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Abstract—Euler-Lagrange (EL) systems represent a crucial
and large class of dynamical systems, and a precise model of
the true system would be beneficial in planning and tracking
problems. This work aims to learn an unknown EL system using
noisy measurement data to achieve improved data utilization
efficiency. Specifically, for the considered EL system, a linear
representation of the system is constructed using the Koopman
operator, which is further characterized by sample data using
Willems’ fundamental lemma. Moreover, an event-triggered
learning mechanism is proposed to improve data utilization
efficiency, and it is designed based on the analysis of the learning
error bounds. The effectiveness of the proposed event-triggered
learning approach is validated through a manipulator example.

I. INTRODUCTION

With the increasing promotion of intelligence, types of me-
chanical equipment are increasingly used, including vehicles,
robots, manipulators, and so on. However, there is still a
bridge needed between the difficulty of accurately modeling
equipment using the first principle and the extensive reliance
on system models for controller design [1], [2], which has
promoted the development of learning-based control.

Among others, the problem of inferring knowledge of
system models from sampled data is the core focus of this
work. The dynamic models of many systems can be described
using Euler-Lagrange (EL) equations [3], [4], many of which
exhibit strong nonlinearity. Thus, nonlinear function estima-
tion approaches can be used to learn the system dynamics.
The Koopman operator shows the ability to model nonlinear
systems [5], [6]. Owning to the lifting function used in the
Koopman method, the nonlinear dynamics of systems can
be transformed into linear dynamics in a Koopman-invariant
subspace, making it possible to characterize the nonlinear
dynamics with linear models [7]. Using the linearity obtained
in the Koopman framework, some learning and data-driven
control approaches proposed for linear systems demonstrate
potential for addressing nonlinear systems, e.g., Willems’
fundamental lemma [8], [9], S-lemma [10], [11]. In the
approaches above, the accuracy of the learned model usually
depends on the amount of data [12], [13]. This makes it

This work is supported by the National Science Foundation of China under
Grant 62333001. (Corresponding author: Dawei Shi.)

K. Zheng, D. Shi, and Shilei Li are now with the MIIT Key Labo-
ratory of Servo Motion System Drive and Control, School of Automa-
tion, Beijing Institute of Technology, Beijing 100081, China (e-mail:
kaikai.zheng@bit.edu.cn, daweishi@bit.edu.cn, shileili@bit.edu.cn).

Y. Shi is with the Department of Mechanical Engineering, Faculty of
Engineering, University of Victoria, Victoria, BC V8N 3P6, Canada (e-mail:
yshi@uvic.ca).

challenging to deploy the above methods in some resource-
constrained scenarios (such as embedded systems, energy or
computationally limited distributed systems, etc.).

To improve the data efficiency and resource utilization,
event-triggered learning techniques are proposed to achieve
learning goals only when necessary or only using sampled
data that contains relatively more information [14], [15]. In
existing literature, event-triggering conditions are typically
designed based on model uncertainty [16], [17] or mismatch
[18]. Specifically, model uncertainty can be assessed based
on specific model characteristics such as covariance, while
model mismatch describes the difference between the model
and the actual system. For model uncertainty, [19] proposed
an online learning method based on Gaussian processes,
where model updates and data forgetting are triggered by
model uncertainty. Model mismatches are also used to design
learning triggers. The triggering mechanism in [20] is de-
signed by comparing the distribution of communication times
with the expected value, which is an indirect evaluation of
the difference between the model and the system. Although
current event-triggered learning methods have made signifi-
cant progress in improving learning and data efficiency, more
potential solutions for specific systems (such as EL systems)
remain to be further explored.

This work considers the problem of inferring the dynamic
characteristics of EL systems from noisy measurements.
Specifically, we consider a discrete-time EL system and con-
struct a high-dimensional state using a lifting function, which
can represent the nonlinear dynamics of the EL system using
linear form in a high-dimensional space. However, there are
several challenges that need to be addressed to enable the
design of event-triggered learning for EL systems. First, the
system’s state cannot be accurately obtained; instead, it is
obtained through a disturbed measurement process. Second,
it needs to be clarified how to select data from noisy mea-
surements to enhance learning efficiency. The contributions
of this work are summarized as follows:

1) A model learning approach is proposed for nonlinear
discrete-time EL systems, with training data obtained
through a perturbed measurement process. Specifically,
the nonlinear dynamics of the system are transformed
into a linear form using the Koopman operator, and
Willems’ fundamental lemma is adopted to construct a
linear non-parametric model. Furthermore, the learning
error of the proposed method is proven to be bounded
in the sense of high probability (Theorem 1).
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2) An event-triggered learning scheme is proposed to im-
prove data efficiency. By analyzing the aforementioned
upper bound of the learning error, a data selection
strategy is determined to select a subset of available data
that reduces the upper bound of the learning error. At the
same probability level, the upper bound of the learning
error is proved to converge exponentially (Theorem 2).

