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Abstract— We study the problem of designing an approxi-
mate model predictive control (MPC) for discrete time switched
affine systems. The MPC design for the switched affine sys-
tem requires an online solution of a mixed integer program.
However, the combinatorial nature of the mixed integer prob-
lems might require a large computational time limiting its
applicability in real time scenarios. To this end, we propose
a framework based on the multitask learning paradigm to
approximate the solution of mixed integer MPC for switched
affine systems. We also provide a computational method to
overapproximate the reachable sets of the closed-loop system
that helps to analyze the safety and stability of the system under
the influence of the learned controller. Once trained offline, the
resulting controller results in a solver free approach especially
suited for implementation on resource constrained embedded
hardware. We demonstrate the efficacy of the approach on a
real world example of an induced draft cooling tower.

I. INTRODUCTION

Discrete time switched affine systems (SASs) are an
important class of hybrid systems involving multiple oper-
ational modes where each mode is governed by a distinct
set of affine difference equations. The switching between
different operational modes takes place through internally
generated or externally applied control signals. Switched
affine systems are used to model complex engineering sys-
tems in the process control industry [1], power electronics
applications [2], automotive systems [3], etc. The control
design for such systems poses a challenging task owing to
the simultaneous determination of the operational mode and
actuator signals.

Among different control strategies, MPC has been widely
adopted to ensure the safety and efficient operation of the
switched systems [4] [5]. The finite horizon optimal control
problem (OCP) associated with the MPC is usually cast as
a mixed integer program (MIP) to simultaneously determine
the best operational mode and optimal actuator signals. The
OCP is required to be solved at each sampling instant,
however, the combinatorial nature of the MIP might result in
a large memory footprint and computation time limiting its
applicability in real time scenarios. An alternative strategy
involves explicit hybrid MPC which relies on the offline
computation of the control law in which the MPC controller
is equivalently expressed as a lookup table of linear gains [6].
However, as the number of binary variables and constraints
increases, the computational and memory requirements for
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explicit MPC become prohibitively expensive [7]. With the
recent success of learning based algorithms in different
application areas, multitask learning (MTL) based on deep
neural network (DNN) can provide an effective framework
for approximating the solution of MPC for the SASs.

In recent years, DNN has been adopted as an effective
strategy to approximate the solution of different variations
of MPC. In [8] the authors utilize DNN to approximate the
solution to the unconstrained nonlinear MPC. The case of
constrained linear MPC has been studied in [9] where the
constraint satisfaction is achieved by projecting the output
of the DNN onto a set that ensures the state of the sys-
tem remains within an appropriately designed invariant set.
Similarly, reachability analysis has also been employed for
analyzing the constraint satisfaction and stability of the sys-
tems controlled by DNN [10] [11] [12]. DNN has also been
used to approximate the solution of robust nonlinear MPC
[13]. In the case of hybrid systems involving continuous
and binary variables, different machine learning algorithms
(random forest, decision tree, support vector machines) are
employed to learn the predictor for binary variables resulting
in a partial approximation of the solution to hybrid MPC [14]
[15] [16]. In addition, the strategy of employing continuous
relaxation for binary variables and utilizing distinct neural
networks for predicting continuous and binary variables
has also found application in approximating solutions for
hybrid MPC [17][18]. Despite the recent advancement in
machine/deep learning assisted solutions for hybrid MPC, a
systematic and scalable approach for approximating solutions
to MPC for switched/hybrid systems is required to handle
the challenge of simultaneous determination of binary and
continuous input variables. Furthermore, safety and stability
guarantees are pivotal for the deployment of the learned
controllers in the production environment.

In this work our contributions are as follows: i) we propose
an MTL framework based on DNN to approximate the solu-
tion of MPC for switched dynamical systems. The proposed
MTL framework can learn to simultaneously determine the
best operational mode and optimal actuator signals and
is well suited for implementation on resource constrained
embedded hardware. ii) A mixed integer linear encoding
of the closed-loop system is presented which is then used
for the computation of polyhedral over approximation of
the reachable sets of the closed-loop system. iii) Based on
the reachability analysis, sufficient conditions are derived for
the safety and stability of switched affine system under the
proposed multitask DNN controller.

The rest of the paper is organized as follows: Section 2
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provides a brief overview of the MPC design for discrete
time SASs. Section 3 presents the proposed multitask DNN
architecture and provides details on approximating the solu-
tion of MPC. Section 4 discusses the mixed integer linear
encoding of the proposed multitask DNN controller. Section
5 formulates the mixed integer linear program (MILP) for
computing the over approximation of the reachable sets for
the closed-loop system and provides sufficient conditions for
the safety and stability of the system. Section 6 provides an
illustrative example and section 7 concludes the paper.

