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Abstract— In this paper, a novel integral control that can
maintain the control input vector trajectory of a generic ISS
linear or nonlinear plant within a prescribed compact and
convex set is proposed. During normal operating conditions,
the proposed controller can regulate the plant to the desired
setpoint, while in the case of abnormal conditions, e.g. sensor
faults, unrealistic reference input command, the controller
introduces an inherent resilience property by maintaining the
entire control input vector of the plant within a desired
convex set. The boundedness of the control input vector is
analytically proven using invariant set theory and vector field
analysis (Nagumo’s theorem). Opposed to conventional and
more advanced integral controllers that either restrict each
element of the control input vector independently or bound
its Euclidean norm, in this paper, a detailed methodology for
designing a resilient integral control to guarantee a generic
compact and convex input constraint for a plant with unknown
structure or dynamics is presented for the first time. A practical
example of an underwater vehicle is investigated to validate
the efficiency and resilience of the proposed controller under
changes of the reference signal and under sensor faults.

I. INTRODUCTION

The majority of regulation problems in the industry has
been addressed via control schemes that employ an integral
control (IC) action. However, particularly for a nonlinear
plant, maintaining closed-loop system stability with IC is a
challenging task, especially when particular input constraints
affect the plant operation [1], [2]. These input constraints
can be either introduced by physical constraints of the plant
(actuator constraints) or are important for the stable and
reliable operation of the system (e.g. input-to-state stability
- ISS, strong iISS properties [3]).

Typical constraints at the input vector elements are often
accomplished by the addition of saturation units at the IC
output; however, depending on the plant, this can lead to
integrator windup and instability. Anti-windup methods can
be employed in the control design to address this problem
and have been extensively studied in the literature, see
for example [4], [5]. Recently, a saturating integrator that
overcomes the integrator windup problem and maintains
closed-loop system stability for a class of nonlinear systems
has been proposed in [6], while a low-gain IC for multi-input
multi-output (MIMO) systems has been introduced in [7]–
[9]. However, modern anti-windup control methods require
knowledge of the plant structure, dynamics and often modify
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the conventional and widely-adopted IC scheme [10], while
conditional integrators fail to facilitate a rigorous closed-
loop system stability analysis. This becomes even more chal-
lenging under abnormal conditions, e.g. unrealistic setpoint
variations/attacks, sensor faults, that may shift the desired
equilibrium point outside the operating range introduced by
the input constraints.

For single-input systems, the bounded integral control
(BIC) has been proposed in [11] to regulate any ISS plant
and retain the ISS property for the closed-loop system.
This is accomplished through its inherent zero-gain property,
i.e. the controller output is bounded independently of the
input signal, leading to the ISS proof of the closed-loop
system based on the generalised small-gain theorem [12].
The BIC was further enhanced in [13] and was extended
to bound the Euclidean norm of the control input in [14]–
[16], as required in several applications in power and energy
systems. However, in applications where more complicated
input constraints are introduced for the plant input vector
that differ from the Euclidean norm bound, neither the
original BIC nor its extensions can be utilised. Recently
in [17], a PI control scheme that is able to handle more
complicated input constraints has been presented using pro-
jected dynamical systems theory. Nevertheless, it requires
modification of the control dynamics using the directional
derivative when the control input reaches the boundary of the
set; thus complicating its implementation. Hence, according
to the authors’ knowledge, the design of an IC that does
not require modification of its continuous-time dynamics,
in order to facilitate closed-loop system stability, and can
accomplish a generic compact and convex input constraint
has not been developed yet. In addition, maintaining the
desired constraint under abnormal conditions, i.e. significant
changes of the regulation scenario or measurement/sensor
faults that can lead the desired equilibrium point outside the
desired operating range of the control input is still an open
problem.

In this paper, a new resilient IC structure is proposed to
regulate a generic ISS plant and maintain the control input
vector trajectory within a desired compact and convex set
for the first time. Given this predefined set, the controller
dynamics are first formulated and then using set invariance
properties and vector field analysis, it is analytically proven
that the control input trajectory of a generic multi-input
nonlinear plant can be restricted within a desired compact
and convex set that satisfies some mild conditions. This
is accomplished using the generalised version of Nagumo’s
theorem [18], while simultaneously retaining the bounded-
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ness property for the closed-loop system. The resilience
property of the proposed controller under setpoint attacks,
i.e. unrealistic changes in the regulating function, or sensor
faults/drifts, is also investigated, demonstrating the existence
of equilibrium points within the input constraint set. Both the
stability and resilience properties are accomplished without
the use of any saturation units, leading to an IC structure
with continuous dynamics that ensures the control input
operation within a desired compact convex set, opposed
to existing IC approaches that require modification of the
control structure and more complicated implementation. The
proposed controller performance and desired properties (in-
put constraint satisfaction, resilience) are demonstrated on an
underwater vehicle application during normal operation as
well as during scenarios that include large setpoint values at
the regulating function or when sensor drifts are introduced
at the measurements of the angular velocity (e.g. when
computed via integrating an accelerometer measurement).