3) The proposed method is validated for modeling an
unknown manipulator, which consists of a resolute joint
and a prismatic joint. The implementation details are
provided, and the simulation results validate the effec-
tiveness of the proposed learning method and event-
triggering mechanism.

The remainder of this paper is organized as follows. The
considered problem is introduced in Section II. The Main
results on event-triggered learning and learning convergence
are proposed in Section III. Moreover, implementation issues
and numerical verification of the proposed approaches are
presented in Section IV, followed by the conclusion discussed
in Section V.

Notation. Throughout this paper, the real space is denoted
as R, and positive natural numbers are denoted as N+.
Let C1 be a function space, where the function f ∈ C1

has a continuous first partial derivative. For a vector x,
∥x∥2 denotes the 2-norm of the vector, which is defined
as ∥x∥2 :=

√
xTx, with ·T being the transposition. For

a matrix A ∈ Rn×m, let σ1(A) ≤ . . . ≤ σn(A) be the
nonzero singular values of the matrix A. Moreover, we note
that σn(A) = ∥A∥2 with ∥A∥2 denoting the 2-norm of matrix
A, and the Frobenius norm of matrix A is denoted as ∥A∥F .
In the cases of m = n, |A| and Tr(A) are used to denote
the determinant and trace of the matrix. For two matrices,
A ≻ B, A ⪰ B, A ≺ B, and A ⪯ B are used to denote
the positive definite, positive semi-definite, negative definite,
negative semi-definite of the matrix A−B. Moreover, A ⪯̸ B
denotes that the matrix B−A is not a positive semi-definite
matrix. For a random variable, P[·] and E[·] are used to denote
the probability and expectation, respectively.

II. PROBLEM SETUP

Consider a discrete-time EL system with sampling time
interval being T as [21]

M(q(k + 1))v(k + 1)−M(q(k))v(k)

− Tf(q(k),v(k)) = T (u(k) + w̃(k)), (1)

where q(k),v(k),u(k), w̃(k) ∈ Rn are position vector, ve-
locity vector, input signal, and unknown zeros mean noise, re-
spectively. Moreover, M(q(k)) ∈ Rn×n and f(q(k),v(k)) ∈
Rn are the symmetric positive definite inertia matrix and the
centrifugal, Coriolis and Gravitational torques, respectively.
Using the Euler’s first-order derivative estimation method as
v(k) = q(k+1)−q(k)

T , system (1) can be equivalently rewritten
as {

q(k + 1) = q(k) + Tv(k),
v(k + 1) = v(k) + h(k) + g(k)u(k) +w(k),

(2)

where

h(k)=− [M(q(k) + Tv(k))]
−1
h1(k), (3)

h1(k)=M(q(k)+Tv(k))−(q(k)))v(k)−Tf(q(k),v(k),
(4)

g(k)=T [M(q(k) + Tv(k))]−1, (5)

w(k)=T [M(q(k) + Tv(k))]
−1

w̄(k). (6)

Furthermore, a nominal state of system (1) is written as
q̄(k) = q(k) and v̄(k) = v(k)−w(k − 1), which satisfy{

q̄(k + 1) = q(k) + Tv(k),
v̄(k + 1) = v(k) + h(k) + g(k)u(k).

(7)

Consider a noisy measurement process

y(k) =

[
q(k)
v(k)

]
+ d(k), (8)

where d(k) ∈ R2n is a Gaussian measurement noise with
zero mean and covariance matrix Σd. The matrix Σd is
diagonal with diagonal elements being {Σ2

d,1, . . . ,Σ
2
d,2n}.

For convenience, denote ȳ(k) = y(k)− d(k).
Let Ψ(·) = [ψ1(·), . . . , ψN (·)]T be a lifting function of

q,v,u, and denote the lifted state as

X(k) = Ψ(ȳ(k),u(k)) =

 ψ1(ȳ(k),u(k))
· · ·

ψN (ȳ(k),u(k))

 . (9)

Similarly, the nominal lifted state is defined as

X̄(k) = Ψ
([

q̄T(k), v̄T(k)
]T
,u(k)

)
. (10)

In (9), N is the dimension of the lifted state, which is
usually much larger than n or even infinite. Moreover, let
C ∈ R2n×N such that ȳ(k) = CX(k) [7]. The properties
of the lifting function Ψ(·) are shown in the following
assumptions and lemmas.

