each discrete timestep t, the sensor/encoder makes
measurements of the plant, and encodes its measurements
into the codeword at ∈ {0, 1}∗ via an arbitrary causal
encoding policy. The encoder then transmits its codeword at
over the feedback channel to a combined decoder/controller.
The decoder/controller uses the packets it receives to design
the control input, ut, again via an arbitrary causal policy.
We assume a reliable feedback channel; the decoder receives
the packet at without errors and without delay. We assume
that the sensor/encoder and decoder/controller have access
to common dither sequence. The dither is a sequence of
exogenous random vectors δt ∈ Rm that are revealed causally
to both encoder and decoder. We assume that [δt]i ∼
Uniform([−∆

2 ,
∆
2 ]) IID over i and t. The dither can be

used to select codewords/control inputs at the respective
blocks. In real-world systems, shared randomness of this
nature can be approximately accomplished via synchroniz-
ing pseudorandom number generators at the encoder and
decoder. The encoder/sensor policy in Fig. 1 is a sequence
of causally conditioned Borel measurable kernels denoted
PE[a

∞
0 ||δ∞0 ,x∞

0 ] =
{

PE,t = Pat|at−1
0 ,δt

0,x
t
0

}
t
. The corre-

sponding decoder/controller policy is PC[u
∞
0 ||a∞0 , δ

∞
0 ] ={

PC,t = Put|at
0,δ

t
0,u

t−1
0

}
t
. Conditional independence as-

sumptions between system variables are imposed via fac-
torizations of the system’s transition kernels (cf. Fig. 1).

We require that the codewords produced by the encoder
be prefix-free in the following sense: for all t and any
realizations (at−1

0 = at−1
0 , δt0 = δt0,u

t−1
0 = ut−1

0 ), for all dis-
tinct a1, a2 ∈ {0, 1}∗ with Pat|at−1

0 ,δt
0,u

t−1
0

[at = a1|at−1
0 =

at−1
0 , δt0 = δt0,u

t−1
0 = ut−1

0 ] > 0 and Pat|at−1
0 ,δt

0,u
t−1
0

[at =

a2|at−1
0 = at−1

0 , δt0 = δt0,u
t−1
0 = ut−1

0 ] > 0, a1 is not a
prefix of a2. This assumption ensures that the decoder can
instantaneously decode the codeword at time t. However, it
permits the encoder to use different prefix-free codebooks
for different realizations of (at−1

0 , δt0,u
t−1
0 ) (cf. [4, Prefix

Constraint 1] [12, Assumption 2]).
We are interested in the tradeoff between LQG control

performance and communication cost, quantified by the time-
average expected codeword length. Mathematically, this is

Fig. 2. The quantizer and controller design from [4].

described by the optimization over policies PE,PC that
conform to the prefix constraint:

L(γ) =


inf

PE,PC

lim sup
T→∞

1

T

∑T−1

t=0
E[ℓ(at)]

s.t. lim sup
T→∞

1

T

∑T−1

t=0
E
[
∥xt+1∥2Q + ∥ut∥2Φ

]
≤ γ,

where Q ⪰ 0, Φ ≻ 0, and γ is the maximum tolerable LQG
cost. Let S be a stabilizing solution to the discrete algebraic
Riccati equation (DARE) ATSA − S − ATSB(BTSB +
Φ)−1BTSA + Q = 0, K = −(BTSB + Φ)−1BTSA, and
Θ = KT(BTSB +Φ)K. Consider the optimization

R(γ) =



inf
P,Π,∈Rm×m

P,Π⪰0

1

2
(− log2 detΠ + log2 detW )

s.t. Tr(ΘP ) + Tr(WS) ≤ γ,

P ⪯ APAT +W ,[
P −Π PAT

AP APAT +W

]
⪰ 0

(1)

R(γ) is the minimum DI that must be incurred by any policy
that achieves an LQG cost less than or equal to γ. This
DI is a fundamental lower bound on the bitrate L(γ), i.e.
R(γ) ≤ L(γ) [12, Theorem 1] [19]. The minimizing P from
(1), denoted P̂ , can be used to construct encoder and decoder
policies that nearly achieve the lower bound R(γ) [4]. This
approach, depicted in Fig. 2, is presently summarized.