II. PROBLEM FORMULATION

A. Discrete Time Switched Affine System

We consider a discrete time non-autonomous switched
affine system comprising of L subsystems with the following
state space realization:

xk+1 = Aσkxk +Bσkuk + gσk (1)

where k is the sampling instant, x ∈ Rnx is the state of the
system, u ∈ Rnu is the actuator input signals and σ ∈ Σ =
{1, · · · , L} is a piecewise constant function representing
the active operational mode. For a given operational mode
(σ = l), the pair (Al, Bl, gl) is the lth subsystem where
Al is the state transition matrix, Bl is the input matrix and
gl is the constant vector representing the offset term of the
lth subsystem. The input u is subjected to box constraints
whereas the state of the system x belongs to the compact
polyhedral set,

u ∈ U = {u ∈ Rnu |umin ≤ u ≤ umax} (2)

x ∈ X = {x ∈ Rnx |Cxx ≤ Ex}. (3)

In this work, we consider SASs which can have multiple
equilibrium points, and the desired equilibrium point doesn’t
necessarily coincide with the equilibrium point of any iso-
lated subsystems [19] [20]. This class of SASs can model
systems of practical significance [1] [2], and the control of
such systems typically requires stabilization of the system
state to some set around the desired equilibrium point.

B. Model Predictive Control of Switched Affine System

In recent years, MPC has been widely adopted for design-
ing the control of non-autonomous switched affine systems
[4], [5]. MPC can provide several advantages in terms
of handling actuator and state constraints and can ensure
optimal performance with respect to the defined performance
measure. In an MPC, the operational mode and the actuator
signals are simultaneously computed by solving a finite time
optimal control problem (OCP) given as follows:

min
u,σ

∥PxN∥p +

N−1∑
k=0

∥Qxk∥p + ∥Ruk∥p

s.t. xk+1 = Aσkxk +Bσkuk + gσk , ∀k ∈ K[0,N−1]

uk ∈ U , ∀k ∈ K[0,N−1]

σk ∈ Σ, ∀k ∈ K[0,N−1]

xk ∈ X , ∀k ∈ K[0,N−1]

xN ∈ XN

x0 = xinit.

(4)

Here N represents the prediction horizon. For p = 2,
∥Ook∥p = oTkOok where O = {P,Q,R} and P , Q
≥ 0 and R > 0. Similarly, for p = 1,∞, we have
∥Ook∥p = ∥Ook∥1,∞ where P , Q and R are nonsinglular.
The solution to the finite time optimal control problem is a
duplet consisting of i) finite sequence of active operational
modes (σ = {σ∗

0 , · · · , σ∗
N−1}) and ii) sequence of the

actuator input signals (u = {u∗0, · · · , u∗N−1}). The switching
times can be indirectly obtained from the finite sequence of
active operational mode. The solution to the above OCP can
be obtained by casting the problem as a MIP capable of
simultaneously determining the best operational mode and
optimal actuator signals [5] [1].

III. MPC SOLUTION APPROXIMATION USING
MULTITASK LEARNING

A. Multitask Learning

Multitask learning (MTL) is a machine learning technique
where a predictor is trained to perform multiple tasks simul-
taneously. In the MTL framework, the predictor can leverage
knowledge across different tasks to improve the performance.
The simultaneous learning of multiple tasks can be beneficial
in situations where there is limited data available for a single
task, or when multiple tasks are related and can benefit
from shared representations. Multitask learning has been
widely adopted in many application areas including computer
vision [21], natural language processing [22], biomedical
imaging, etc. MTL provides significant advantages in terms
of computational complexity, memory footprint and is well
suited for implementation on embedded hardware [23]. Sev-
eral algorithms are available to solve the multitask learning
problem, however, we restrict our focus to MTL framework
based on DNN. Interested readers are referred to [24] for a
review of available algorithms and their different application
areas.

The MPC design for the switched systems requires the
simultaneous determination of the best operational mode
and optimal actuator signals to achieve the desired control
objective. Such a problem inherently admits a multitask
formulation where one task is to decide the best operational
mode and the other tasks require to determine the optimal
actuator signals. These tasks are often strongly coupled as
the actuator behavior is usually strongly dependent on the
operating mode of the switched system. Hence, the multitask
learning framework can be effectively applied to approximate
the MPC controller for the switched systems.

B. Data Generation

Multitask DNN usually rely on the labeled data sets (i.e
features vector and target values) to learn their tasks. In
control applications, the features vector usually contains
information about the state of the system 1 whereas the
target values contains the corresponding information of op-
timal control signals (i.e best operational mode and optimal

1Feature vector can also contain information about the measured/predicted
disturbances and other related information about the system.
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actuator signals in case of switched systems). The feature
vectors can be generated using different sampling techniques
including Sobol sequences [25], random sampling, etc to
effectively cover the domain of operation of the system with
a limited number of samples. On the other hand, the target
values can either be generated using expert knowledge or by
solving MIP problems offline against each generated feature
vector. The data set for training a DNN can be obtained
by collecting the following pairs Γ = {(x1, {u01, σ0

1}), · · · ,
(xn, {u0n, σ0

n}) ⊆ Rnx × Rnu+nL}. It is important to note
that the operational mode of the switched system (σ0) is
represented using one-hot encoding in the dataset (i.e a
vector containing the probability of each operational mode).

