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Abstract— One problem that arises in control engineering
is that of controlling a system for which the dynamics are
unknown. Such a problem favors a data-driven approach, such
as can be done through the use of the Koopman operator. We
present a switched Koopman model, applicable to systems with
discrete sets of inputs, that gives rise to an optimal control
problem with a piecewise affine value function. This structure
provides an efficient representation and enables a heuristic
pruning algorithm that avoids the exponential complexity of
finding the true optimal solution.

We use density-like observables that are defined through
the notion of entity-based systems: systems whose state is
composed of a possibly varying number of entities that can
be grouped into classes of like-entities. This encompasses many
systems, including arcade games, a common benchmark used
in reinforcement learning. We find that our approach requires
much less training than commonly used for reinforcement
learning. The Koopman approach also has the advantage
of being agnostic to the control objective, which allows the
objective to be changed without needing to retrain the model.

I. INTRODUCTION

Many dynamical systems have dynamics whose model is
either unknown, or otherwise is too complicated for use in
control design. Nonetheless, the need arises to implement
controllers for such systems. Such scenarios favor a model-
free, data-driven approach. One commonly used method is
reinforcement learning, in which an agent learns a value
function via interacting with the system. An alternative is
to learn a model from data, and then to apply model-based
control design. The latter is the approach taken here, through
the use of the Koopman operator.

The Koopman operator, introduced in [1], provides a linear
representation for nonlinear systems via “lifting” of the
dynamics into an infinite-dimensional function space. For
use in numerical computation and analysis, a finite matrix
representation of the operator can be approximately learned
from data [2]. The Koopman operator has seen a great deal of
interest in recent years, including extensions to systems with
control [3]–[6]. While much work has considered systems
with continuous inputs, resulting in models with linear [7],
[8] or bilinear [9] forms, comparatively little literature exists
on systems with discrete inputs. In [10], a continuous input
is discretized to construct a switched Koopman model for
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use in control. Both discrete inputs and states are considered
in [11] in the context of hybrid systems.

We formalize a novel class of systems that we refer
to as entity-based systems, which is amenable to kernel-
based observables. The key feature of these systems is
that their state is composed of some (possibly varying)
number of entities that can be grouped into classes of like-
entities. This can describe many systems, such as players
in strategy games, vehicles in traffic control problems, data
packets in computer networks, or individuals in a dynamic
population. The observables we define rely on evaluating
kernel functions between entities and fixed points in their
state spaces. These are well-suited to capturing the dynamics
of entity-based systems, as they share the symmetry of
the underlying system with respect to permutations of like-
entities, and remain well-defined as the number of entities
present changes. As will be seen in an example, these
observables can be effective even when the entities are high-
dimensional.

The Koopman model we obtain is a switched linear
system, for which standard control approaches apply (see
[12] for a survey). It is most natural when dealing with the
Koopman operator to consider a cost that is linear in the
lifted state, such as would be obtained if the cost were to
be included as a Koopman observable. Linear cost functions
yield useful properties not shared by nonlinear cost functions,
yet have not been studied extensively in the literature. They
have been considered, for example, in [13], which uses
properties of the matrix trace to develop a branch and bound
algorithm.

We show that, for a linear switched system with a linear
cost function, the optimal value function is piecewise linear
on the state space. This is similar to results on partially ob-
served Markov processes [14], which also yield a piecewise
linear value function. As the Koopman model we obtain will
have some error, we show that the worst-case cost is still
piecewise affine in the presence of small perturbations to the
dynamics. There may also be error in measuring the state
or in performing the lifting, which we show also leads to a
worst-case cost that is piecewise affine. Due to the discrete
nature of the problem, the computational complexity of find
the true optimal solution is exponential in the length of the
horizon considered. We introduce an algorithm that finds an
approximate solution to the optimal control problem via use
of a heuristic that dynamically prunes input sequences using
a combination of exploration and exploitation.