Given P̂ , define P̂+ = AP̂AT +W . Assume that ∆ = 1,
and that C is chosen such that 1

12 (P̂
−1−P̂−1

+ ) = CTC. The
encoder and decoder operate synchronized time-invariant
Kalman filters (KF) that are updated with measurements con-
structed from the encoded codewords. Let xt|t−1 denote these
filters’ a priori estimate, and xt|t their posterior estimate.
Assume initially that x1|0 = 0. By construction, both the
encoder and decoder will have computed the same a priori
estimate xt|t−1 by the beginning of timestep t. Define the
Kalman filter’s a priori error via et = xt − xt|t−1. Let Q∆ :
Rm → Zm be a function that rounds its input elementwise to
the nearest integer, e.g. [Q∆(x)]i = k if [x]i ∈ [k− 1

2 , k+
1
2 ).

At every time t the encoder produces a dithered quantization
of the Kalman innovation via qt = Q∆(Cet + δt). The
quantization qt is a discrete random variable with countably
infinite support on Zm. The quantization qt is encoded into
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the codeword at losslessly. Since the decoder receives at
without error, it can reconstruct qt exactly. The decoder
then computes a centered, reconstructed measurement yt =
qt − δt + Cxt|t−1. It is shown in [4, Eqn. (19)] that yt =
Cxt + vt, where [vt]i ∼ Uniform([− 1

2 ,
1
2 ]) IID over i and

vt ⊥⊥ xt
0. Since the encoder knows the dither signal, it can

also compute yt. Both the encoder and decoder update their
KFs using the time-invariant gain J = P̂+C

T(CP̂+C
T +

Im)
−1, computing xt|t = xt|t−1 + J(yt − Cxt|t−1). The

decoder then applies certainty equivalent control, selecting
ut = Kxt|t. The encoder can likewise compute ut, and both
the encoder and decoder KFs compute the predict update via
xt+1|t = Axt|t+But. The next proposition highlights some
relevant results from [4] that pertain to this architecture.

Proposition 2.1: Let L = AJ and R = A − LC. Let
{νt} denote an IID sequence of random variables uniformly
distributed on [−1/2, 1/2]m, let {ωt} be IID with ωt ∼
N (0m,W ), and let χ ∼ N (0m, X0). Let {ωt}, {νt}, and χ
be mutually independent. We have that R is (discrete-time)
globally asymptotically stable, e.g. ρmax(R) < 1, that

et
D
= Rtχ+

t−1∑
i=0

Ri(ωi − Lν i), (2)

and that there exists a random variable e ∼ Pe such that
(et, δt) converge in total variation (and thus weakly) to (e, δ)
where δ ⊥⊥ e and δ ∼ Uniform([− 1

2 ,
1
2 ]

m). Furthermore
e ∈ Rm has a strictly positive probability density function
and the process (et, δt) is ergodic in the sense that that if
f : Rm × [−1/2, 1/2]m → R has E[|f(e, δ)|] <∞ then

lim
T→∞

1

T

T−1∑
i=0

f(ei, δi) = E[f(e, δ)], almost surely. (3)

Defining q = Q∆(Ce + δ), we have that the qt converge
in total variation (and thus weakly) to q and furthermore
that limt→∞DKL(qt||q) = 0. Finally, we have that both
lim supt→∞H(qt) ≤ R(γ)+b and H(q) ≤ R(γ)+b where
b = m

(
1 + 1

2 log2
(
2πe
12

))
. So long as the qt are losslessly

conveyed to the decoder, LQG control cost satisfies

lim sup
T→∞

1

T

∑T−1

t=0
E[∥xt+1∥2Q + ∥ut∥2Φ] ≤ γ. (4)