C. Proposed Multitask Deep Neural Network Architecture

In this subsection, we cover the preliminaries on DNNs
and propose our multitask DNN architecture to approximate
the solution of MPC for switched dynamical systems. The
building block of a DNN is a neuron which is a function that
computes the weighted sum of its inputs and adds a bias term
to it (ȳ(x) =

∑nx

i=1 wixi + c). The resultant value is passed
through an activation function (ψ) to get the output of the
neuron.

y(x) = ψ
( nx∑

i=1

wixi + c) = ψ
(
wTx+ c

)
(5)

where, x ∈ Rnx , w ∈ Rnw and c ∈ R represents the
input vector, weight vector and bias respectively. Different
activation functions including Linear, ReLU, Tanh, Sigmoid
and Softmax can be employed. The choice of an activation
function for a neuron in a DNN is mainly based on the
problem being addressed, the desired output range, and the
ease of calculation of the function’s derivative for back-
propagation purposes. Different activation functions used in
this work are summarized in Table I.

TABLE I: Different activation functions

Activation Function Formula
Linear ψlin(ȳ) = ȳ, ȳ ∈ R
ReLU ψrelu(ȳ) = max(0, ȳ), ȳ ∈ R
Softmax ψsoftmax(hj) =

exp(hj)∑L
l=1

exp(hl)
, h ∈ RnL

DNN consists of a network of neurons and has been
successfully employed to approximate complex nonlinear
functions [26]. The proposed DNN architecture for approx-
imating the solution of MPC for switched systems is shown
in Fig 1. It consists of an input layer, shared and task-specific
hidden layers, and task specific output layers labeled as
L = {L0, {L1, · · · ,Lns

}, {Lσ
1 , · · · ,Lσ

nσ}, {Lu
1 , · · · ,Lu

nu}}.
Here ns is the number of shared layers, nσ and nu represents
the number of task specific layers for mode prediction and
actuator signals determination tasks respectively. Different
variables associated with the rth neuron in a given layer
Lq
p are denoted by (.)

Lq
p

r . The number of shared and task-
specific hidden layers and the number of neurons in each
of these layers can be varied based on the complexity of
the problem. For YL0 = x, YLσ

0 = YLns , YLu
0 = YLns ,

...

Actuator

Shared Layers
Input Layer

Task Specific Layers

...

YLunu
· · ·· · ·· · · · ·

· · ·· · ··

L0

L1 Lns

Lσ1 Lσnσ

LunuLu1

Probability

Signals

Distribution

Modes

...

...· · ·· · ··

YLσnσ argmax

Proj

σnn

unn

Fig. 1: Multitask DNN architecture for approximating the solution
of MPC for switched systems.

the multitask DNN architecture can be defined using the
following equations:

YLi = ψrelu(0,W
LiYLi−1 + bLi),∀i ∈ {1, · · · , ns}

YLσ
i = ψrelu(0,W

Lσ
i YLσ

i−1 + bL
σ
i ), ∀i ∈ {1, · · · , nσ − 1}

YLu
i = ψrelu(0,W

Lu
i YLu

i−1 + bL
u
i ), ∀i ∈ {1, · · · , nu − 1}

YLσ
nσ = ψsoftmax(W

Lσ
nσYLσ

nσ−1)

YLu
nu = ψlin(W

Lu
nuYLu

nu−1)

(6)

The active operational mode and the actuator input signals
can be obtained from the DNN output as follows: σ =
argmax(YLσ

nσ ), u = YLu
nu . Here, YLi , YLσ

i and YLu
i

represents the values of the neurons at the shared and
task specific layers. The nonlinear activation function ψrelu

must be applied elementwise whereas ψsoftmax converts
the output of the mode prediction task layer into modes
probability distribution. WLi ,WLσ

i ,WLu
i and bLi , bL

σ
i , bL

u
i

are the weight matrices and bias vectors of appropriate
dimensions for the shared and task specific layers. Also note
that, θ = (WLi ,WLσ

i ,WLu
i , bLi , bL

σ
i , bL

u
i ) are learnable pa-

rameters that must be optimized against the dataset. Finally,
the neural network control law can be written as follows:

[σnn, unn] = πnn(x|θ) (7)

where πnn represents the proposed multitask DNN con-
troller. Moreover, a projection operator is considered in the
loop to ensure input constraint satisfaction. The projected
input is defined as follows:

ûnn = Proj(unn) =


umax, unn ≥ umax

umin, unn ≤ umin

u, otherwise

(8)

The projected neural network is denoted as [σnn, ûnn] =
π̂nn(x|θ). Finally, we note that the resulting controller is a
nonsmooth nonlinear function mainly due to the presence of
nonlinear activations and an input projection operator.

D. Loss Function and Training of Neural Network

In order to jointly learn the tasks of mode selection and
actuator signal determination, an appropriate loss function
must be defined. We adopt cross-entropy loss for predicting
the mode probability distribution and mean squared error loss
is used for actuator signals determination. The loss function
is defined as the weighted sum of the mean squared error
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and cross-entropy loss functions.