It is useful to compare the Koopman operator approach
with that of reinforcement learning (see [15] for a survey).
Whereas reinforcement learning focuses on simultaneously
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learning the value function and exploiting it to maximize an
accrued reward, the Koopman approach used here separates
these two aspects. One advantage of the combined approach
is that a control policy can be incrementally improved, which
in some environments may be necessary to explore regions
of the state space where higher rewards can be achieved. On
the other hand, an advantage of the separate approach is that
the model can be trained from any data, and is agnostic of the
intended objective. Thus, one can implement controllers that
optimize different objectives without needing any additional
training.

The rest of the paper is structured as follows. Section II
presents background on the Koopman operator framework.
Section III formalizes the notion of an entity-based system
and introduces an appropriate type of observable for such
systems. Section IV discusses properties of the optimal
control problem and presents a heuristic search algorithm.
Section V demonstrates our methods for a simple Pong-
like game and for the Atari 2600 game Assault. Section VI
provides concluding remarks.

II. THE KOOPMAN OPERATOR

We consider dynamical systems of the form

x+ = f(x, u), y = g(x), (1)

for state x ∈ X , controlled output y ∈ R, and input u ∈ U ,
where U is a finite set of size nc := |U|, and x+ denotes
the state at the next time step. The Koopman operator acts
on a function space F of mappings from X into R, referred
to as observables. Formally, we define a family of Koopman
operators, parameterized by u, as

Kuϕ(x) := ϕ(f(x, u)), ϕ ∈ F .

That is, each Ku maps observables to their composition with
the state dynamics (1) when input u is applied. We say that
a subspace F̃ ⊆ F is Koopman-invariant if

Kuϕ ∈ F̃ , ∀ϕ ∈ F̃ , ∀u ∈ U ,

and we say that a so-called dictionary of observables Ψ :
X → RN is Koopman-invariant if its elements span a
Koopman-invariant subspace. Since evaluation of the dictio-
nary often involves a “lifting” of a low-dimensional state
vector into a higher dimensional space, the vector Ψ(x) is
commonly referred to as the lifted state.

We briefly summarize key properties of the Koopman
operator used in this paper. Each Ku is a linear operator
on F , since

Ku(α1ϕ1(x) + α2ϕ2(x)) = α1ϕ1(f(x, u)) + α2ϕ2(f(x, u))

= α1Kuϕ1(x) + α2Kuϕ2(x).

When applying a finite input sequence µ = (µ1, . . . , µk) ∈
Uk from an initial state x0, we can compose the Ku to obtain

ϕ(xk) = Kµk
Kµk−1

· · · Kµ1
ϕ(x0). (2)

Given a Koopman-invariant dictionary Ψ, linearity of Ku

guarantees that there exist matrices Au ∈ RN×N such that

KuΨ(x) = Ψ(f(x, u)) = AuΨ(x). (3)

Composition as in (2) then yields

Ψ(xk) = Aµk
Aµk−1

· · ·Aµ1Ψ(x0). (4)

When the output map g is in the span of Ψ, then there exists
a vector c ∈ RN such that

g(x) = cTΨ(x). (5)

While every system has some Koopman-invariant sub-
space, (e.g. the space of constant functions), it is generally
hard to find a subspace (and associated dictionary Ψ) that is
“useful” in the sense of both being Koopman-invariant and
containing the output map g. In practice, this means that
often one needs to work with dictionaries for which (3) and
(5) can not hold exactly, but instead can hold approximately
with some error that depends on how close Ψ is to being
Koopman-invariant.

A. Data-Driven Approximation

The matrices Au and vector c in (3) and (5) can be
constructed from data through an algorithm called extended
dynamic mode decomposition (EDMD) [2].

The EDMD algorithm, slightly modified here to include
inputs and outputs, requires some number of data snapshots

{xi, x̂i, yi, ui}Mi=1

satisfying

x̂i = f(xi, ui), yi = g(xi),

and a dictionary of observables Ψ. The snapshots may be
taken from one long trajectory (in which case we have x̂i =
xi+1), or from several shorter trajectories. The ordering of
the snapshots is irrelevant.

