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Abstract— The emergence of new communication technolo-
gies allows us to expand our understanding of distributed
control and consider collaborative decision-making paradigms.
With collaborative algorithms, certain local decision-making
entities (or agents) are enabled to communicate with one
another and collaborate on their actions to attain better
system behavior. By limiting the amount of communication,
these algorithms exist somewhere between centralized and fully
distributed approaches. To understand the possible benefits of
this inter-agent collaboration, we model a multi-agent system as
a common-interest game in which groups of agents can collab-
orate on their action to jointly increase the system welfare. We
specifically consider k-strong Nash equilibria as the emergent
behavior of these systems and address how well these states
approximate the system optimal, formalized by the k-strong
price of anarchy ratio. Our main contributions are in generating
tight bounds on the k-strong price of anarchy in finite resource
allocation games as the solution to a tractable linear program.
By varying k –the maximum size of a collaborative coalition–
we observe exactly how much performance is gained from
inter-agent collaboration. To investigate further opportunities
for improvement, we generate upper bounds on the maximum
attainable k-strong price of anarchy when the agents’ utility
function can be designed.

I. INTRODUCTION

Controlling large-scale systems like transportation services
[1], robotic fleets [2], supply chains [3], or machine job
schedules [4] is often challenging as managing each com-
ponent simultaneously can be difficult if not impossible.
As a method of reducing control algorithm complexity –
or to satisfy various physical and technical constraints– a
system operator may opt to distribute decision-making across
the system’s components [5]. Doing so forms a multi-agent
system, where each agent makes system-relevant decisions
locally. Distributed control for multi-agent systems has been
relevant and highly studied in many domains and proven
effective at providing reasonable system behavior [5]–[7].
However, the idea of fully localizing decision-making is
perhaps excessive. New technologies allow for greater com-
munication and coordination between components of large-
scale systems [8], [9]. These new technologies open the
door to new opportunities to control multi-agent systems
with collaborative decision-making algorithms, in which
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decision-making is no longer fully distributed but can be
partially coordinated between the agents of the system. How
these control paradigms compare to the more well-studied
distributed approach is not well understood. In this work,
we seek to answer the following questions:

(i) How does collaborative decision-making affect the be-
havior of a multi-agent system?

(ii) Can performance be improved by intelligently designing
how a coalition makes decisions?

We model the multi-agent system as a common-interest
game in which the agents’ joint-action leads to some system
welfare. In the fully distributed setting, the price of anarchy
serves as a quantitative metric to compare the behavior
that emerges from distributed decision-making algorithms
to the optimal system performance [10]. Additionally, by
designing the agents utility function, this performance can be
improved upon [11]. We introduce collaborative coalitions
to the decision-making problem, where groups of agents
can coordinate their actions to jointly maximize the system
objective. These collaborations will alter the behavior of
the multi-agent system and ideally lead to improved per-
formance. Further, we can similarly design the utilities of a
group of agents and quantify the additional gains of using
optimal collaborative designs.

The manner in which agents communicate and collaborate
is context dependent, e.g., networked communication [12],
pair-wise [13], local [14], etc. To gain general insights on
the value of collaboration, we consider that each subset
of agents up to size k can collaborate on their action.
Though extensive, this subsumes several other types of
communication and can help us understand the possible value
inter-agent collaboration can provide. Further, by varying
k, we can probe the specific benefit of various scales of
connectivity. In these collaborative environments, a stable
state of the system is that of the k-strong Nash equilibria,
in which no subset of agents up to size k can revise their
actions to receive a higher payoff for each member of the
group [15]. Researchers have studied the existence [16] and
computation [17] of strong Nash equilibria in settings in-
cluding congestion games [18], lexicographical games [19],
and Markov games [20]. In this work, we study how well
k-strong Nash equilibria approximate the optimal solution,
termed the k-Strong Price of Anarchy (k-SPoA).