Assumption 1. It is assumed that the input u(k) and states
q(k),v(k) satisfy

u(k) ∈ U, q(k) ∈ Q, v(k) ∈ V, (11)

where Q× V is compact and forward invariant, i.e.,

q(k) ∈ Q,v(k) ∈ V (12)
(7)
=⇒ ∃u(k) ∈ U, q̄(k + 1) ∈ Q, v̄(k + 1) ∈ V. (13)

Assumption 2. The function Ψ(·) is Lipschitz continuous in
Q× V× U as

∥Ψ(y′(k),u(k))−Ψ(y′′(k),u(k))∥2≤LΨ∥y′(k)− y′′(k)∥2.

Lemma 1. Given a discrete-time EL system in the form of
(7), together with a lifting function Ψ(·) : Q×V×U → RN

in C1 with Assumption 1 satisfied, then there exists an exact
finite-dimensional lifting (N < ∞) as X̄(k + 1) = KX(k),
where K ∈ RN×N is called a Koopman operator.

Proof. Lemma 1 can be easily obtained using Theorem 2 in
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[22] and thus is omitted.

In this work, we aim to design a learning approach using
available lifting function Ψ(·) and noisy sampled dataset
{(u(i),y(i))}ki=0 for system (1) with improved data effi-
ciency, and the following questions are discussed in this
work:

1) How to predict future states using the available dataset?
2) How to actively choose sampled data to improve the

learning efficiency with bounded prediction error?

III. MAIN RESULTS

A. Fundamental Lemma and Learning Error Analysis

This work aims to learn a prediction model for the non-
linear EL system (1). We denote the sampled data at time
k as D(k) = {D(ri)|ri ∈ R(k)}, where Ns(k) ∈ N+, and
R(k) = {r1, . . . , rNs(k)} is the index set with D(ri) being
a data sample defined as

D(ri) = (y(ri),u(ri),y(ri + 1)). (14)

In the dataset D(k), the data are sampled intermittently, for
which the fundamental lemma can be proved as follows,
where D̄(k) is a dataset defined as

D̄(k) = {D̄(ri)|ri ∈ R(k)}, (15)
D̄(ri) = (ȳ(ri),u(ri), q̄(ri + 1), v̄(ri + 1)). (16)

Lemma 2. For a data set D̄(k), if the matrix of lifted
sate

[
X(r1), . . . ,X(rNs(k))

]
has full row rank, then the

following equation is satisfied{
qf = qp + Tvp,
vf = vp + hp + gpup

(17)

if and only if ∃g ∈ RNs(k) such thatΨ
([

qT
p ,v

T
p

]T
,up

)
Ψ

([
qT
f ,v

T
f

]T
,uf

)=[ X(r1) · · · X(rNs(k))
X̄(r1 + 1) · · · X̄(rNs(k)+1)

]
g,

where

hp = − [M(qp + Tvp)]
−1
h1p,

h1p =M(qp + Tvp)− (qp))vp − Tf(qp,vp),

gp = TM(qp + Tvp).

Proof. According to (7)-(9), equation (17) can be equiva-
lently written as

Ψ
([

qT
f ,v

T
f

]T
,uf

)
= KΨ

([
qT
p ,v

T
p

]T
,up

)
, (18)

for some uf ∈ Rn.
Noting that Lemma 1 revealed the linear relationship

between X(ri) and X̄(ri + 1) under the linear operator K,
which is a matrix in the considered problem. Thus, the claim
can be proved using Willems’ fundamental lemma.

In Lemma 2, (qp,vp,up), X(ri), and X̄(ri + 1) are
available, and Ψ(qf ,vf ,uf ) is an unknown vector to be cal-

culated, which can be obtained through a two-step calculation
as

Ψ
([

qT
p ,v

T
p

]T
,up

)
=

[
X(r1), · · · ,X(rNs(k))

]
gk (19)

⇒gk =
[
X(r1), · · · ,X(rNs(k))

]†
Ψ
([

qT
p ,v

T
p

]T
,up

)
,

and

Ψ
([

qT
f ,v

T
f

]T
,uf

)
=
[
X̄(r1 + 1), · · · , X̄(rNs(k)+1)

]
gk.