We define the sets I(u) = {i : ui = u}, which can be
used to partition the data snapshots into nc subsystems, each
corresponding to one fixed input u ∈ U . We then apply the
EDMD algorithm to each of these subsystems individually
by solving

Au = argmin
A∈RN×N

∑
i∈I(u)

∥AΨ(xi)−Ψ(x̂i)∥2 (6)

for each u. These solutions can be obtained without storing
the full set of snapshots, by computing

Au = HuG
†
u,

where

Gu =
∑

i∈I(u)

1

|I(u)|
Ψ(xi)Ψ(xi)

T ,

Hu =
∑

i∈I(u)

1

|I(u)|
Ψ(x̂i)Ψ(xi)

T ,

and G†
u denotes the Moore-Penrose pseudoinverse. The vec-

tor c for approximating the output function can be similarly
obtained as the solution to

c = argmin
c∈RN

M∑
i=1

∥cTΨ(xi)− yi∥2. (7)
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III. ENTITY-BASED SYSTEMS

We consider systems for which the state x of the overall
system (1) includes the states of a finite number of entities,
which may be grouped into distinct classes of like-entities.
Each class can be identified with a set-valued mapping Ei :
X ⇒ Rpi such that Ei(x) is the set of states of entities
within that class. By encoding the entities as a set, Ei(x)
does not encode which states correspond to which entities,
and so would remain unchanged if the states were to be
permuted among the entities. If the system is such that two
entities may share the same state, then Ei should instead be
considered multiset-valued, so that states are unordered but
with multiplicities preserved.

We say that the system (1), together with entity mappings
E = (E1, . . . , EnE ), is an entity-based system if there exist
functions F and G such that

E (f(x, u)) = F (E (x), u), (8)
g(x) = G(E (x)). (9)

The key property described by (8) and (9) is that the sets
of entities are sufficient to both predict their evolution and
to compute the output. That is, the evolution of the system
depends on the sets of states of the entities, but not on
which specific state belongs to which entity. An advantage
of this representation over a representation of x as a vector
in Euclidean space is that it allows for systems where the
number of entities may vary over time.

Note that no special structure or properties are required of
X , and so entity-based systems can describe systems with
arbitrary state spaces. If we do have X ⊆ Rn for a fixed
n then we can always describe the system as an entity-
based system, such as by a single entity with E1(x) =
{x}, or by n entities Ei(x) = {xi}. However, finding a
nontrivial characterization may still have utility in terms of
dimensionality reduction as a result of exploiting symmetries
among entities within the same class.

To emphasize the importance of the choice of E , consider
a system with state x ∈ R3, u ∈ R, where

f(x, u) =

x1 + u
ux3
ux2

 , g(x) = x1 − x2x3.

This is not an entity-based system for, say, E1(x) = {x1, x2}
and E2(x) = {x3}, as this choice erases the necessary
distinction between x1 and x2. However, it is an entity-based
system for E1(x) = {x1} and E2(x) = {x2, x3}, as x2 and
x3 behave indistinguishably. Explicitly, we have

E1(f(x, u)) = E1(x) + u,

E2(f(x, u)) = uE2(x),

g(x) = E1(x)−
∏

z∈E2(x)

z.

Another example of an entity-based system that highlights
these properties is the game of chess, for which same-
color pieces of the same type can be grouped into classes
of like-entities. The positions of pieces within each class

Fig. 1. Construction process of the lifted state Ψ(x). Entity coordinates
are extracted from the state (e.g. a game screen), from which densities are
computed at each of a fixed set of basis centers.

define the evolution of the game, and the number of pieces
present decreases over time. Additionally, whereas pieces
from different classes cannot be interchanged (e.g. a pawn
and a queen), nothing would change if, say, we permuted the
locations of the white pawns.

A. Choice of Dictionary

Due to the dependence of the evolution of entity-based
systems on the state through E (x) as described by (8)
and (9), it suffices to consider dictionaries that share this
dependence, i.e.

Ψ(x) = Ψ̃(E (x))

for some function Ψ̃. We propose observables based on
kernel functions between entity states and some set of fixed
points {bij}

Nb,i

j=1 ⊆ Rpi that are chosen via a K-means
clustering over some number of trajectories. For each bij ,
we define an observable

ψij(x) =
∑

e∈Ei(x)

wij(e)κi(e,bij), (10)

where wij is a chosen weighting function and κi is a chosen
kernel function. The dictionary Ψ is then constructed by
stacking the ψij for each entity class Ei.