II. RESILIENT IC DESIGN AND ANALYSIS

A. Problem formulation

Consider the nonlinear plant system of the form

ẋ = f(x, u), (1)

with f : D ×Du → Rn being locally Lipschitz in x and u,
where D ⊂ Rn, Du ⊂ Rm are open neighborhoods of the
origin. Let the following assumption for the plant stability
property.

Assumption 1: System (1) is ISS with respect to the
control input u.

Regarding the input of the nonlinear plant (1), consider a
conventional and widely adopted IC structure, which takes
the form

u = σ (2)
σ̇ = h(x, σ), (3)

where h : Dx × Du → Rm is locally Lipschitz in x and
σ, and represents a vector of functions h1(x, σ), ...hm(x, σ)
required to be regulated to zero at the steady state, i.e.
lim
t→∞

h(x(t), σ(t)) = 0.
Although IC has been widely used in practice to achieve

the above regulation scenario, it is not designed to guarantee
specific input constraints for the plant, especially when these
constraints are more complex than a typical Euclidean norm
bound, hyperplane, etc. To further justify this, consider the
following assumption for a set S that encapsulates the plant
input constraints.

Assumption 2: Let S ⊂ Du be a non-empty compact and
convex set defined as S = S1 ∩ S2 ∩ ... ∩ Sl containing the
origin, where l ≥ 1 ∈ N and

Si = {u ∈ Du : gi(u) ≥ 0} , ∀i = 1, ..., l (4)

describes a convex set with gi : Du → R being locally
Lipschitz in u, where there exists i = 1, ..., l such that
gi(u) = 0, ∀u ∈ ∂S.

Note that Assumption 2 describes a set S that represents
either typical input constraints, i.e. bounding every input
vector element independently, introducing a Euclidean norm
bound, a hyperplane or more complicated constraints that
formulate a compact and convex set containing the origin.
When the input constraint becomes more complex, conven-
tional IC of the form of (2)-(3), equipped with saturation
units can no longer be applied, while depending on the
application and the plant dynamics, constrained optimisation
methods complicate the control design and change the well-
accepted and continuous-time form of the IC. Towards this
direction, a controller that maintains the original IC concept
and accomplishes the desired input constraint is introduced
in the sequel.

B. Proposed resilient IC

In order to accomplish the desired input constraint, i.e.
u(t) ∈ S, ∀t ≥ 0, where S is defined in Assumption 2, the
following IC is proposed:

u = σ (5)

σ̇ = h(x, σ)

l∏
i=1

gi(σ)− kσ, (6)

where
∏l
i=1 gi(σ) is a scalar term describing the multipli-

cation of the functions gi(·) used in (4) to formulate the
convex sets Si, k is an arbitrarily small positive constant
and z(x, σ) = h(x, σ)

∏l
i=1 gi(σ) − kσ : Dx × Du → Rm

is locally Lipschitz in x and σ. The aim of the proposed
controller is to ensure that u(t) = σ(t) ∈ S, ∀t ≥ 0 and
that the solution (x(t), σ(t)) of the closed-loop system (1),
(5)-(6) is bounded. This is captured in the following theorem.

Theorem 1: Consider the closed-loop system dynamics
(1), (5)-(6) resulting from the feedback interconnection of
the plant (1), satisfying Assumption 1, and the resilient IC
(5)-(6), with Dx = Rn and Du = Rm. Then for any
initial condition x(0) and σ(0) ∈ S, with S being any non-
empty compact and convex set satisfying Assumption 2, the
solution (x(t), σ(t)) of the closed-loop system is bounded
with σ(t) ∈ S for all t ≥ 0.