L(θ) = LCE + LMSE

= −α
n∑

i=1

L∑
j=1

σ0
i,j log(y

Lσ
nσ

i,j ) +
1

n

n∑
i=1

nu∑
j=1

βj(u
nn
i,j − u0

i,j)
2 (9)

Here, α is the weight associated with the cross-entropy
loss, whereas βj is the weight associated with the mean
squared error loss function for each actuator and n is the
number of training examples. CE loss is better suited for
predicting the modes probability distribution owing to its
better convergence properties and its ability to penalize more
strongly for incorrect mode predictions [27]. The unknown
parameters θ are estimated from the data set Γ by minimizing
the loss function:

min
θ

L(θ) (10)

Different training algorithms can be used to learn the pa-
rameters of the proposed multitask DNN including gradi-
ent descent, stochastic gradient descent, etc. Note that, the
training process for estimating the unknown parameters in
multitask DNN is computationally expensive and must be
done offline. Once trained, the multitask DNN output simply
corresponds to the evaluation of the learned function w.r.t to
the input feature vector. It is easy to see that, the multitask
DNN architecture can be easily extended to approximate
the controller for other classes of hybrid systems involving
binary and continuous variables with appropriately designed
loss functions.

IV. MIXED INTEGER ENCODING OF THE CLOSED-LOOP
SYSTEM

In this section, our main aim is to present the mixed integer
linear encoding of the learned controller and the closed-loop
system which will play a key role in analyzing the safety
and stability of the system.

A. Encoding of the Multitask DNN

The encoding of the learned controller is mainly based
on modeling the input-output behavior of each neuron in
the multitask DNN architecture. The main challenge lies in
dealing with the nonlinearities arising in the form of different
activation functions and projection operator. Our approach is
based on transforming such nonlinearities and discontinuities
into mixed integer linear inequalities using the McCormick
relaxation (also known as Big-M technique) [28]. We start
by encoding the input-output behavior of neurons with the
ReLU activation present in the hidden layers of multitask
DNN architecture.
Proposition 1: yL

q
p

r = max
(
0, ȳ

Lq
p

r

)
iff the constraints (11a)

to (11c) hold:

0 ≤ y
Lq

p
r ≤M

Lq
p

r,1 (1− λ
Lq

p

r,1) (11a)

ȳ
Lq

p
r ≤ y

Lq
p

r ≤ ȳ
Lq

p
r +M

Lq
p

r,2 (1− λ
Lq

p

r,2) (11b)

λ
Lq

p

r,1 + λ
Lq

p

r,2 = 1 (11c)

The proof can be found in Appendix. λ
Lq

p

r,1 and λ
Lq

p

r,2 are
the binary variables associated with the rth neuron of the

Lq
p layer in DNN architecture. At the output layer of mode

selection task, the neurons have Softmax activation function
that involves the computation of the exponential function.
Exponential functions can’t be exactly encoded as mixed
integer linear inequalities. However, the following result
helps to omit the construction of the Softmax activation
function in the analysis under specific conditions.
Proposition 2 ([29]): Given a multitask DNN with the output
layer of the modes probability distribution prediction task
having Softmax activation function and a constant γ > 0,
then ∀r, s ∈ Σ

y
Lσ

nσ
r ≥ γy

Lσ
nσ

s ⇐⇒ ȳ
Lσ

nσ
r ≥ ln(γ) + ȳ

Lσ
nσ

s (12)

Proposition 2 implies that when the analysis doesn’t
require the exact values and depends mainly on the ratio
ordering of the values of neurons in the output layer of the
mode selection task. Then, the property to be analyzed can
be written in terms of the output values of neurons without
the Softmax activation function. Consequently, the active
operational mode can be obtained by finding the maximum
value index among the output values of neurons without the
Softmax activation function. Then the argmax function can
be modeled using mixed integer linear inequalities.
Proposition 3: σnn = argmax(ȳ

Lσ
nσ

1 , · · · , ȳL
σ
nσ

L ) iff the
constraints (13a) to (13b) hold:

ȳ
Lσ

nσ
r ≤ yaux ≤ ȳ

Lσ
nσ

r +M
Lσ

nσ
r (1− λ

Lσ
nσ

r ), ∀r ∈ Σ (13a)
L∑

r=1

λ
Lσ

nσ
r = 1 (13b)

The proof can be found in the Appendix. Here, yaux

represents the auxiliary continuous variable and the acti-
vated binary variable represents the operational mode of the
system. Moreover, the output layer of the actuator signals
determination task utilizes a linear activation function and
hence can be simply modeled using the linear equality
constraint.

unn
r = y

Lu
nu

r , ∀r ∈ {1, · · · , nu} (14)