One appropriate choice of kernel is the Gaussian radial
basis function, defined as

κ(x,y) = exp

(
−∥x− y∥2

2ℓ2

)
where ℓ is a chosen lengthscale parameter. This kernel
produces larger values for entities that are nearer to the given
basis center. The resulting observables then capture relative
densities of the entities, such as is illustrated in Figure 1.
An appropriate weighting function may be set as 0 when e
is far from bij , and 1 otherwise, to promote sparsity in the
dictionary Ψ.

IV. OPTIMAL CONTROL PROBLEM

Given an initial state x0, we treat the outputs yk = g(xk)
as cumulative costs at each stage that we wish to minimize
over some horizon h:

min
µ∈Uh

h∑
k=0

g(xk) (11a)

s.t. xk = f(xk−1, µk), k = 1, . . . , h. (11b)
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Using (3) and (5), this optimization problem can be ex-
pressed equivalently in the lifted state space as

min
µ∈Uh

h∑
k=0

cT ξk (12a)

s.t. ξ0 = Ψ(x0), (12b)
ξk = Aµk

ξk−1, k = 1, . . . , h. (12c)

In practice, (3) and (5) may not hold exactly, so that there
may be a gap between the values of (11) and (12).

For simplicity of presentation, we consider a cost function
that is stage-invariant and depends only on the current state
xk. However, this can be easily extended to stage-dependent
and input-dependent cost functions, i.e. those of the form
gk(xk, uk), by replacing the c vectors with appropriate
ck(uk) vectors.

We define the optimal cost-to-go at stage k from state ξk
by

Jk(ξk) := min
µk∈Uh−k

h∑
ℓ=k

cT ξℓ s.t. (12c) (13)

where µk := (µk+1, . . . , µh) denotes the tail of the sequence
µ from stage k, with the understanding that µh is the empty
sequence and µ0 = µ. Then we have the following result,
which shares similarities to results on the optimal control of
partially observable Markov processes [14], which also yield
a piecewise linear value function.

Theorem 1: Let Jk(ξk) denote the optimal cost-to-go of
(12) from state ξk at stage k. Then Jk is piecewise linear
and given by

Jk(ξk) = min
µk∈Uh−k

d(µk)T ξk (14)

where, for µk = (µk+1, . . . , µh),

d(µk) =

h∑
ℓ=k

AT
µk+1
· · ·AT

µℓ
c. (15)

Moreover, the optimal control to (12) can be obtained as any
µ0 that minimizes (14) for k = 0.

Proof: For a given sequence µk = (µk+1, . . . , µh),
recursive application of (12c) yields the cost at each stage as
cT ξℓ = cTAµℓ

· · ·Aµk+1
ξk. Summing these costs for stages

k to h and minimizing over µk thus yields the desired form
for Jk. That the optimal control to (12) can be obtained as
any µ0 that minimizes (14) for k = 0 then follows directly
from the definition of the cost-to-go in (13).

Note also that the d(µk) vectors can be constructed
recursively by initializing d(µh) = c, and then computing

d(µk−1) = AT
µk
d(µk) + c, k ∈ {h, . . . , 1}. (16)

A. Incorporating Robustness

As discussed previously, using the Koopman model for
prediction introduces error unless Ψ is Koopman-invariant,
which is generally not the case. As such, it is likely desirable
to incorporate some notion of robustness to our objective
function to mitigate this error. The form we consider here is

to optimize for the worst-case cost when (12c) holds only
approximately, with an input-dependent bound on the error
that satisfies ∥ξk − Aµk

ξk−1∥ ≤ εµk
. With this change, the

problem (12) becomes

min
µ∈Uh

max
v1,...,vh∈RN

h∑
k=0

cT ξk (17a)

s.t. ξ0 = Ψ(x0), (17b)
ξk = Aµk

ξk−1 + vk, k = 1, . . . , h, (17c)
∥vk∥ ≤ εµk

, k = 1, . . . , h. (17d)

Theorem 2: Let Jε,k(ξk) denote the optimal worst-case
cost-to-go of (17) from state ξk at stage k. Then Jε,k is
piecewise affine and given by

Jε,k(ξk) = min
µk∈Uh−k

d(µk)T ξk +

h∑
ℓ=k+1

εµℓ
∥d(µℓ)∥

where d(µk) is as in (15).
Proof: For a given µk = (µk+1, . . . , µh) and

vk+1, . . . ,vh ∈ RN , recursive application of (17c) yields
the cost at each stage as

cT ξℓ = cTAµℓ
· · ·Aµk+1

ξk +

ℓ∑
m=k+1

cTAµℓ · · ·Aµm+1vm.