Proof: The proof follows by utilising the ISS property
of the plant (1) and the generalisation of Nagumo’s theorem
[18, Theorem 4.10]. The solution of the closed-loop system
exists due to the Lipschitz properties of functions f and z.
Consider now a non-empty compact set X ⊂ Dx. Since
X and S are compact subsets of Dx and Du, respectively,
then functions f and z are also locally Lipschitz on X and
S. Let us investigate the velocity vector of the proposed IC
dynamics at the boundary of S, i.e. z(x, σ), ∀σ ∈ ∂S. Since
S = S1 ∩ S2 ∩ ... ∩ Sl, where Si is given from (4), then
according to Assumption 2, at the boundary of S there exists
i ∈ 1, ..., l such that gi(σ) = 0. Hence the velocity vector at
the boundary of S becomes

z(x, σ) = −kσ ∈ ∂S. (7)

Expression (7) clearly describes a vector pointing from the
boundary of S towards origin. Hence, at every point on the
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Fig. 1: Example of a compact and convex set S satisfying
Assumption 2, i.e. S = S1 ∩ S2 ∩ S3 ∩ S4, and the vector
field of the proposed IC dynamics (two-dimensional control
system) at the boundary of S.

boundary of the compact and convex set S, the vector field
will point towards the origin, as it can be seen in Fig. 1,
where a typical example of a two-dimensional system is
depicted. Since S is a compact and convex set and the origin
belongs in the interior of S, then from the definition of
convex sets, the velocity vector (7) belongs in the tangent
cone TS(σ), as described in [18, Definition 4.6], for all
σ ∈ ∂S, independently of x ∈ X , i.e.

z(x, σ) = −kσ ∈ TS(σ), for all x ∈ X . (8)

In addition, it obviously holds that for any σ ∈ int {S} there
is TS(σ) = Rm and therefore property (8) holds for all σ ∈
S, i.e. both at the boundary and in the interior of S. Then,
according to the generalised version of Nagumo’s theorem
[18, Theorem 4.10], the set S is robustly positively invariant
with respect to (6), i.e. σ(t) ∈ S for all t ≥ 0 given that
σ(0) ∈ S. Due to the ISS property of the plant dynamics
(1) (Assumption 1), then for any initial condition x(0) and
σ(0) ∈ S, the solution x(t) is also bounded and σ(t) ∈ S
for all t ≥ 0, which completes the proof.

In other words, the proposed IC introduces a zero-gain
property, as its output σ(t) remains bounded within S
independently of the input signal x(t) (independently of
the function h(x, σ)), leading to the boundedness of the
solution for the feedback interconnection of (1) and (5)-(6)
in accordance to the generalised small-gain theorem [12].

Consider now an equilibrium point for the closed-loop
system (xe, σe), where σe ∈ int {S}, obtained from (1) and
(6) at the steady state. Then

f(xe, σe) = 0 and h(xe, σe) =
kσe∏l

i=1 gi(σe)
, (9)

where
∏l
i=1 gi(σe) 6= 0 given that σe ∈ int {S}. From

(9), one can realise that in order to accomplish the desired
regulation scenario, i.e. h(xe, σe) = 0, the controller gain
k should be equal to zero. In fact, if k = 0, the analysis
in Theorem 1 will still be valid with the only difference
that the velocity vector (7) will be equal to zero at the

boundary of S but will still belong in the tangent cone TS(σ).
Nevertheless, in the proposed scheme, it is suggested that
k is chosen as an arbitrarily small positive constant which,
although it cannot precisely guarantee the desired regulation
scenario, i.e. h(xe, σe) = 0, it offers significant resilience
properties for the controller, and consequently for the closed-
loop system as it will be explained in the remarks that follow.
It should be noted, however, that since k can be selected as
an arbitrarily small positive constant, then h(xe, σe) ≈ 0,
which is acceptable in many practical applications, especially
when the proposed IC is applied as an inner controller in a
cascaded control loop (the outer loop achieves the desired
regulation and the inner loop accomplishes the expression
(9)).

Remark 1: During abnormal conditions when either the
plant dynamics or the regulating function h(·) change (e.g.
due to a faulty sensor, loss of communication, unrealistic
regulation demand etc.), it is possible that there does not
exist a pair (xe, σe) that sets h(xe, σe) = 0 with σe ∈ S, i.e.
inside the desired plant input constraint set. For example,
consider the scenario where there exists an equilibrium
point (xe, σe) for the plant (1) with the original IC (3),
i.e. f(xe, σe) = 0 and h(xe, σe) = 0 where σe /∈ S.
In this case, the conventional IC applied to a plant with
actuator limits or combined with saturation units can lead
to integrator windup and might eventually become unstable.
Although anti-windup methods can be utilised, conditional
integrators or clamping often cannot facilitate a rigorous
stability analysis [19], [20], whereas modern anti-windup
techniques require knowledge of the plant dynamics and
modify the well-known IC structure [4], [10]. On the other
hand, the proposed resilient IC can result in the existence of
an equilibrium point (x∗e, σ

∗
e) satisfying (9) where σ∗e ∈ S

since the denominator in (9) may become arbitrarily small
(i.e. σ∗e gets close to the boundary of S) to ensure that
(9) holds. In other words, the proposed IC can realise an
equilibrium point within the desired plant input constraint
set.