Proof: That ρmax(R) < 1 is addressed in [4, Section
IV.C], (2) is addressed in the second paragraph of the proof
of [4, Lemma 4.8]. The existence and ergodic properties of
the limiting measures Pe,δ and Pq are main results of [4].
These results are discussed in [4, Theorem IV.3 and Section
IV.C, in particular Lemma IV.5]. The KL-sense convergence
of qt to q is [4, Lemma IV.8]. The entropy bounds are via
[4, Lemma IV.7] and (4) is [4, Theorem IV.3 (iii)].

In the encoder/decoder in Fig. 2, at every timestep qt is
encoded into the prefix-free codeword at ∈ {0, 1}∗. The
encoding is lossless and zero delay. Upon receiving at,
decoder recovers qt. The reminder of this work pertains
to this lossless encoding. Let Ct : Zm → {0, 1}∗ be the
encoding function used at time t, e.g. assume at = Ct(qt).
If the probability mass function Pqt

is known at every t,
Ct can be chosen as a SFE code adapted to the distribution

Pqt
and achieve a codeword length E[ℓ(at)] ≤ H(qt) + 1

(cf. e.g. [4, Sec. IV.A.1]). In [4], we proved that if the
limiting distribution Pq is known and Ct is chosen as a fixed
(time-invariant) SFE code adapted to the distribution Pq,
then lim supt→∞ E[ℓ(at)] ≤ lim supt→∞H(qt) + 1. Thus,
if either the marginal probability mass functions (PMFs) Pqt

or the limiting PMF Pq is known, we can losslessly encode
{qt} so that the prefix constraint is satisfied and

lim sup
T→∞

1

T

T−1∑
i=0

E[ℓ(ai)] ≤ R(γ) + b+ 1, (5)

e.g. the system achieves a time-average codeword length
that is at most b bits above the fundamental rate-distortion
lower bound in (1). While the bound in (5) can be achieved
if either the Pqt

or Pq are known, this is difficult to
accomplish in practice. It is doubtful that they admit closed
form characterizations. This motivates pursuing designs for
Ct via universal coding. In our present context universal
coding functions will be constructed via past observations
of the source process. To make this explicit, we will denote
Ct = Ct|qt−1 when Ct is a function of the “past realizations”
qt−1. We discuss universal coding in the next section.

III. TOWARDS UNIVERSAL CODING FOR THE QUANTIZER
OUTPUTS

We begin with some definitions. A probability mass
function Pz : N+ → [0, 1] belongs to the power-law
envelope class with parameters (α, β) if for α > 1, β >

2α/
(∑∞

i=1
1
iα

)
, Pz(x) ≤ min

(
β
xα , 1

)
for x ∈ N+ [5]. Like-

wise, a probability mass function Pz : N+ → [0, 1] belongs
to the exponential envelope class with parameters (α, β) if
for α > 0, β > e2α such that Pz(x) ≤ min(βe−αx, 1),
for x ∈ N+. Finally, a (scalar) random variable x is σ-
subgaussian if E[x] = 0 and E[eλx] ≤ eλ

2σ2/2 for all λ ∈ R.
A random vector x ∈ Rm is σ-subgaussian if for every
c ∈ Rm with ∥c∥2 = 1, cTx is σ-subgaussian.

Let xt be a stationary, IID source on N+. Assume xt ∼ Px

for all t. Let x ∼ Px. Assume that Px falls into either a
power-law or exponential envelope class. A consequence of
[5] and [6] is that one can construct a sequence of functions
Ct|xt−1 : N+ → {0, 1}∗ such that

lim sup
T→∞

1

T

T−1∑
i=0

E
[
ℓ
(
Ct|xt−1 (xt)

)]
≤ H(x) + 1. (6)

Further, if Px[xt = x1|xt−1],Px[xt = x2|xt−1] > 0 then
Ct|xt−1(x1) is not a prefix of Ct|xt−1(x2) and vice-versa.
This follows from replacing arithmetic coding with SFE
coding (under the same probability model) in the encoding
algorithms for power-law ( [5]) or exponential enveloped
sources ( [6]). Each Ct|xt−1 is constructed using the previous
observations xt−1 without knowledge of the PMF Px.