Summing these costs for stages k to h then yields
h∑

ℓ=k

cT ξℓ = d(µk)T ξk +

h∑
m=k+1

d(µm)Tvm. (18)

Now we maximize this sum subject to (17d). Note that the
contribution of each vk is decoupled, so that maximizing (18)
is achieved by maximizing each d(µm)Tvm separately. For
any vector d, we have

max
∥v∥≤ε

dTv = max
∥v∥=1

εdTv = εdT d

∥d∥
= ε∥d∥, (19)

and therefore

max
vk+1,...,vh∈RN

s.t. (17d)

h∑
ℓ=k

cT ξℓ = d(µk)T ξk+

h∑
m=k+1

εµm
∥d(µm)∥.

Minimization over µk thus completes the proof.
One can alternatively consider robustness to error between

ξ0 and Ψ(x0). Such error may be introduced in evaluating
Ψ, or in measuring the state x0 itself. We now optimize the
worst-case when (12b) holds only approximately as ∥ξ0 −
Ψ(x0)∥ ≤ ε. This yields the problem

min
µ∈Uh

max
v∈RN

h∑
k=0

cT ξk (20a)

s.t. ξ0 = Ψ(x0) + v, (20b)
∥v∥ ≤ ε, (20c)
ξk = Aµk

ξk−1, k = 1, . . . , h. (20d)

Note that the cost-to-go at stage k ≥ 1 is equal to that of
(12), and only the cost from stage k = 0 differs.
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Corollary 1: The solution to (20) is equivalent to that of

min
µ∈Uh

d(µ)TΨ(x0) + ε∥d(µ)∥. (21)

where d(µ) is as in (15).
Proof: By Theorem 1, the initial cost-to-go has the

form (14) with respect to ξ0 = Ψ(x0) + v. By (19), the
worst-case with respect to v is then (21).

B. Dynamic Pruning Algorithm

One approach to computing the optimal control is to
exhaustively precompute the d(µ) vectors for each possible
input sequence, yielding nc

h vectors. The problem (12)
would then be solved by finding the µ that minimizes
d(µ)TΨ(x0). However, due to the exponential dependence
on h, this approach quickly becomes intractable for longer
horizon lengths. One alternative is to use a branch and bound
method as is described in [13], but this algorithm is too slow
for use in real-time control.

We propose a suboptimal method, described in Algorithm
1, that approximates the value function by computing only
a tractable subset of the d(µ) vectors. First, a set Υh

is constructed containing only the empty sequence. Then,
starting with k = h − 1, we construct the set Υk by
prepending each input u ∈ U to each sequence µk+1 ∈
Υk+1, and concurrently compute the corresponding vectors
{d(µk) : µk ∈ Υk} using (16). If the size of the constructed
set is greater than some fixed constant L, then the set is
pruned via a combination of exploration and exploitation.

The exploitation phase consists of implementing a reced-
ing horizon algorithm, which chooses among the sequences
in Υk, from an initial state ξ0. Starting at ℓ = 0, we compute

(µk+1, . . . , µh) = argmin
µk∈Υk

d(µk)T ξℓ, (22)

ξℓ+1 = Aµk+1
ξℓ,

which obtains the best sequence in Υk at state ξℓ and
applies it to obtain the next state ξℓ+1. We also construct
a set ΥK-best,ℓ containing the K sequences in Υk that yield
the K lowest values in (22), which will be included in
the pruned set. The above process is repeated for each
ℓ ∈ {0, h − 1}, resulting in sets ΥK-best,ℓ containing up to
hK input sequences in total.