Finally, the input projection operators of the form (7) can
either be rewritten as additional layers of the DNN [11]
[12] or can be directly encoded as mixed integer linear
inequalities.
Proposition 4: ûnn = Proj(unn) iff the constraints (15a)
to (15i) hold:

unn
j ≤ umin

j +Mproj
j,1 (1− λproj

j,1 ) (15a)

unn
j ≥ umax

j −Mproj
j,2 (1− λproj

j,2 ) (15b)

unn
j ≥ umin

j −Mproj
j,3 (1− λproj

j,3 ) (15c)

unn
j ≤ umax

j +Mproj
j,3 (1− λproj

j,3 ) (15d)

m̂proj
j,1 (1− λproj

j,1 ) ≤ ûnn
j − umin

j ≤ M̂proj
j,1 (1− λproj

j,1 ) (15e)

m̂proj
j,2 (1− λproj

j,2 ) ≤ ûnn
j − umax

j ≤ M̂proj
j,2 (1− λproj

j,2 ) (15f)

m̂proj
j,3 (1− λproj

j,3 ) ≤ ûnn
j − unn

j ≤ M̂proj
j,3 (1− λproj

j,3 ) (15g)

λproj
j,1 + λproj

j,2 + λproj
j,3 = 1 (15h)

∀j ∈ {1, · · · , nu} (15i)
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This completes the encoding of the projected DNN that
plays a key role in approximating the reachable sets for the
closed-loop system which in turn helps to analyze the various
properties of the closed-loop system.

B. Encoding of the Closed-Loop System

In order to analyze the system level properties under the
projected neural network controller, the closed-loop behavior
must be modeled. Given the system (1) controlled by the
DNN controller (π̂nn), the closed-loop system can be written
as follows:

xk+1 = f π̂nn(xk) = Aσnn
k
xk +Bσnn

k
ûnn
k + gσnn

k
(16)

The closed-loop system can then be modeled using the
following mixed integer linear inequalities:
Proposition 5: f π̂nn(xk) = Aσnn

k
xk +Bσnn

k
ûnn
k + gσnn

k
iff the

constraints (17a) and (17b) holds:

xk+1 − (Ajxk +Bj û
nn
k + gj) ≤Mj(1− λ

Lσ
nσ

j ), ∀j ∈ Σ (17a)

xk+1 − (Ajxk +Bj û
nn
k + gj) ≥ mj(1− λ

Lσ
nσ

j ), ∀j ∈ Σ (17b)

The proof can be found in the Appendix. Note that, the
binary variables used to model the argmax function are
used for activating a certain subsystem in (1). Finally, we
emphasize that appropriate values of the Big-M constants (m
and M ) plays an important role in avoiding infeasibility and
weak relaxations of the mixed integer program. The values
of these constants can be obtained using interval arithmetics
[29].

V. REACHABILITY ANALYSIS OF THE CLOSED-LOOP
SYSTEM

Reachability analysis has been widely adopted in vari-
ous fields to verify the safety and correctness of designed
systems. In the context of dynamic systems, reachability
analysis based on MIP can be employed to analyze the
safety and stability properties of the closed-loop system [10]
[11]. Reachability of the closed-loop system involves the
computation of all possible states of the system that could be
reached from a given set of initial conditions (Xinit). Given
a closed-loop system (16), the forward reachable set at time
K from a given set Xinit is defined by the following function
composition:

RK(Xinit) := f π̂nn
K ◦ · · · ◦ f π̂nn(Xinit) (18)

The problem of computing the exact reachable sets for
the switched affine system is computationally expensive.
However, the over approximation of reachable sets can be
computed using polyhedral approximations.

A. Over Approximation of the Reachable Sets

Next, we propose a technique based on solving MILP for
computing the over approximation of reachable sets for the
closed-loop system. First, we define the notion of support
functions, which plays a key role in constructing polyhedral
approximation of the reachable sets. The support function of

a compact nonempty set Ω is a function ρΩ(d) : Rnd → R
that attributes to a direction d the scalar value s.t

ρΩ(d) = max
z∈Ω

dT z. (19)

ρΩ(d) actually determines the position of the halfspace i.e

Hd = {z ∈ Rnz |dT z ≤ ρΩ(d)} (20)

that touches and contains Ω. Given a set D = {d1, · · · , dnd
}

containing a finite number of direction vectors, an over-
approximation of set Ω is the polyhedral obtained from the
intersection of halfspaces i.e

⌈Ω⌉ =
∧
i∈D

{z ∈ Rnz |dTi z ≤ ρΩ(di)} (21)

where ⌈Ω⌉ is the over approximation of the set Ω (i.e Ω ⊆
⌈Ω⌉). ⌈Ω⌉ is also referred to as the template polyhedron with
template direction specified by D. The polyhedral approxi-
mation using support functions provides a unique advantage
over traditional techniques where the approximation can be
refined on demand by adding additional directions. One
can interpret evaluating support functions as the lazy, on-
demand, construction of a template polyhedron [30]. Given
the finite set of template directions D, the support functions
of the K-step reachable set (ρRK

(di)) of the closed-loop
system from a given set Xinit can be determined by solving
the following MILP for each direction di:

max
x0,λ,x,y,u

dTi xK (22a)

s.t. [σnn
k , unnk ] = πnn(xk), ∀k ∈ K[0,··· ,K−1] (22b)