Remark 2: The above remark describes the resilience
property of the proposed controller. This can be further
extended in the case where an equilibrium point does not
exist, e.g. in the case where there is a sensor drift fault,
and the measurement signal which is inherited in h(x, σ)
continuously increases or decreases. As it has been analyti-
cally shown in Theorem 1, the trajectory of the plant input
(controller state) u(t) = σ(t) will always remain within S
independently of h(x, σ). Hence, even if h(x, σ) continu-
ously changes due to a sensor drift fault, the trajectory of
u(t) = σ(t) will approach the boundary of S by continuously
slowing down its velocity from (6) but will never reach the
boundary as visually demonstrated in Fig. 1. The resilience
property of the proposed IC will become more clear in the
simulation example that follows in the next section.

III. APPLICATION ON UNDERWATER ROBOTIC VEHICLE

In this section, the regulation problem of an underwater
robotic vehicle will be investigated. We consider as an
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example the 4-thruster configuration of the Seabotix LBV150
[21] underwater vehicle, depicted in Fig. 2. By taking into
account some particular assumptions and simplifications on
the model for this specific vehicle (interested readers are
referred to [21] for details), and ignoring the motion along
the z−axis for simplicity, as the heave motion is decoupled
by the planar motion of the vehicle, we investigate the case
where the robot does not change its depth level but can move
forward and turn based on the port (p), starboard (s) and
lateral (l) thrusters. Hence, the planar motion follows the
equations of motion:

mxu̇−myvr −Xuu−Xu|u|u |u| = τx (10)
my v̇ +mxur − Yvv − Yv|v|v |v| = τy (11)

Iz ṙ −mxuv +myuv −Nrr −Nr|r|r |r| = τN , (12)

where u, v and mx, my are the velocities and added masses
with respect to the surge and sway axes, r and Iz are
the angular velocity and moment of inertia with respect to
the z−axis, Xu, Yv , Nr and Xu|u|, Yv|v|, Nr|r| are the
first- and second-order hydrodynamic drag coefficients. The
force/torque inputs τx, τy and τN are linked to the thruster
inputs via the following thruster allocation matrix: τx

τy
τN

 =

 1 1 0
0 0 1

0.0475 −0.0475 0

 τp
τs
τv

 . (13)

Each thruster input τi for i = p, s, v is given as:

τi = 14.34ωi |ωi|+ 8.83ωi, for i = p, s, v

where ωi is the normalised rotor speed of each thruster with
−1 ≤ ωi ≤ 1. Therefore, the constraint for each thruster
input is translated to

− 23.17 ≤ τi ≤ 23.17, for i = p, s, v. (14)

From (13), it yields that

τp =
τx +

τN
0.0475

2
,

τs =
τx − τN

0.0475

2
,

τv = τy

Fig. 2: Schematic diagram of Seabotix LVB thrusters [21]

TABLE I: System parameters
Parameters Value Parameter Value

mx 9.7532 my 8.6636

Xu -8.6040 Yv -18.1106

X|u|u -17.8534 Y|v|v -1.0594

Iz 0.1589 Nr -1.4146

N|r|r -10.3483 kx 5e-6

ky 0.1 kN , k 1e-4

leading to the following coupled input constraints for the
plant (10)-(12):

−46.34 ≤ τx +
τN

0.0475
≤ 46.34

−46.34 ≤ τx −
τN

0.0475
≤ 46.34

−23.17 ≤ τy ≤ 23.17.

These input constraints can be expressed as (τx, τy, τN ) ∈ S
where S = S1 ∩ S2 ∩ ... ∩ S6 with

S1 =
{
g1 (τx, τy, τN ) = τx +

τN
0.0475

+ 46.34 ≥ 0
}

S2 =
{
g2 (τx, τy, τN ) = −τx −

τN
0.0475

+ 46.34 ≥ 0
}

S3 =
{
g3 (τx, τy, τN ) = τx −

τN
0.0475

+ 46.34 ≥ 0
}

S4 =
{
g4 (τx, τy, τN ) = −τx +

τN
0.0475

+ 46.34 ≥ 0
}

S5 = {g5 (τx, τy, τN ) = τy + 23.17 ≥ 0}
S6 = {g6 (τx, τy, τN ) = −τy + 23.17 ≥ 0} .

One can notice that S represents a compact and convex set
containing the origin, thus satisfying Assumption 2.