Ideally, Υk would contain the best input sequences of
length h−k for states ξ in the reachable region of the lifted
state space. If this were the case, then (22) would find the
optimal control to (12) from ξ at stage k, and its value would
be equal to Jk(ξ) as defined in (13). It is likely not the case
that the best input sequence to every state can be saved,
but we hope that some input sequence achieves close to the
optimal value. Since the input sequences in Υk are used as a
starting point from which to construct the sets Υj for j < k,
this should lead to good performance from stage k onward
even if the performance up to that point is poor.

In the exploration phase, R random input sequences are
chosen from Υk (regardless of how they perform in terms of
the minimization in (22)). This allows the algorithm to find

Fig. 2. Illustration of the simple Pong game. The blue dot is the ball’s
position, and the orange arrow is its velocity. The green line is the paddle.

sequences that initially look “bad” but that turn out good
over the full horizon. The pruned set Υk is then taken as
the union of this set and of the sets Υbest,ℓ. The parameters
should thus be chosen so that hK+R ≤ L, so that the pruned
set is guaranteed to contain no more than L sequences.

The above process is repeated for each k ∈ {h−1, . . . , 0},
as shown in Algorithm 1. The input sequence to a given state
x0 is then chosen as µ = argminµ∈Υ0

d(µ)TΨ(x0).

Algorithm 1 Dynamic Pruning
1: Υh ← {µh} ▷ empty sequence
2: for k ∈ {h− 1, . . . , 0} do
3: Υk ← {(u,µk+1) : u ∈ U ,µk+1 ∈ Υk+1}
4: Compute {d(µk) : µk ∈ Υk} using

{d(µk+1) : µk+1 ∈ Υk+1} and (16)
5: if |Υk| > L then
6: for ℓ ∈ {0, . . . , h− 1} do
7: (µk+1, . . . , µh)← argminµk∈Υk

d(µk)T ξℓ
8: ξℓ+1 ← Aµk+1

ξℓ
9: ΥK-best,ℓ ← K minimizers of (22)

10: end for
11: Υk ← sample(Υk, R) ∪

⋃hcl−1
ℓ=0 ΥK-best,ℓ

12: end if
13: end for

V. EXPERIMENTAL RESULTS

We apply our techniques to two different arcade games.
The first is a simple Pong-like game implemented in Julia.
The second is the Atari 2600 game Assault.

A. Simple Pong

The first example we consider is a simplified version of the
game Pong. The game consists of a square box containing a
“ball” represented as a point, and a “paddle” with width w.
The ball moves within the box, colliding elastically off of
the walls and the paddle. Note that the ball can collide off
both the “front” or the “back” of the paddle. At each time
step, the player chooses to move the paddle vertically by an
amount u ∈ {−w/2, 0, w/2}.

The state of this game is fully determined by the ball
position, velocity, and paddle height. The full state is taken
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as a single entity that exists in R5, and we choose Nb = 500
basis centers for the observables in (10). Whereas a grid
based method for selecting the centers in R5 would lead to a
prohibitively large lifted state due to the high dimension, the
K-means clustering identifies a relatively small number of
centers that turn out to be sufficient for predicting the state
evolution. We also find that using a single 5-dimensional
entity leads to better performance than separating the ball
and paddle into separate entities, likely due to tight coupling
between the two.

Our goal is to minimize the amount of time that the ball
spends on the right-hand side of the paddle. Accordingly, we
choose the cost function as an indicator function that is equal
to 1 when the ball is to the right of the paddle (x-coordinate
greater than 2/3), and 0 otherwise.

We train the model by simulating, for 10 steps each, initial
conditions sampled uniformly with ball position in [0, 1]2 and
velocity v with |v| ∈ [0.05, 0.1] and ∠v ∈ [0, 2π). We run
5,000 such trajectories for constructing the observables, and
another 5,000 (equaling 50,000 snapshots) for constructing
the EDMD model using (6) and (7). We train two models,
one with w = 1/3 and one with w = 1/5. The prediction
accuracy of the model with w = 1/5 is illustrated in Figure
3. We see that the general trends of the outputs are captured,
both at the current and future time steps, though some error
is present, particularly for the cost function. Despite the
prediction error, there is still a strong positive correlation
between the actual and predicted cost functions, which as we
shall see is sufficient for designing an effective controller.