Quantifying the k-strong price of anarchy has been studied
in network formation games [21], [22] and load balancing
games [23]–[25], as well as more general utility maximizing
games [26], [27]. In many of these works, the bounds are
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either not tight or only hold in the limit of large numbers
of players. In this work we devise tight bounds on the k-
strong price of anarchy in games with finitely many players.
Additionally, we study how the strong price of anarchy can
be optimized by designing how coalitions of agents make
decisions, something previously unstudied in the literature.

We specifically focus our analysis on resource allocation
games. In the fully distributed setting (k = 1), researchers
have been successful in quantifying the price of anarchy for
Nash equilibria and devising how agents should make deci-
sions [11], [28]. However, existing techniques do not hold
for collaborative decision-making as actions are no longer
made unilaterally and simply characterizing an equilibrium
becomes more difficult. Despite this, we identify several
problem reductions that lead to the following results:
Theorem 1 (Quantify SPoA): We generate tight bounds

on the k-strong price of anarchy in resource allocation
problems by the value of a tractable linear program.

Proposition 2 (Optimize SPoA): We extend this linear
program to give an upper bound on k-strong price of
anarchy under the optimal utility design.

In Fig. 1, we plot the k-strong price of anarchy in maximum
coverage problems for 1 ≤ k ≤ n to illustrate the exact ben-
efit collaborative decision-making and design can provide.

II. DECISION-MAKING MODEL

Before discussing a specific problem setting, we will
review the ideas of distributed decision-making and collabo-
ration in a more general framework for multi-agent systems.
For notation, xy = x!/(x − y)! when x ≥ y ≥ 0 and zero
otherwise, and [n] = {1, . . . , n}.

A. Collaborative Decision-Making

Consider a finite set of agents N = {1, . . . , n}. Each agent
i ∈ N selects an action ai from a finite action set Ai. When
each agent selects an action, we will denote their joint-action
by the tuple a = (a1, . . . , an) ∈ A = A1 × · · · × An.
Let G = (N,A) be a tuple encoding the components of
a multi-agent system. The agents’ actions ultimately dictate
the systems performance, as such, for each joint-action a we
assign a system welfare W (a) where W : A → R is the
system designer’s objective function. The system designer
would like to configure the agents to reach an action that
maximizes the system welfare, i.e.,

aopt ∈ arg max
a∈A

W (a). (1)

Though this system state is ideal, it may be difficult to attain
as 1) solving for the optimal allocation can be combinatorial
and in some cases (including those from Section III) NP-
hard [28], and 2) it requires a centralized authority to control
all agents, which may be practically or logistically difficult.
To resolve this, we will consider that agents make decisions
in a decentralized manner.

Fully distributing the decision-making involves designing
each agent to locally update their action and has been widely
studied and shown effective at providing reasonable system
behavior [5]; however, it need not be necessary as emerging

communication technologies enable collaborative inter-agent
decision-making [8]. To do so, a system operator must make
two decisions: 1) which group of agents can collaborate
on their decisions (possibly subject to some operational
constraints), and 2) how should the agents collaborate on
their decisions. A natural choice for the latter is a group
best response. Let Γ ⊆ N be a group of agents endowed
with the ability to collaboratively select a group action
aΓ ∈ AΓ =

∏
i∈ΓAi, which they select by maximizing the

system welfare over their possible group actions,

aΓ ∈ arg max
a′Γ∈AΓ

W (a′Γ, a−Γ), (2)

where a−Γ denotes the actions of the players not in Γ. If
their are multiple elements in the argmax, the group breaks
them at random unless they can remain with their current
action. In Section III-C, we will consider other ways the
group can make a decision. Regardless, one would imagine
that the greater the collaborative structure, the greater the
impact on emergent behavior.

For the system operator’s decision over which groups
should collaborate, let C ⊆ 2N denote the collabora-
tion set, or the set of groups of agents (Γ ∈ C) able
to collaborate their decisions. These collaborations can
overlap–where agents can partake in multiple, disparate
collaborations–and vary in size. For example, if agents send
signals through a communication network [12], we will have
C = {(i, j) ∈ N2 | (i, j) ∈ E} where E are the edges in
a communication graph. If agents are allowed to commu-
nicate with each other one at a time and make pairwise
decisions [13], then C = {(i, j) ∈ N2}. If agents can
only communicate with others within a local proximity [14],
then C = {Γ ⊆ N | ρ(i, j) ≤ d ∀i, j ∈ Γ} where
ρ measures the distance between two agents and d is a
maximum communication range. Once the system operator
decides on the collaborative structure and the group decision-
making protocol, the agents’ decision-making process forms
a collaborative multi-agent system, denoted by the tuple
(G,W, C). Future work will study the costs of greater col-
laboration; in this work, we seek to understand what benefit
it can provide. We study a particular choice of collaborative
structure where agents collaborate in groups up to size k.