ûk = Proj(unnk ), ∀k ∈ K[0,··· ,K−1] (22c)
xk+1 = Aσnn

k
xk +Bσnn

k
ûnnk + gσnn

k
(22d)

∀k ∈ K[0,··· ,K−1] (22e)
x0 ∈ Xinit (22f)

Note that (22b), (22c), (22d) must be encoded using the
mixed integer linear inequalities as presented in the previous
section. The computation of the support functions using (22)
enables the construction of a polyhedral over approximation
of the K-step reachable set of the closed-loop system as
follows:

⌈RK(Xinit)⌉ =
∧
i∈D

{xk ∈ Rn|dTi xk ≤ ρRk (di)} (23)

The computation of ⌈RK⌉ allows analyzing the state con-
straint satisfaction and stability of the closed-loop system.
We note here that, the complexity of MIP increases expo-
nentially with the increase in the number of binary variables.
Hence, for K > 1 the ⌈RK(Xinit)⌉ can also be computed
in a recursive fashion.

⌈RK(Xinit)⌉ = ⌈R1(⌈Ri⌉)⌉ , ⌈R0⌉ = Xinit, ∀i ∈ {0, · · · ,K − 1}
(24)

B. Safety (Closed-Loop State Constraint Satisfaction)

The approximation of the MPC using DNN doesn’t guar-
antee state constraint satisfaction in the design phase. How-
ever, state constraint satisfaction guarantees can be obtained
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by leveraging the reachability analysis of the closed-loop
system.
Theorem 1: Given the switched system (1) with initial
conditions x0 ∈ X controlled by a projected DNN controller
(π̂nn) and an over-approximation of a 1-step reachable set
(⌈R1(X )⌉ ) obtained by solving (22) globally. If ⌈R1(X )⌉ ⊆
Xin, then the state constraints are satisfied for all time k ≥ 0.

Proof : Let xk represent the state of the closed-loop system
at any arbitrary time step k, where xk ∈ X . By definition
of 1-step reachable set of the closed-loop system, the next
state of the closed-loop system lies in the over approxima-
tion of the 1-step reachable set (i.e xk+1 = f π̂nn(xk) ∈
⌈R1(X )⌉). Since the over approximation of the reachable set
is contained in the state constraint set (i.e ⌈R1(X )⌉ ⊆ X ),
therefore we conclude that the next state also lies within the
state constraint set (i.e xk+1 ∈ X ). By observing the initial
state of the closed-loop system lies in the state constraint
set (i.e x0 ∈ X ), it follows that the state of the closed-loop
system will remain within the state constraint set for all time
steps k ≥ 0. Hence, state constraints are satisfied for all time
k ≥ 0 .

C. Practical Asymptotic Stability of Switched Affine Systems

Next, our main aim is to analyze the stability of the
switched affine system under the projected neural network
controller. When the subsystems have distinct equilibria
and the desired equilibrium point doesn’t coincide with the
equilibrium point of any isolated subsystems, bringing the
system trajectories within a certain bound from the de-
sired equilibrium point and keeping them within that bound
thereafter is of practical significance. Such a concept has
been formally termed as ϵ-practical asymptotic stability [19].
Without loss of generality, let xd be the desired equilibrium
point:
Definition 1 (ϵ-practical asymptotic stability): Given ϵ > 0
and δ < ϵ, the system (1) is said to be ϵ-practically
asymptotic stable around xd under the projected neural
network (π̂nn) if:

• (ϵ-practical stability) there exists a δ such that ∥xk −
xd∥ < ϵ whenever x0 ∈ X satisfies ∥x0 − xd∥ < δ.

• (ϵ-attractivity) for every x0 ∈ X there exists a T =
T (x0) > 0 such that ∥xk − xd∥ < ϵ for any k ≥ T .

Here, it is important to emphasize that ϵ-attractivity
doesn’t necessarily guarantee ϵ-stability. There may exist a
trajectory that starts at x0 with ∥x0 − xd∥ < δ, violates
the condition ∥xk − xd∥ < ϵ for some time, but eventually
converges to ∥xk − xd∥ < ϵ. Such a trajectory would still
fulfill the requirements of ϵ-attractivity, but not ϵ-practical
stability. Hence ϵ-practical asymptotic stability requires the
fulfillment of both ϵ-practical stability and ϵ-attractivity
properties.
Theorem 2: Given the switched system (1) with initial
conditions x0 ∈ X controlled by a projected DNN controller
(π̂nn), a bounded ball centered at the desired operating
point B[xd, ϵ] and an over-approximation of reachable sets
(⌈RK(X )⌉, ⌈R1(B[xd, ϵ])⌉ ) computed by solving (22) glob-

ally. Then the system (1) under the controller (π̂nn) is ϵ-
practical asymptotic stable:

• ⌈RK(X )⌉ ⊆ B[xd, ϵ]
• ⌈R1(B[xd, ϵ])⌉ ⊆ B[xd, ϵ].
Proof : In order to prove the theorem, first we need to

show that the trajectories starting from any admissible initial
condition x0 ∈ X will converge to B[xd, ϵ] within a finite
number of time steps. Secondly, we need to demonstrate all
the trajectories starting within B[xd, ϵ] will remain within
the B[xd, ϵ] for all future time steps. The proof of the second
part is similar to the proof in Theorem-1, and hence omitted.
For the first part, let xK be the state of the system at the
Kth time step starting from any admissible initial condition
x0 ∈ X . By definition of K-step reachable set of the closed-
loop system, the state of the closed-loop system at the Kth

time step lies within the over approximation of the K-
step reachable set (i.e xK ∈ ⌈RK(X )⌉). Since the over
approximation of the K-step reachable set is contained in
B[xd, ϵ], therefore we conclude that the state of the system
will always lie within B[xd, ϵ] after K time steps. Hence,
the system trajectories starting from any admissible initial
condition x0 ∈ X enters the B[xd, ϵ] at or before Kth time
step and remains there for all future time steps .

VI. SIMULATION RESULTS

In this section, we show the efficacy of the proposed mul-
titask DNN to approximate the solution of the MPC for an
induced draft cooling tower (IDCT). IDCT can be operated in
three different operational modes namely active cooling, free
cooling, and bypass to regulate the outlet water temperature
to the desired setpoint. Active cooling mode is governed by
non-autonomous affine dynamics whereas free cooling and
bypass modes are governed by autonomous affine dynamics.
In the active cooling mode, the fan speed (with minimum
speed constraint) can be modulated to achieve the required
heat rejection requirements whereas the fan remains off in
free cooling (natural draft) and bypass modes. Each opera-
tional mode has a different cooling capacity and depending
on the supply water temperature and the weather conditions,
the desired cooling capacity might not coincide with the
cooling capacity of any operational mode. More details can
be found in [1] [31].

The multitask DNN controller for the IDCT comprises of
three hidden layers, each comprising eight neurons. Among
these layers, one is shared, while the remaining two are
dedicated to mode selection and fan speed control respec-
tively. Figure (2), (3), (4) shows the performance of the
multitask DNN for regulating the outlet water temperature
of the IDCT to 22.5◦C from different initial conditions. The
supply and wet bulb temperatures are 27◦C and 16.5◦C
respectively. The state constraint set is given by X = {x ∈
R|20 ≤ x ≤ 25} and the bounded ball is centered at
the setpoint B[22.5, 0.2]. The 1-step reachable sets from X
and B are computed to be R1(X ) = {x ∈ R|20.58 ≤
x ≤ 24.68}, R1(B) = {x ∈ R|22.38 ≤ x ≤ 22.67}
respctively. Similarly, the 25-step reachable set is computed
to be R25(B) = {x ∈ R|22.40 ≤ x ≤ 22.52}. Note that
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R1(X ) ⊂ X , R1(B) ⊂ B and R25(X ) ⊂ B which satisfies
the conditions for the state constraint satisfaction as well as
the ϵ-practical stability of the closed-loop system.
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Fig. 2: Regulation of outlet water temperature to 22.5◦C under
the multitask DNN controller from different initial conditions.
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Fig. 3: Mode switching under multitask DNN controller. 0, 1 and
2 correspond to bypass, free cooling and active cooling modes
respectively.
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VII. CONCLUSIONS

In this paper, we proposed a multitask DNN architec-
ture capable of simultaneously determining the operational
mode and actuator signals for controlling a non-autonomous
switched affine system. A computation method based on
MILP was presented to compute the over approximation of
the reachable sets of the closed-loop system which were then
used to derive the sufficient conditions for state constraint
satisfaction and practical stability of the closed system. In the
future, we plan to extend the formulation to include the dwell

time constraints and investigate the approaches for systematic
refinement of the over approximation of the reachable sets.
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APPENDIX

A. Proof of Proposition 1

Proof : Case i) Assume that ȳ
Lq

p
r < 0, then the feasibility of

the constraints in (11) requires setting λ
Lq

p

r,1 = 1 and λ
Lq

p

r,2 = 0.

When λ
Lq

p

r,1 = 1, the constraints in (11a) are binding and

together imply that y
Lq

p
r = 0. As λ

Lq
p

r,2 = 0, the lower bound
in 11(b) is less restrictive than the lower bound in 11(a)

as ȳ
Lq

p
r < 0. Similarly, for a suitably large value of the

constant M
Lq

p

r,1 , the upper bound in 11(b) is less restrictive
than the upper bound in 11(a), hence the constraints in 11(b)

are not binding. We thus have ȳ
Lq

p
r < 0 =⇒ λ

Lq
p

r,1 = 1,

λ
Lq

p

r,2 = 0 =⇒ y
Lq

p
r = 0. Similarly, from the definition

we have ȳ
Lq

p
r < 0 =⇒ y

Lq
p

r = 0, which requires setting
λ
Lq

p

r,1 = 1, λ
Lq

p

r,2 = 0 and hence the 11(a) to 11(c) holds. Case
ii) Assume ȳ

Lq
p

r > 0, then the feasibility of the constraints
in (11) requires setting λ

Lq
p

r,1 = 0, λ
Lq

p

r,2 = 1. When λ
Lq

p

r,2 = 1,
the constraints in (11b) are binding and together imply that
y
Lq

p
r = ȳ

Lq
p

r . As λ
Lq

p

r,1 = 0, the lower bound in 11(a) is

less restrictive than the lower bound in 11(b) as ȳ
Lq

p
r > 0.