It can be observed that the data used to calculate vector gk
is ȳ(ri), which is unavailable in practice. Thus, a reluctant
compromise is to compute an estimation ĝk of vector gk using
noisy measurements as

ĝk =
[
X̃(r1), · · · , X̃(rNs(k))

]†
Ψ
([

qT
p ,v

T
p

]T
,up

)
, (20)

where X̃(r1) is the lifted state of noisy measurements defined
as

X̃(k) = Ψ(y(k),u(k)) =

 ψ1(y(k),u(k))
· · ·

ψN (y(k),u(k))

 . (21)

The learning error of ĝk is defined as

Eg(k) :=∥gk − ĝk∥2. (22)

Before analyzing the property of the learning error Eg , two
useful lemmas are first introduced as follows.

Lemma 3. (Theorem 3.3 in [23]) For any matrices A,E and
B with B = A+ E, the following inequality holds:

∥B† −A†∥F ≤
√
2∥E∥F max

{
∥A†∥22, ∥B†∥22

}
. (23)

Lemma 4. (Theorem 12 in [24]) Let Φ ≻ 0 be a matrix
parameter, and let X be a random matrix such that X ≻ 0
almost surely. Then the following inequality holds:

P(X ⪯̸ Φ) ≤ Tr(E[X]Φ−1). (24)

Using Lemma 4, the following lemma can be obtained as
a probabilistic bound for random matrices.

Lemma 5. For the noisy sampled data recorded in dataset
D(k), let Dd(k) = [d(r1), . . . ,d(rNs(k))], ri ∈ R(k), then
a probabilistic upper bound for ∥Dd(k)∥2 can be obtained
as

P
[
∥Dd(k)∥22 ≤ 2nNs(k)

1− δ
∥Σd∥∞

]
≥ δ, (25)

where δ ∈ (0, 1) is a constant.

Proof. The proof can be performed using Lemma 4 and thus
is omitted.

Utilizing the Lemmas aforementioned, an upper bound of
the learning error Eg is proposed in the following theorem,
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where we denote that

Ed(k) = X (k)− X̄ (k).

X̄ (k) =
[
X(r1),· · ·,X(rNs(k))

]
, (26)

X (k) =
[
X̃(r1),· · ·, X̃(rNs(k))

]
, (27)

Ud(k) =

√
2nNs(k)

1− δ
∥Σd∥∞ (28)

Ēg(k) =
2
√
nLΨ

∥∥∥Ψ([
qT
p ,v

T
p

]T
,up

)∥∥∥
2
Ud(k)(

σ1(X (k))−
√
2nLΨUd(k)

)2 . (29)

Theorem 1. For a discrete time EL system with the form of
(1) and a dataset D(k) with Assumptions 1-2 and Lemma 1
holds, the learning error Eg(k) = ∥gk − ĝk∥2 satisfies:

P
[
Eg(k) ≤ Ēg(k)

]
≥ δ, (30)

if X (k) has full row rank and

σ1(X (k)) ≥
√
2nLΨUd(k). (31)

Proof. Using the definitions of gk, ĝk, and Eg(k), we have

Eg(k) ≤ ∥X̄ †(k)−X †(k)∥2
∥∥∥Ψ([

qT
p ,v

T
p

]T
,up

)∥∥∥
2
.

(32)

According to Lemma 3, we obtain

∥X̄ †(k)−X †(k)∥2
≤
√
2∥Ed(k)∥F max{σ2

N (X †(k)), σ2
N (X̄ †(k))}.

According to Assumption 2, we have

∥X(ri)−X̃(ri)∥2 ≤ LΨ∥ȳ(ri)− y(ri)∥2 = LΨ∥d(ki)∥2.

Then by noting that

∥Ed(k)∥F =
∑

ri∈R(k)

∥X(ri)− X̃(ri)∥2,

∥Dd(k)∥F =
∑

ri∈R(k)

∥d(ri)− d̃(ri)∥2,

we obtain inequalities as follows, which hold with probability
larger than δ according to Lemma 5:

∥Ed(k)∥F ≤ LΨ∥Dd(k)∥F
≤

√
2nLΨ∥Dd(k)∥2 ≤

√
2nLΨUd(k). (33)

Furthermore, we have

max{σ2
N (X †(k)), σ2

N (X̄ †(k))

=
1

min{σ2
1(X (k)), σ2

1(X̄ (k))}
. (34)

Then, the following inequality can be obtained,

σ2
1(X̄ (k)) = σ2

1(X (k)− Ed(k))

≥ (σ1(X (k))− σN (Ed(k)))
2
.