B. Strong Nash equilibria
Let Ck = {Γ ⊆ N | |Γ| = k} denote the subsets of exactly

k agents and C[k] =
⋃
ζ∈[k] Cζ be the subsets that contain at

most k agents. As k increases, so too does the size and
number of collaborating groups. Varying k between 1 and n
will inform us of the added benefit of increased collaboration.

For some k, the states that are stable under collaborative
decision-making processes are those where no k-lateral de-
viation increases the system objective W . These states align
with the set of k-strong Nash equilibria in the common-
interest game with payoffs W and player/actions G.

Definition 1. A joint-action akSNE ∈ A is a k-strong Nash
equilibrium for the common-interest game (G,W, C[k]) if

W (akSNE) ≥W (a′Γ, a
kSNE
−Γ ), ∀a′Γ ∈ AΓ, Γ ∈ C[k]. (3)
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Let kSNE(G,W ) ⊆ A denote the set of all k-strong Nash
equilibria in the game (G,W, C[k]). When k = 1, this
recovers the definition of a Nash equilibrium that is highly
studied in the fully distributed setting [10], [11], [28]. When
k = n, agents fully collaborate and the only k-strong Nash
equilibria are those that maximize the system welfare. When
1 < k < n, there is only partial collaboration among the
agents, and the resulting system behavior is not yet well
understood. This is in part because agents can participate in
multiple collaborations; this overlap is valuable because it
helps connect the decisions in different parts of the system
(even if not directly) and is why we do not simply partition
the agents into disjoint groups.

Definition 1 differs slightly from the more general def-
inition in the literature in which groups take actions that
are Pareto-optimal over the individual payoffs of the group
members [15]. The definitions are equivalent when con-
sidering common-interest games. This refinement is natural
for our setting as we seek to design multi-agent systems
which maximize a central objective. Additionally, in general
a k-strong Nash equilibrium need not exist, however in our
setting that is not the case.

Proposition 1. In a common-interest game (G,W, C[k]), for
any k ∈ [n], a k-strong Nash equilibrium exists and the set
kSNE is stable and reached in finite time by the deterministic
coalition best response dynamics and almost surely by the
asynchronous coalition best response dynamics.

The proof of Proposition 1 is straightforward1; a more de-
tailed version appears in an online appendix [29]. The claims
follow from aopt being a k-strong Nash equilibrium for
any k and that action revisions strictly increase the welfare,
making the set kSNE absorbing in both the deterministic
or asynchronous dynamics. Certainly, the algorithmic and
communication complexity increases with k; future work
will investigate this cost further. In this work we seek to
understand the possible benefit of inter-agent collaboration.

Definition 1 tells us that a k-strong Nash equilibrium is
a local optimum of W in the neighborhood of k-lateral
deviations. Still, if k < n, this need not be the global optimal.
To quantify the efficacy of k-strong Nash equilibria as a
solution concept, we consider the k-strong price of anarchy

SPoAk(G,W ) =
minakSNE∈kSNE(G,W )W (akSNE)

maxaopt∈AW (aopt)
∈ [0, 1].

(4)
In the multi-agent system (G,W, C[k]) any k-strong Nash
equilibrium approximates the optimal solution at least as well
as SPoAk(G,W ). Because k′SNE ⊆ kSNE for k′ > k, the
k-strong price of anarchy will be non-decreasing in k, i.e., the
k-strong Nash equilibrium will do a better job approximating
the optimal solution with greater collaboration.