Similarly, for a suitably large value of M
Lq

p

r,2 , the upper bound
in 11(a) is less restrictive than the upper bound in 11(b),
hence the constraints in 11(a) are not binding. We thus have
ȳ
Lq

p
r > 0 =⇒ λ

Lq
p

r,1 = 0, λ
Lq

p

r,2 = 1 =⇒ y
Lq

p
r = ȳ

Lq
p

r .
The other side of the implication follows similar argument
as in the Case i. Case iii) when ȳ

Lq
p

r = 0, the constraints are
satisfied with y

Lq
p

r = 0 regardless of which binary variable
is chosen to be activated.

B. Proof of Proposition 3

Proof : Without loss of generality, let’s assume that ȳL
σ
nσ

i

be the maximum among the values of the neurons in the
output layer (without Softmax activation) of modes selec-
tion task. The constraints feasibility in (13) require setting
λ
Lσ

nσ

i = 1, λL
σ
nσ

j = 0,∀j ∈ Σ, j ̸= i. When λ
Lσ

nσ

i = 1,
the constraints in 13(ai) are binding and together imply that
yaux = ȳ

Lσ
nσ

i . As λL
σ
nσ

j = 0,∀j ∈ Σ, j ̸= i, the lower bounds
in the constraints 13(aj) are less restrictive than the lower
bound in 13(ai) as ȳL

σ
nσ

i > ȳ
Lσ

nσ

j . Similarly, for a suitably
large values of the constants MLσ

nσ

j , the upper bounds in the
constraints 13(aj)∀j ∈ Σ, j ̸= i are less restrictive than the
upper bound in 13(ai), hence the constraints in 13(aj) are
not binding. Thus we have, ȳL

σ
nσ

i > ȳ
Lσ

nσ

j ,∀j ∈ Σ, j ̸= i

=⇒ λ
Lσ

nσ

i = 1 =⇒ σnn = i. Similarly, it is trivial to
see that σnn = i require setting λ

Lσ
nσ

i = 1 and λ
Lσ

nσ

j = 0
∀j ∈ Σ, j ̸= i and hence the constraints in (13a) and (13b)
holds.

C. Proof of Proposition 4

Proof : Case i) Assume unnj < umin
j , then the feasibility

of the constraints in (15) requires setting λprojj,1 = 1, λprojj,2 =

0 and λprojj,3 = 0. When λprojj,1 = 1, the constraints in
(15e) are binding and together imply that ûnnj = umin

j .
As λprojj,2 = 0 and λprojj,3 = 0, the lower bounds in the
constraints 15(f), 15(g) are less restrictive than the lower
bound in 15(e) for suitably small values of m̂proj

j,2 and
m̂proj

j,3 . Similarly, the upper bound in 15(e) and 15(f) are
less restrictive than the upper bound in 15(d) for suitably
large values of M̂proj

j,2 and M̂proj
j,3 . Hence the constraints

in 15(f) and 15(g) are not binding. We thus have unnj <

umin
j =⇒ λprojj,1 = 1, λprojj,2 = 0, λprojj,3 = 0 =⇒
ûnnj = umin

j . Along the same lines one can show that
unnj > umax

j =⇒ λprojj,1 = 0, λprojj,2 = 1, λprojj,3 = 0 =⇒
ûnnj = umax

j and umin
j ≤ uj ≤ umax

j =⇒ λprojj,1 = 0,
λprojj,2 = 0, λprojj,3 = 1 =⇒ unnj = unnj . Moreover, the other
side of the implication follows a similar argument as in the
proposition 1 and 3.

D. Proof of Proposition 5

Proof : When λ
Lσ

nσ

i = 1 and λ
Lσ

nσ

j = 0 ∀j ∈ Σ, j ̸= i,
the constraint in the 17(ai) and 17(bi) are binding and
together imply that xk+1 = (Aixk + Biû

nn
k + gi) . As

λ
Lσ

nσ

j = 0,∀j ∈ Σ, j ̸= i, the lower bounds in the constraints
17(aj) are less restrictive than the lower bound in 17(ai)
for suitable smaller values of the constants mj . Similarly,
for suitably large values of the constants Mj , the upper
bounds in the constraints 17(aj) are less restrictive than
the upper bound in 17(ai), hence the constraints in 17(aj)

are not binding. Thus we have, λL
σ
nσ

i = 1 and λ
Lσ

nσ

j = 0
∀j ∈ Σ, j ̸= i =⇒ xk+1 = (Aixk + Biû

nn
k + gi). Hence

the state dynamics evolve using the ith subsystem difference
equations. The other side of the implication follows a similar
argument as in the proposition 1 and 3.
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