The envelope classes, and encoding schemes in [5]–[8]
apply to sources on N+, however, the quantizer output
discussed in Section II has qt ∈ Zm. We will develop a
bijection g : Zm → N+ such that the limiting distribution of
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g(qt) falls into in an envelope class. In particular, assume
that g is such that if ∥a∥∞ > ∥b∥∞ then g(a) > g(b). In
other words, let g be any bijection that respects the partial
order induced by the infinity norm on Zm. Clearly such a
mapping exists. For i ∈ N, define Bi = {z ∈ Zm : ∥z∥∞ ≤
i}, which is the set of points in Zm that lie within an origin-
centered hypercube with edges of length 2i. Note that the
cardinality of Bi is |Bi| = (2i + 1)m. To define g, choose
g(0m) = 1, and then map the points in B1/B0 arbitrarily to
2 to 3m and so on. We have the following theorem.

Theorem 3.1: Let g : Zm → N+ be any bijection such that
if ∥a∥∞ > ∥b∥∞ then g(a) > g(b). Let q be as described in
Proposition 2.1, and define q = g(q). If m = 1 or m = 2,
q falls into the exponential envelope class. If m > 2, have
that q is a member of a power-law envelope class.

Proof: Let {ωt}, {νt}, and χ be as in Prop, 2.1, and
let δt ⊥⊥ (χ, {ωt}, {νt}). Define zt = Cet + δt. Via (2),

zt
D
= C

(
Rtχ+

t−1∑
i=0

Ri(ωi − Lν i)

)
+ δt. (7)

Take c ∈ Rm with ∥c∥2 = 1. Let κ1 = limt→∞
∑t−1

i=0 ∥Ri∥2,
κ2 = supt∥Rt∥22, and κ3 = limt→∞

∑t−1
i=0 ∥Ri∥22. Note that

since ρmax(R) < 1, κ1, κ2, κ3 are finite via Gelfand’s
theorem (cf. e.g. Proposition A.4 in [4]). Define zt =
−C

∑t−1
i=0 R

iLν i + δt and let zt = C(Rtχ +
∑t−1

i=0 R
iωi)

so that zt
D
= zt + zt with E[zt] = E[zt] = 0. For all t, cTzt

has bounded support, i.e.

|cTzt| ≤ (κ1∥C∥2∥L∥2 + 1)

√
m

2
(8)

which follows via the triangle inequality, Cauchy-Schwartz,
and the submultiplicativity of matrix norms, and since
∥νt∥2, ∥δt∥2 ≤

√
m
2 . Let σ1 = (κ1∥C∥2∥L∥2 + 1)

√
m
2 .

Given (8) we have that for every t and c with ∥c∥2 = 1,
cTzt is σ1-subgaussian [20, Ex. 5.6 (b)].

Define Ωt = C
(
RtX0(R

t)T +
∑t−1

i=0 R
iW (Ri)T

)
CT.

We have cTzt ∼ N (0, cTΩtc). If we denote σ2
2 =

∥C∥22 (∥X0∥2κ2 + ∥W∥2κ3), for all t we have cTΩtc ≤
σ2
2 , which follows analagously by the triangle inequality,

Cauchy-Schwartz, the submultiplicativity of matrix norms.
Since cTzt is a zero-mean Gaussian with a variance upper
bounded by σ2

2 we have that cTzt is σ2-subgaussian. Note
that σ2 does not depend on c, and that this holds for any c
with ∥c∥2 = 1. Since cTzt

D
= cTzt + cTzt, via [20, Lemma

5.4 (b)] cTzt is σ =
√
σ2
1 + σ2

2-subgaussian for all t and c
with ∥c∥2 = 1. Thus the zt is σ-subgaussian for all t.