C. Summary of Contributions
With the possibility of collaboration, an equilibrium

becomes more difficult to characterize than in the fully

1A more general result holds that there exists an equilibrium for any
collaboration set C, not just the k-strong Nash equilibria.

Fig. 1: Strong Price of Anarchy in resource allocation games with n = 20
players and coalitions up to size k (horizontal axis). As the size of groups
that are allowed to collaborate grows, so too does the approximation ratio
(i.e., strong price of anarchy) of a k-strong Nash equilibrium. The efficiency
of an equilibrium can be further improved by designing the utility functions
agents are set to maximize. The solid green line is the k-strong price
of anarchy when agents maximize the system objective (generated by
Theorem 1). The dashed red line is an upper bound on the k-strong price of
anarchy while using an optimal utility design (generated by Proposition 2.)

distributed setting. We circumvent this by introducing
a parameterization which allows us to generalize the
O
(∑k

ζ=1

(
n
ζ

)
mζ
)

comparisons of (3) (where m :=

maxi∈N |Ai|) into k linear inequalities. This reduction is
key in Theorem 1, in which we show the tight bound on
k-strong price of anarchy is the solution to a tractable linear
program for a broad class of resource allocation problems.
In Fig. 1, we plot the bound on the k-strong price of anarchy
in maximum coverage problems for 1 ≤ k ≤ n to quantify
the performance gained by collaborative decision-making.

Finally, we investigate whether further improvement is
possible with collaborative decision-making by designing
how a group of agents makes decisions. Specifically, we
consider that the agents’ need not maximize the system
welfare as in (2), but could instead maximize a separately
designed utility function. Unlike the fully distributed setting,
we may desire that groups of different sizes maximize
different objectives. In Section III-C, we show that the
aforementioned linear program can be extended to provide
an upper bound on the maximum attainable k-strong price
of anarchy by utility design in resource allocation problems.
Fig. 1 plots these values and demonstrates the possible
improvements from intelligently designing the collaborative
decision-making.

III. RESOURCE ALLOCATION PROBLEMS

A. Definition

To provide more context to the value of inter-agent col-
laboration, we will consider the k-strong price of anarchy
in a class of resource allocation problems. Consider a set
of resources or tasks R = {1, . . . , R}, to which agents
are assigned, i.e., agent i ∈ N selects a subset of these
resources as its action ai ⊆ R from a constrained set of
subsets Ai ⊆ 2R. Each resource r ∈ R has a value vr ≥ 0;
the welfare contributed by a resource is vrw(|a|r), where
w : {0, . . . , n} → R≥0 captures the added benefit of having
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P ? = max
θ∈R|I|≥0

∑
e,x,o

w(o+ x)θ(e, x, o)

s.t.
∑
e,x,o

 n!

(n− ζ)!
w(e+ x)−

∑
0≤α≤ζ

0≤β≤ζ−α

(
ζ

α

)(
ζ − α
β

)
eαoβ(n−e−o)ζ-α-βw(e+x+β−α)

 θ(e, x, o) ≥ 0

∀ζ ∈ {1, . . . , k}∑
e,x,o

w(e+ x)θ(e, x, o) = 1 (P)

multiple agents assigned to the same resources and |a|r is
the number of agents assigned to r in allocation a. Assume
that w(0) = 0 and w(y) > 0 for all y > 0. The system
welfare is thus

W (a) =
∑
r∈R

vrw(|a|r). (5)

The objective of the system operator is thus to find an
allocation aopt that maximizes (5); however, doing so in
general is NP hard [28] and requires full coordination of
the agents. To alleviate this, we consider the distributed
approach described in Section II. More specifically, we will
consider the k-strong Nash equilibrium solution concept
described in Section II-B and investigate how well these
states approximate the optimal solution.

Let G = (R, N,A, {vr}r∈R) denote a resource allocation
problem (a more specific multi-agent problem than as in Sec-
tion II). To understand how k-strong Nash equilibria perform
in this class of problems let Gn denote the set of resource
allocation problems with n agents. The k-strong price of
anarchy for this class of problems is defined as

SPoAk(Gn, w) = min
G∈Gn

SPoAk(G,w). (6)

This performance ratio is parameterized by our choice of
welfare function w and the size of collaborative coalitions
k. When k = 1, we recover the traditional price of anarchy
for Nash equilibria. In Section III-B, we will quantify the
k-strong price of anarchy for resource allocation games. In
Section III-C, we investigate what further opportunities are
present by designing the agents objective function separately
from the system objective to alter the set of equilibria.