Thus (34) can be further derived as

max{σ2
N (X †(k)), σ2

N (X̄ †(k))

≤ 1(
σ1(X (k))−

√
2nLΨUd(k)

)2 . (35)

As a result, we can claim the following equation by
combining (32) and (35):

P

Eg(k)≤
2
√
nLΨ

∥∥∥Ψ([
qT
p ,v

T
p

]T
,up

)∥∥∥
2
Ud(k)(

σ1(X (k))−
√
2nLΨUd(k)

)2
>δ,

which complete the proof.

B. Event-triggered Learning and Prediction Error Analysis

Relative to (30), a more accurate error bound can be
expressed as

Ẽg(k) =
2
∥∥∥Ψ([

qT
p ,v

T
p

]T
,up

)∥∥∥
2
∥Ed(k)∥F

(σ1(X (k))− ∥Ed(k)∥2)2
. (36)

which ensures the following probability inequality

P
[
Eg(k) ≤ Ẽg(k)

]
≥ δ. (37)

Higher σ1(X (k)) would lead to a smaller estimation error
∥gk − ĝk∥2, motivating the selection of sample data to
construct D(k). This selection is expected to significantly
increase the minimum singular value of the matrix X (k).

For a full row rank matrix X (k) and a new sampled data
D(k) = {y(k),u(k),y(k + 1)}, an event-triggered learning
mechanism is designed as

R(k + 1) =

{
R(k) ∪ {k}, (39) holds,
R(k), otherwise, (38)(

Ns(k) + 1

Ns(k)

) 1
4

(39)

<
σ1(X̌ (k + 1)X̌T(k + 1))−

√
2nLΨǓd(k)

σ1(X (k)XT(k))−
√
2nLΨUd(k)

√
δl,

where δl < 1 is a user-defined constant, and

X̌ (k + 1) :=
[
X (k) X̃(k)

]
Ǔd(k) := Ud(k) +

√
2n

1− δ
∥Σd∥∞. (40)

For the training dataset D(k) obtained from the even-
triggered learning scheme (38), the following theorem is
proposed for the convergence of learning error.

Theorem 2. Consider a discrete time EL system with the
form of (2) and a given lifting function Ψ(·) defined on Q×
V×U such that Assumptions 1-2 and (31) hold. If the dataset
D(k) is obtained according to the event-triggered learning
scheme (38), then the following inequality hold

Ēg(k) ≤ δ
Ns(k)−Ns(k0)
l Ē∗

g , (41)
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where Ns(k0) if a constant such that X (k0) has full row rank
and Ē∗

g := Ēg(k0).

Proof. In the proposed event-triggered learning scheme (38),
a new sampled data D(k) = {y(k),u(k),y(k + 1)} is
included in the training dataset D(k + 1) if and only if (39)
holds. Otherwise, the sets R(k + 1),D(k + 1), constants
Ns(k + 1), Ēg(k + 1) remain invariant comparing to time
instant k. Thus, the main discussion of this proof concen-
trates on the condition that (39) is satisfied, which can be
equivalently rewritten as

1

σ1(X (k + 1)XT(k + 1))−
√
2nLΨUd(k)

(42)

<
1

σ1(X (k)XT(k))−
√
2nLΨUd(k)

(
Ns(k)δ

2
l

Ns(k + 1)

) 1
4

.

(43)

Moreover, by squaring both sides of the equation and mul-
tiplying the same positive constant, an inequality can be
obtained as

2
√
nLΨ

∥∥∥Ψ([
qT
p,v

T
p

]T
,up

)∥∥∥
2

√
2n
1−δ∥Σd∥∞(

σ1(X (k + 1)XT(k + 1))−
√
2nLΨUd(k)

)2 (44)

<
2
√
nLΨ

∥∥∥Ψ([
qT
p,v

T
p

]T
,up

)∥∥∥
2

√
2n
1−δ∥Σd∥∞(

σ1(X (k)XT(k))−
√
2nLΨUd(k)

)2
√
Ns(k)δl√
Ns(k+1)

.