Define qt = Q∆(zt) and qt = g(qt). Note that for r ∈ N0

by definition the set Br contains |Br| = (2r+1)m points. By
definition of the bijection g, for r ∈ N+, ∥qt∥∞ ≥ r if and
only if qt ≥ (2(r − 1) + 1)m + 1. Take z ∈ N+. We have

P[qt = z] ≤ P [qt ≥ z] (9)

≤ P

[
qt ≥

(
2(⌊

m
√
z− 1 + 1

2
⌋ − 1) + 1

)m

+ 1

]

≤ P

[
∥qt∥∞ ≥ ⌊

m
√
z− 1 + 1

2
⌋
]
, (10)

where the z = 1 case in (10) holds trivially and for z > 1
(10) follows from our observation above (9). Note that for
r ∈ N0, ∥qt∥∞ ≥ r if and only if ∥Cet + δt∥∞ ≥ r − 1

2 .
Thus, further relaxing (10)

P[qt = z] ≤ P

[
∥Cet + δt∥∞ ≥ ⌊

m
√
z− 1 + 1

2
⌋ − 1

2

]
≤ P

[
∥Cet + δt∥∞ ≥

(
m
√
z− 1

2
− 1

)]
(11)

≤ 2me−
1

2σ2 ( 1
2

m√z−1−1)
2

(12)

where (12) follows from a maximal inequality for subgaus-
sian random vectors (cf. [21, Theorem 2.2.1]). Let ζ =

1/(8σ2). We have z2 ≤ eζ(
m√z−1−2)

2

for z sufficiently large,
and thus, P[qt = z] ≤ 2m

z2 for z sufficiently large. This
demonstrates that irrespective of m, the quantizer output,
when wrapped by the function g, falls into a power-law
envelope class with parameter α = 2 and a β that depends
on ζ and m. If m = 1, once we have immediately that qt is
in the exponential class with α = ζ and a β that depends on
ζ. If m = 2, qt is in the exponential class with α = ζ

2 and
a β that depends on ζ. Since the bound in (12) holds for all
t, it holds for the limiting distribution q = g(q).

Note that H(qt) = H(qt) and H(q) = H(q) since g is a
bijection. By Proposition 2.1 DKL(qt||q) → 0. A corollary
to this latter fact and Theorem 3.1 is that limt→∞H(qt) =
H(q) [22, Theorem 21]. Notably, the results in [5] and [6]
hold only for stationary sources on N+, meanwhile qt is
only asymptotically stationary. However, given Proposition
2.1 and Theorem 3.1 we conjecture the following.

Conjecture 3.2: Let g be a bijection as described in
Theorem 3.1. Assume that the lossless encoder in Fig.
2 first computes qt = g(qt), and then encodes qt via
at = Ct|qt−1(qt), where Ct|qt−1 is the encoding function
constructed via either [6] (in the case that m ≤ 2) or
[5] with the zero-delay modification (replacing arithmetic
coding with SFE coding, cf. (6)). The encoding is prefix-
free in the sense of Section II (indeed, particular prefix-
free encoding used at time t depends only on qt−1), and
the decoder can reconstruct qt exactly, thus ensuring that
the constraint on LQG control performance is satisfied. We
conjecture that the time-average expected codeword lengths
will satisfy limT→∞

1
T

∑T−1
i=0 E[ℓ(at)] = H(q) + 1.