B. Strong Price of Anarchy

To understand the possible benefit of inter-agent collab-
oration, in Theorem 1 we quantify the k-strong price of
anarchy in resource allocation problems with the solution
to a tractable linear program.

Theorem 1. For the class of resource allocation problems Gn
with welfare function w, when agents maximize the common-
interest welfare,

SPoAk(Gn, w) = 1/P ?(n,w, k), (7)

where P ?(n,w, k) is the value of the linear program (P).

The proof appears in an online appendix [29]. (P) is a
linear program with decision variable θ ∈ R|I|≥0, where I =

{(e, x, o) ∈ N3
≥0 | 1 ≤ e + x + o ≤ n} serves as an index

set with size on the order of n3. Any sum that is listed over
(e, x, o) is assumed to be for each (e, x, o) ∈ I. The proof
possesses three main steps: 1) we take the original problem
(6) and perform a series of reductions allowing us to write
the k-strong Nash equilibrium condition as k inequalities, 2)
a game is parameterized by a vector θ ∈ R|I|≥0, turning the
k-strong Nash equilibrium condition as k linear inequalities
and the original problem (6) in an LP, 3) The bound is proven
tight by constructing an example using a solution θ?. The
number of decision variables and constraints in (P) is O(n3),
making the problem solvable for larger numbers of agents.

To bring greater context to this result, we consider a
specific class of resource allocation problems. Consider the
class of covering problems in which w(x) = 1[x > 0], i.e., a
resource’s value is fully contributed to the welfare if at least
one agent utilizes it. This particular setting has been well
studied in the literature. When k = 1, it is known that the
Nash equilibrium approximates the optimal welfare within a
factor of 1/2 [30]. When k = n, it is clear that the only k-
strong Nash equilibrium are those that maximize the system
welfare, thus SPoAk = 1. For coalitions of size 1 < k < n,
the k-strong price of anarchy can be found via Theorem 1.

In Fig. 1, we show the tight bound on the k-strong price
of anarchy in covering problems with n = 20, for each
k ∈ [n]. The endpoints of this curve are an efficiency of
1/2 when agents are fully decentralized and an efficiency of
1 with full collaboration. Fig. 1 shows how we can bridge
this gap with inter-agent collaboration; making clear that
collaborative decision-making has the opportunity to improve
system performance. These gains in system performance do
come at the cost of added complexity in the form of group
decision-making, which will be the subject of future work.
Theorem 1 informs us that despite these communication and
computation costs, opportunities for improvement do exist.
Additionally, it is possible to further improve the benefit
of collaboration. The decision-making process described in
Section II has each agent (or group of agents) maximize the
welfare function; in Section III-C we consider designing the
common-interest objective the agents maximize.

C. Utility Design

In Section II, we described a solution to a distributed
decision-making problem of assigning agents (and groups of
agents) to maximize the system objective. Though this may
appear like a reasonable approach, it need not be optimal.
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Q? = min
µ,{uζ∈Rn≥0

}ζ∈[k]

µ

s.t. w(o+x)− µw(e+x) +
∑
ζ∈[k]

 n!

(n−ζ)!
uζ(e+x)−

∑
0≤α≤ζ

0≤β≤ζ−α

(
ζ

α

)(
ζ − α
β

)
eαoβ(n−e−o)ζ-α-βuζ(e+x+β−α)

 ≤ 0

∀(e, x, o) ∈ I (Q)

As a method of further improving the benefit of inter-
agent collaboration, we will consider designing the agents
utility functions as a method to alter the emergent equilibria.
Consider a common-interest utility function U : A → R.
Following the coalitional best response dynamics, if a group
Γ ⊆ N is selected to update their action, they now update
according to

aΓ ∈ arg max
a′Γ∈AΓ

U(a′Γ, a−Γ). (8)