The aim of the controller design is to regulate the veloci-
ties to some constant references at the steady state, in order
for the underwater vehicle to move with constant vertical
and angular velocities, i.e. achieve u = uref , v = vref
and r = rref at the steady state, while ensuring that
(τx(t), τy(t), τN (t)) ∈ S at all times. Hence, the proposed
IC can be designed according to (5)-(6) as

τx = σx

τy = σy

τN = σN

σ̇x = kx(uref−u)·g1(σx,σy,σN )·. . .·g6(σx,σy,σN )−kσx
σ̇y = ky(vref−v)·g1(σx,σy,σN )·. . .·g6(σx,σy,σN )−kσy
σ̇N = kN (rref−r)·g1(σx,σy,σN )·. . .·g6(σx,σy,σN )−kσN .

The system and controller parameters are shown in Table I.
In order to validate the resilience property of the proposed
approach, the following two scenarios are investigated.
Scenario 1 Operation under changes of the reference (set-

point) signals
Starting from zero initial conditions and reference values,
at the time instant t = 1 s, the reference uref is set to
0.2m/s, while at t = 10 s, the reference rref increases to
π/10 rad/s. As it can be seen from Figs 3a, 3b and 3c, the
proposed IC can successfully regulate the system states at
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the desired setpoint values after a short transient. However,
at t = 15 s, the reference signal rref increases even more
to π/5 rad/s in order to test the controller operation under
unrealistic setpoint values that force the control inputs to
violate the desired constraint. In this case, the proposed IC
automatically regulates the robotic vehicle angular velocity
r to a lower value (see Fig. 3c) in order to satisfy the desired
constraint (τx, τy, τN ) ∈ S. The time response of the control
inputs is depicted in Fig. 3d, while the control input vector
trajectory (τx(t), τy(t), τN (t)) is shown in Fig. 3e in the 3-
dimensional τx−τy−τN space, where it is clearly illustrated
that the desired input constraints are satisfied at all times.
Scenario 2 Operation under sensor drifts
In order to further evaluate the resilience property of the
proposed controller under sensor faults, a sensor drift of
−4 × 10−3 is considered at all three measurements of the
velocities u, v and r, starting at t = 1 s. Although the drift
value is higher than normal for demonstration purposes, i.e.
to evaluate the controller resilience in a shorter simulation
time, this drift often exists if accelerometers are used in the
robotic system and its integral values are obtained for the
measurement of the velocities u, v and r. At t = 1 s, the
value uref is set to 0.2m/s and at t = 10 s, the reference
rref becomes π/10 rad/s, while vref remains constant at
zero at all times. The actual values of u, v and r as well
as their measured values that include the drift and are fed
in the proposed IC are depicted in Figs 4a, 4b and 4c. It
becomes clear from the overall time response that when the
control inputs (τx, τy, τN ) remain in the set S, the proposed
controller manages to regulate the measured quantities at
the desired references, while when (τx, τy, τN ) approach
the boundary of S as the measurement drifts progressively
more and more in time, the regulation task is automatically
sacrificed to ensure that (τx, τy, τN ) ∈ S is satisfied at all
times, as it becomes clear from Figs 4d and 4e. Although τx
and τN are regulated at their constant values at the steady
state, τy continues to increase as the control input trajectory
can still move towards the τy axis and has not reached the
boundaries of S5 or S6. Nevertheless, the trajectory remains
within S as clearly shown in Fig. 4e satisfying the resilience
property of the proposed IC, thus validating the theoretical
analysis developed in the paper.

IV. CONCLUSIONS

A resilient IC that maintains the control input trajectory
of a generic linear/nonlinear plant within a generic compact
and convex set, is introduced in this paper for the first time.
Given the desired input constraint, the proposed IC takes a
particular dynamic form and using invariant set theory, it
is rigorously proven that the control input trajectory of the
generic plant will satisfy the desired constraint at all times,
independently of the regulating function or the plant dynam-
ics, offering a unique resilient property. The controller design
and efficiency was validated on an real application involving
an underwater robotic vehicle under normal operation and
abnormal scenarios that include unrealistic reference signals
and sensor faults.
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Fig. 3: Simulation results of the proposed IC under changes
of the reference signals uref , vref , rref .
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Fig. 4: Simulation results of the proposed IC under sensor
drifts at the measurements u, v, r.

Future research will focus on the design of resilient IC
that guarantee specific state constraints for the original plant
in addition to the input constraints. In this case, partial
information on the plant dynamics/structure is required,
but is expected to offer significant advantages in robotics,
power systems and electromechanical system applications,
compared to the existing widely-applied IC methods, which
still dominate the regulating controllers in these areas.
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