Mirroring the approaches in [5], [6], Theorem 3.1 provides
the first step required to affirmatively establish Conjecture
3.2. While proving (or disproving) Conjecture 3.2 is a topic
for future work; we suspect that it holds given the ergodicity
of {qt} and since qt → q in the KL-sense. A proof of
Conjecture 3.2 would require analyzing the lengths of both
the Shannon-Fano-Elias style encoding (cf. [5, Lemma 2])
and the encoding of “overflows” (cf. [5, Lemma 3]). In the
next section, we depart from theory and propose a practical
algorithm, based on [5], [6], for the lossless encoding of
the quantizer outputs. The proposed algorithm demonstrates
competitive performance in Section V.
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IV. A PRACTICAL ADAPTIVE ALGORITHM

A key element of the coding schemes in [5]–[8] is
cutoff censoring. Generally speaking, if a source produces
a symbol below a cuttoff at at a given time, the symbol
is encoded via adaptive arithmetic coding. If the source
produces a symbol that exceeds the cutoff, an escape symbol
is encoded arithmetically, and the overflowing symbol itself
was encoded using the Elias omega code. In [5]–[8], the
cuttoffs grow with time, and (in our case) will diverge as
large numbers of symbols are encoded. Cutoffs that grow
with time are impractical as they require that the arithmetic
precision used to implement arithmetic, or, in the zero-delay
case, SFE, encoders and decoders similarly expands over
time [9]. Since our interest is in long term, infinite horizon
communication cost, we propose instead to fix the cutoffs a
priori and account for fixed arithmetic precision. We describe
our proposed algorithm in the remainder of this section.

We first describe our notion of “censoring” before describ-
ing the encoding. Let p be the precision, in bits, in which
(unsigned integer) arithmetic operations are to be performed
at the encoder and decoder. We first transform qt into a
source on Nm

+ by computing the vector st with elements

[st]i =

{
2[qt]i, [qt]i > 0

−2[qt]i + 1, [qt]i ≤ 0
. (13)

Let k ∈ Nm
+ be a vector of cutoffs. The k are fixed a

priori; and are hyperparameters of our encoding algorithm.
We require that n =

∏m
j=1([k]j + 1) has n < 2

p
2 . Define the

truncation operator trunkk : Nm
+ → Nm

0 via

[trunkk(s)]i =

{
[s]i, [s]i ≤ [k]i

0, otherwise
. (14)

Define the post-truncation symbol tuple st = trunkk(st),
which is a source on an alphabet of cardinality n. Denote
the sequence of symbols that were truncated ŝt, so that [ŝt]i
is the ith symbol truncated from st. Note that the dimension
of the vector ŝi is random. Define the linear indexing function
λ : Nm

0 → N0 via λ(s) =
∑m−1

i=1 ([s]i)
∏m

j=i+1([k]j+1)+[s]m.
We have that λ is a bijection from the range of st to the set
{0, 1, . . . , n − 1}. Let mt = λ(st). In our algorithm, we
encode mt using a SFE code (cf. [23], [4, Section IV.A.1]).
Subsequently, we encode each element of ŝt with the Elias
omega code [10]. The decoder decodes mt, recovering st via
inverting the indexing function λ. It then counts the overflow
“0” symbols in st, and decodes the omega-encoded ŝt from
the remaining bits. Finally, it reconstructs st and qt.

We implement the SFE encoding along the same lines
as the fixed-precision implementation of adaptive arithmetic
coding in [9]. To encode mt via an SFE codec, a probability
mass function for mt is required. We encode mt using an
empirical model based on mt−1. Let ct ∈ Nn

0, and assume
[c−1]i = 1 for i ∈ {0, . . . , n−1}. For all t, let rt =

∑n
i=0[ct]i.

The PMF used for SFE encoding at time t + 1 is based on

the empirical frequencies

[ct]i =

{
1
2 ([ct−1]i − 1) + 1 + 1mt=i, if rt−1 = 2p/2 − 1

[ct−1]i + 1mt=i, otherwise.