For each paddle width, we design a controller with horizon
h = 6 that finds the best input sequence to (12) through
an exhaustive search over the precomputed vectors {d(µ) :
µ ∈ U6}, implemented in a receding horizon algorithm.
We test each controller for 5,000 initial conditions sampled
with the x-coordinate equal to zero and an initial velocity
with an angle in [−π/3, π/3]. We simulate each initial
condition for 100 time steps. We test each controller for the
system with the paddle width it was designed for, but also
against the system with the other paddle width to observe the
performance in a non-nominal system. We also implement
robust versions of each controller, which minimize the worst-
case cost-to-go of Theorem 2, where we fix ε0 = 10−4 and
vary ε−w/2 = εw/2 from 10−4 to 10−5. These values are
small to avoid being overly conservative, since the actual
errors are unlikely to match the worst-case errors of (17d).

The fraction of time spent on the right-hand side is shown
in Figure 4. For reference, we also provide the performance
of random play and of a controller that solves the original
problem (11) by simulating the exact nonlinear dynamics for
the same horizon of h = 6. Note that even the solution to (11)
is suboptimal due to its limited horizon. All controllers yield
significant improvement over random play for both systems.
The designed controllers are also robust to perturbations in
the system dynamics, as evidenced by their performance in
the off-nominal cases (i.e. those with wnom ̸= w).

Surprisingly, the controller with wnom = 1/3 always
performs better than the controller with wnom = 1/5, even

(a) Current time step.

(b) 6 time steps in the future.

Fig. 3. Actual vs. predicted outputs at the current time step, and at 6 time
steps in the future, for the pong game with w = 1/5. Perfect predictions
would lie on the line y = x, shown in orange. While some error is visible,
the general trends are captured.

Fig. 4. Performance of various controllers for the Pong game, when
the paddle width is w = 1/3 or 1/5. Lower values correspond to better
performance. The dashed green and red lines denote the performance
achieved by the non-robust controllers, whereas the solid lines are the
performance of the robust controllers with ε0 = 10−4 and with varying
values of ε−w/2 = εw/2. For reference, the blue shows the performance
of random play, and the magenta shows that of a controller that solves (11)
by simulating the exact nonlinear dynamics for the same horizon h = 6.
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Fig. 5. Performance of various controllers for the Pong game, when the
objective is reversed. Now higher values correspond to better performance.
Similar trends are seen as compared to Figure 4 for the original objective.

when the actual width is 1/5. There are multiple possible
explanations for this phenomenon. One is that the larger
paddle results in more interactions between the ball and
paddle during training, thus producing a Koopman model
with better knowledge of the dynamics at those critical
points. For another, consider the case with w = 1/5 where
the ball is just barely within reach of where the paddle
can move in the time before the ball crosses to the right-
hand side. If the nominal controller incorrectly believes that
the ball will be instead just out of reach, then it would
conclude that it is unable to prevent the ball from passing, so
receives no benefit in trying. On the contrary, the off-nominal
controller would believe that it is able to reach the ball in
time, so it will move toward it and successfully deflect it.

We additionally see that our robust controllers yield im-
provements in the system with w = 1/5, particularly in the
off-nominal case. A small improvement is also seen in the
nominal case with proper tuning of the εu. In the system with
width 1/3, we do not see any significant improvement to
either controller when robustness is incorporated. This could
be expected, as the larger and faster paddle results in an
easier game which is more forgiving to model errors.

Since the Koopman model was trained using random
inputs, it is agnostic of the objective that we choose. As
such, the objective can be changed without needing to retrain
the model. We illustrate this here using the same model, but
now with the objective of maximizing the time spent on the
right-hand side of the paddle. The cost function is the same as
before, but with the sign reversed. The resulting performance
is shown in Figure 5. As before, we see that both controllers
yield significant improvement over random play for both
systems. We also see that for the off-nominal controller of
the w = 1/5 system, incorporation of robustness leads to
improved performance.