As the multi-agent decision model remains a common-
interest game (now with payoff U(a)), the existence and
convergence results of Proposition 1 hold. With the new
objective for the agents, the set of k-strong Nash equilibria
is altered to kSNE(G,U). Changing the utility function of
the agents has no impact on the original system objective W ;
our goal is to select the function U in a way such that the
new equilibria offer a better approximation of the optimal
system objective W . To quantify how well this is done, we
extend the definition of k-strong price of anarchy to depend
on the utility rule, i.e.,

SPoAk(G,W,U) =
minakSNE∈kSNE(G,U)W (akSNE)

maxaopt∈AW (aopt)
. (9)

Again, we focus our attention to the class of resource
allocation problems as described in Section III-A. As these
problems are large and combinatorial, rather than designing a
global utility function for each joint action, we will consider
local utility rules of the form u : {0, . . . , n} → R. With this,
the agents’ common-interest objective becomes,

U(a) =
∑
r∈R

vru(|a|r). (10)

Recall that this does not change the overall system objective
(5); u simply alters agents’ decision-making. We set u(0) =
0 else the k-strong price of anarchy will be zero.

As before, we are interested in the performance guaran-
teed by a collaborative decision-making system. As such,
we will consider the efficiency guarantee across the class
of instances Gn with a welfare function w. When using
utility rule u, the k-strong price of anarchy will be denoted
SPoAk(Gn, w, u) = minG∈Gn SPoAk(G,w, u). We are par-
ticularly interested in designing u to provide us the best
guarantee; let

SPoA?
k(Gn, w) = max

u:[n]→R
SPoAk(Gn, w, u), (11)

denote the optimal k-strong price of anarchy, or the ap-
proximation ratio of a k-strong Nash equilibrium under the
optimal utility design.

In Proposition 2, we provide an upper bound on the
efficiency an optimally designed utility rule can provide.

Proposition 2. For the class of resource allocation problems
Gn with welfare function w, when agents maximize the
optimal utility design objective u?,

SPoA?
k(Gn, w) ≤ 1/Q?(n,w, k), (12)

where Q?(n,w, k) is the value of the linear program (Q).

The proof appears in an online appendix [29]. The decision
variables {uζ}ζ∈[k] of (Q) are the utility function for groups
of size ζ ∈ [k]. If uζ = uζ′ for all ζ, ζ ′ ∈ [k], the value of
(Q) is the exact solution to (11). However, this need not be
the case in general, hence Proposition 2 is an upper bound.
The authors conjecture that the class of homogeneous local
utility rules can attain a SPoA?

k of 1/Q?(n,w, k), however
proving this is the subject of ongoing work.

To bring greater context to this, we again consider the case
of covering problems with objective w(x) = 1[x > 0]. When
k = n, it is clear the optimal utility design is to let the group
of all agents maximize the common-interest objective w,
leading to an n-strong price of anarchy of SPoA?

n(Gn,1) =
1. When k = 1, the authors of [28] show that the optimal
utility rule gives price of anarchy SPoA?

1(Gn,1) = 1 −
1

1
(n−1)(n−1)!

+
∑n−1
j=0

1
j!

which approximately equals 0.632 when

n = 20; this increase from 1/2 when agents maximize
the system welfare motivates the fact that designing agents’
utilities can provide performance improvements. In Fig. 1,
we use Proposition 2 to show the possible benefit of utility
design for groups of size 1 ≤ k ≤ n. By comparing the naive
approach of setting agents to maximize the system objective
and the results of Proposition 2, it appears that significant
benefit can occur from designing how groups make decisions.
Future work will seek to quantify the optimal utility rule in
closed form.

CONCLUSION

In this work, we provide a tractable linear program whose
solution is a tight bound on the k-strong price of anarchy
in resource allocation games. Additionally, we exploit this
program to provide an upper bound on the largest attainable
performance when agents’ utility function can be designed.
Future work will study the added computational complexity
of reaching these equilibria and deriving bounds in closed
form when the number of agents is arbitrary but the size of
coalitions is a constant fraction of the number of agents.
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