We encode mt using the PMF Pct−1(i) = [ct−1]i. Both
the encoder and decoder begin with the same initial model
c−1, and the encoder and decoder updates their models via
after encoding/decoding so that they remain synchronized.
The update rule periodically re-scales to ensures that the
arithmetic operations required for SFE encoding/decoding
can be carried out in p bits of precision. For more details, see
[24, Chapter 11]. Since the model used for SFE encoding at
time t depends only on mt−1, the SFE coding is prefix-
free in the sense of Section II (given mt−1). The Elias
omega coding is likewise instantaneously decodable, and
thus the jointly encoding qt via SFE encoding st and st
satisfies our desired prefix constraint. We now characterize
this algorithm’s performance numerically.

V. NUMERICAL RESULTS

We simulated the proposed approach with linearized
model for an inverted pendulum system [11]. The system is
described in detail in Appendix I. The system’s state vector
consists of m = 4 dimensions including a horizontal position
and velocity as well as the pendulum’s azimuthal angle,
and angular velocity, with respect to the normal from the
cart’s platform. The control input is u = 1 dimensional. We
discretized the system’s dynamics at a sampling frequency
of 100 samples per second and assume that the continuous-
time control input is via sample-and-hold at the same fre-
quency. The discrete-time system dynamics are assumed to
be xt+1 = Aτxt+Bτut+wt where Aτ ∈ R4×4, Bτ ∈ R4×1,
and wt is IID process noise such that wt ⊥⊥ ut−1

0 ,xt
0,w

t−1
0

and wt ∼ N (0,Wτ ). We assume a diagonal Wτ such that
Wτ = .005I4, and an uncertain initial configuration such
that x0 ∼ N (0, .05I4). We will assume that the LQG cost
weights are given by Q = I4×4 and Φ = 1.

All simulations were performed using MATLAB R2022B
[25]. We implemented the quantizer design from Section
II and encoded the quantizations using the compression
algorithm of Section IV. To obtain the solution to the rate-
distortion optimization in (1), and to obtain the measurement
matrix C, we used the YALMIP toolbox [26] with the
MOSEK solver [27]. We used the “sorted” version of SFE
coding in our implementation of the lossless compresssion
algorithm; this tends to reduce redundancy (cf. [4, Section
IV.A.1]). The SFE coding was implemented using unsigned
64-bit arithmetic, and was based on the arithmetic coding
implementation in [9]. After some initial tuning, we settled
on a cutoff vector of k = [8191, 3, 3, 3]T. More details can
be found in [24, Chapter 11].

Figure 3 empirically investigates the bitrate/LQG cost
tradeoff. We plot the lower bound, R(γ) (cf. (1)) and the
upper bound from (5) (which is ≈ R(γ) + 1.26m + 1).
We simulated the algorithm from Sec. IV for T = 400000
samples, and plotted the average control cost versus the
average codeword length over the entire horizon. We found
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Fig. 3. The control cost constraint, γ is plotted on the horizontal, while
the data rate in bits is plotted along the vertical. The behavior of the rate-
distortion lower bound is typical; the horizontal asymptote of the lower
bound corresponds to the minimum feasible LQG performance with fully
observable state feedback (at this sample rate). The lower bound on data
rate rises sharply near this asymptotic and becomes quite modest as a higher
cost can be tolerated.

Fig. 4. The running average control and communication costs on the same
plot for a particular fixed target control cost. We depict upper and lower
bounds on codeword length, the target control cost, as well expected cost to
go after T = 400000 samples. The expected cost to go is seen to converge
to the target control cost.

the control cost slow to settle. The target control costs for
most, but not all, of the points displayed are below the
computed empirical average cost. Figure 4 illustrates the
convergence of the running average bitrate and control cost.

VI. CONCLUSIONS

One immediate takeway from Figure 3 is that the algo-
rithm as proposed seems to outperform the upper bound from
[4]. This suggests that the bounds from [4] can be tightened.
If one uses prefix-free feedback at each sample instant, the
true date rate (in bits per second) tends to infinity as the
sampling rate increases. Likewise, a low sampling rate results
in bad continuous-time control performance, and may result
in long codewords. A more precise characterization of the

Fig. 5. The inverted pendulum, or “cart pole” system consists of a
motorized wheeled cart that can move in one dimension along the z axis.
The “inverted pendulum” is affixed to the top of the cart, and consists of
a slender armature anchored to a fulcrum on the cart. The control input
can accelerate the cart along its axis of motion in an effort to stabilize the
pendulum about its unstable equilibrium at θ = 0.