B. Assault

The second example is based on the Atari 2600 game
Assault. The game consists of a player ship and a number
of enemy ships. The player can move horizontally and shoot
left, right, and up. When the player shoots, a gauge increases

Fig. 6. A screen from the Atari 2600 game Assault. Four classes of like-
entities (player ship, player shot, enemies, and attack gauge) are indicated.

that leads to a loss of life when it is full. The objective of
the game is to shoot the enemies while evading enemy fire.

The game is structured into a series of levels, each
featuring different enemies. The horizontal shooting of the
player is only needed from the fourth level onward, which
is hardly ever reached by random play. For simplicity of the
resulting model, we thus do not include horizontal shooting
during either the training or testing phases.

Note that this game has stochastic elements, which do
not appear in our modeling in the previous sections. In this
setting, the stochastic Koopman operator maps observables
to their expected value at the next time step [16], and this is
the operator that is approximated by EDMD [2]. Our control
methods then apply as described, with the understanding that
they now minimize the expected cost.

We take as entities the pixels that make up various in-
game features. Specifically, E1 corresponds to the player ship,
E2 to the player shot, E3 to the enemies (encompassing the
enemies, ship, and shots), and E4 to the attack gauge. These
features can be identified by searching specific areas of the
screen for specific colors of pixels. We also include delayed
measurements of ΨE1

and ΨE3
so that the Koopman model

will have awareness of the player and enemy velocities. We
choose the number of basis centers as Nb,1 = 50, Nb,2 =
100, Nb,3 = 200, and Nb,4 = 16 respectively. The total size
of the dictionary Ψ is then N = 616.

We simulate the game via the Arcade Learning Environ-
ment [17] with a frame skip of 2; i.e. a decision is made
every other frame. We additionally use “sticky actions” as
proposed in [18] with ς = 0.25; i.e. at each frame, with
probability 0.25, the current input is ignored and replaced by
the previous input. We train the observables over 20 games,
and train the EDMD model over 500 (totaling 662,668
snapshots, or about 1.3 million frames). We implement a
controller constructed by Algorithm 1 with h = 50, L =
10,000, R = 5,000, and K = 100.

We compare the performance of this controller to that of
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Fig. 7. Comparison of Assault scores between random play and a controller
constructed via Algorithm 1 with h = 50.

random play, testing each on 1,000 games. The distribution
of resulting scores is shown in Figure 7. The controller
provides more consistent results, and improves the mean
score from 416.4 to 657.8. It should be noted that the fourth
level is reached at a score of 630, at which point the player
will inevitably die due to the restriction imposed on shooting
horizontally. The observed performance then may be as good
as one could reasonably hope to achieve under the imposed
constraint preventing horizontal shooting.

We now compare this score to those achieved in the
reinforcement learning literature. In terms of raw perfor-
mance, we do not approach the performance of state-of-
the-art learning algorithms such as [19], [20]. However, the
662,668 training samples we used is much less than the tens
of millions of training samples typically used in the literature.
Despite this relatively small number of training samples, our
controller achieved comparable performance to that of the
agents in [18] after 10 million frames (2 million training
samples). Also of note is that the mean score we achieve is
higher than that of the best linear learner in [19], which, like
us, uses a linear approximation for the value function.

VI. CONCLUSION

We formulated a switched Koopman model with a linear
approximation of a cost function, for which we showed that
the value function is piecewise linear, or piecewise affine
under the worst-case of small perturbations. We also pre-
sented a heuristic search algorithm that allows for tractable
consideration of longer horizons. We introduced a formal-
ization of entity-based games, which characterize the state
by collections of like-entity states, and introduced a class of
kernel-based observables appropriate for such systems.

We demonstrated our approach for two arcade games.
For a simple deterministic Pong-like game, we demonstrated
accuracy of state predictions, and designed controllers that
are robust to changes in the dynamics. We also demonstrated
the ability to change the control objective without needing to
perform any additional training. We then considered the Atari
2600 game Assault, which is more complicated and contains
stochastic elements. For this game, we demonstrated the
effectiveness of our heuristic search algorithm, and achieved

good performance with a much smaller number of training
points than is typically used in reinforcement learning.
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