Furthermore, by recalling the definitions of Ud(k) and
Ēg(k) in (28) and (29), an inequality can be verified from
(44) as

Ēg(k + 1) < δlĒg(k). (45)

By denoting the first time instant that the available data
matrix X (·) has full row rank as k0, Inequality (45) further
leads to

Ēg(k) ≤ δ
Ns(k)−Ns(k0)
l Ēg(k0), (46)

which completes the proof.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is applied to a simple
manipulator with a resolute joint and a prismatic joint, i.e., an
RP manipulator. The schematic diagram of the manipulator
is shown in Fig. 1, where m1 = 15,m2 = 5 are the mass,
l = 0.3 is the distance from the rotation center to the center
of mass, L ∈ (0.5, 1) is the state of the prismatic joint, and
θ ∈ (0, 12π) is the state of the resolute joint. The EL model
of the manipulator is given by[
m1l

2 +m2L
2(k) 0

0 m2

] [
θ̈(k)

L̈(k)

]
+

[
2m2L(k)θ̇(k)L̇(k)

−m2L(k)θ̇(k)

]
+

[
(m1l +m2L(k))g cos(θ(k))

m2g sin(θ(k))

]
=

[
u1(k)
u2(k)

]
+w̃(k)

(47)

Fig. 1: A schematic diagram of the considered manipulator,
which consists of a resolute joint and a prismatic joint.

with g = 9.8 being the gravitational acceleration. The posi-
tion vector, velocity vector, and input signal of the considered
system are defined as

q(k) =

[
θ(k)
L(k)

]
, v(k) =

[
θ̇(k)

L̇(k)

]
, u(k) =

[
u1(k)
u2(k)

]
.

Using Euler’s first-order derivative estimation method, the
discrete-time form of system (47) can be written as{

q(k + 1) = q(k) + Tv(k)
v(k + 1) = v(k) + h(k) + TM−1u(k) +w(k),

(48)

where w(k) = TM−1w̃(k) with h(k) and M being

M=

[
m1l

2 +m2L
2(k) 0

0 m2

]
(49)

h(k)=−M−1h1(k) (50)

h1(k)=

[
Td(k)θ̇(k)L̇(k) + Tm1l + Tm2gL(k) cos(θ(k))

−Tm2L(k)θ̇(k) + Tm2g sin θ(k)

]
.

To validate the effectiveness of the proposed method, Nl

available data samples are denoted as D̄ = {D(k)|k ∈
{1, 2, . . . , Nl}}, and the parameters of noises are set as w̃ ∼
N (0,diag([0.3, 0.3])), Σd,i = 10−2, i ∈ {1, 2, 3, 4}. Then,
the proposed event-triggered learning method is applied to
the set D̄. Specifically, a matrix that makes the rows of X (0)
full rank is first randomly selected, and then the other data
in set D̄. All data that satisfy (39) are included in the dataset
D. Meanwhile, another dataset D̃ is constructed without an
event-triggering mechanism, which is initialized as same as
X (0). Finally, to validate the effectiveness of the proposed
event-triggered learning method, we predict the system states
qf := [θf , Lf ]

T and vf := [θ̇f , L̇f ]
T based on datasets D̄

and D respectively.
The state prediction obtained based on dataset D̄ is denoted

as q̄f , v̄f , and its error is denoted as

Êf :=

∥∥∥∥[ q̄f
v̄f

]
−
[

E[qf ]
E[vf ]

]∥∥∥∥
2

. (51)

Moreover, Ēf is defined similar to Êf with the state predic-
tions obtained using dataset D̃. The obtained prediction errors
are shown in Fig. 2 for qp = [θp, Lp]

T, θp ∈ (0, 13π), Lp ∈
(0.5, 1).

In the numerical example shown in Fig. 2, 98.7% of the
data samples were removed from the dataset D̄ (from 2000 to
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Fig. 2: Prediction error within the state space θp ∈
(0, 13π), Lp ∈ (0.5, 1), and the hyper-parameters are chosen
as δ = 0.1, δl = 0.9. The number of training data in data set
D̄ is Nl = 2000, and D is Ns = 26.

26), while the prediction error remained within an acceptable
range Êf ≤ 0.041. The simulation results above verify
the validity of the proposed upper bound of learning error
(Theorems 1-2) and the event-triggered learning mechanism
(38), which means that a large number of redundant data
are eliminated, and the accuracy of the resulting data-driven
prediction model is kept within the acceptable range.

V. CONCLUSION

This work proposed an event-triggered learning approach
for EL systems. By constructing a linear representation of
the EL system using the Koopman operator in a high-
dimensional space, a linear form of the considered system is
proposed. Furthermore, the obtained linear form is learned
from sampled data obtained from a noisy measurement
process. By analyzing the learning error bound, an event-
triggered learning scheme is designed to select part of the
available data to improve learning efficiency. Future works
will focus on further enhancing the learning performance and
implementing data-driven control strategies that guarantee
performance and safety.
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