Variable Descriptions Value
µcart mass of cart .5 kilograms
µpend mass of pendulum .2 kilograms
κ coefficient of friction for cart .1 newton/(meters sec)
ψ mass moment of inertia for pendulum .006 kilogram meters2

ϵ length of pendulum to center of mass .3 meters
g gravitational acceleration 9.8 meters/(sec)2

TABLE I
PARAMETERS OF THE INVERTED PENDULUM SYSTEM IN FIG. 5 [11].

upper bounds from [4] would be useful for optimizing the
sampling rate. In interpreting these numerical results, one
must take care to not interpret them as a “real-world” ex-
periment. They are performed using pseudorandom numbers
and finite precision arithmetic using a standard consumer
laptop. Such simulations doubtlessly suffer from numerical
inaccuracies that may be significant in some applications.

Instead of encoding the linear index of the truncated sym-
bol trunkk(st) with a (sorted) SFE code, one could encode
trunkk(st) using arithmetic coding over the dimensions of
the vector; viewing the elements of the vector as a Markov
source. For example, the encoder and decoder could store
one model for the first component [trunkk(st)]0 of the source,
then [k]0+1 models for [trunkk(st)]1, one for each potential
realization of [trunkk(st)]0, and so on. This approach allows
a more accurate characterization of the source probability
mass function at the expense of greater spatial complexity.
It also reduces the frequency of model rescalings.

APPENDIX I
THE INVERTED PENDULUM’S SYSTEM DYNAMICS

We perform our experiments using a linearized model
for the inverted pendulum system from [11]. The inverted
pendulum system is depicted and described in Fig. 5. The
systems state is considered in m = 4 dimensions, with z
the lateral position of the cart along its axis of motion (in
meters), ż = d

dtz the associated velocity (in meters/second),
θ the angle of the pole from the vertical (in radians), and
θ̇ = d

dtθ the associated angular velocity (in radians/sec). The
control input u is one dimensional. For t ∈ R, t ≥ 0, denote
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the continuous time state vector

x(t) =
[
z(t), ż(t), θ(t), θ̇(t)

]⊤
. (15)

The true dynamics of the system are nonlinear, however, after
linearizing, the continuous-time dynamics are assumed to be

dx(t) = Actx(t) +Bctu(t) +W
1
2
ctdw(t), (16)

where the system matrix Act and feedback matrix Bct are
functions of the system parameters given in Table I [11]. Let
ρ = ψ(µpend + µcart) + µpendµcartϵ

2. Explicitly, we have

Act =



0 1 0 0

0 −
(
ψ + µpendϵ

2
)
κ

ρ

(
µ2

pendϵ
2g
)

ρ
0

0 0 0 1

0 −
(µpendϵκ)

ρ

µpendgϵ(µcart + µpend)

ρ
0


,

Bct =

[
0,

(
ψ + µpendϵ

2
)

ρ
, 0,

µpendϵ

ρ

]⊤
, (17)

and dw(t) is standard Brownian motion that accounts for
modeling error and unmodeled dynamics (wind, etc). We
now construct a discrete-time version of the model in (16),
assuming a sampling period τ . We assume a sample-and-hold
feedback policy where u(t) = u⌊ t

τ ⌋. Let

Aτ = eActτ , Bτ =

∫ τ

0

eActsBctds. (18a)

and

Wτ =

(∫ τ

0

eAsWcte
AT

ctsds

) 1
2

, (18b)

where for a matrix M argument, eM refers to the matrix
exponential of M . For t ∈ N0, we let x(tτ) = xt and
u(tτ) = xt.
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