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Abstract— Model predictive control (MPC) with linear per-
formance measure for hybrid systems requires the solution of a
mixed-integer linear program (MILP) at each time instance. A
well-known method to solve MILP problems is branch-and-
bound (B&B). To enhance the performance of B&B, start
heuristic methods are often used, where they have shown to
be useful supplementary tools to find good feasible solutions
early in the B&B search tree, hence, reducing the overall effort
in B&B to find optimal solutions. In this work, we extend
the recently-presented complexity certification framework for
B&B-based MILP solvers to also certify computational com-
plexity of the start heuristics that are integrated into B&B.
Therefore, the exact worst-case computational complexity of the
three considered start heuristics and, consequently, the B&B
method when applying each one can be determined offline,
which is of significant importance for real-time applications
of hybrid MPC. The proposed algorithms are validated by
comparing against the corresponding online heuristic-based
MILP solvers in numerical experiments.

I. INTRODUCTION

Model predictive control (MPC) is a common technique
to control hybrid systems in which both continuous and
discrete dynamics interact [1]. For hybrid MPC with a linear
performance measure, the optimization problem in question
can be recast as a mixed-integer linear programming (MILP)
problem that has to be solved at each sampling time subject
to state and control signal constraints [2], which makes it
important to have an efficient and reliable solver at hand.
These problems can either be solved in real-time online,
or be formulated as a multi-parametric MILP (mp-MILP)
and solved offline parametrically for a range of states and
reference signals [3]–[5], where the online effort is then
reduced to retrieving the solution from a look-up table. The
complexity of the pre-computed solution, however, grows
exponentially with the dimensions of the problem, and for
large problems, the required memory to store the solutions
becomes potentially large, and computing an efficient data
structure to implement the look-up table becomes compu-
tationally demanding. This makes the online approach a
relevant option. For that approach to also be considered
reliable for real-time applications, a priori guarantees for that
the computational requirements do not exceed the hardware
capabilities are desirable. Complexity certification frame-
works for MIQPs and MILPs have been recently presented
in [6]–[9].

A well-known method for solving MILPs is branch-and-
bound (B&B) where a sequence of convex relaxations are
solved in a binary search tree [10]. B&B is a so-called
complete procedure, where it is guaranteed to find an optimal
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solution for every problem instance in finite time, if it exists.
It is, however, a computationally expensive method and its
worst-case complexity grows exponentially in the problem
size. To enhance the performance of B&B, heuristic methods
are often employed in high-performance solvers. Heuristics
are incomplete methods, that is, they do not guarantee finding
a feasible solution. However, they have shown to be highly
relevant tools, e.g, in finding feasible solutions at early
stages of the B&B procedure, reducing the workload of
B&B by pruning more nodes [11], [12]. Furthermore, these
are known to be important tools in commercial codes such
as Gurobi and CPLEX. This paper, hence, aims to extend
the complexity certification framework in [8] to exactly
certify the computational complexity of B&B-based MILP
solvers which also include heuristics. To that end, parametric
versions of heuristics for mp-MILPs are required, which have
not been considered in the literature before. Thus, the main
contribution of this work is to present and analyze parametric
versions of commonly used start heuristics known from high-
performing MILP solvers, with the purpose of certifying
the computational complexity of their online counterparts.
In particular, three start heuristics, i.e., rounding (RENS),
diving, and (objective) feasibility pump, are considered in
this work. The proposed certification algorithms are then
integrated into the B&B certification framework to compute
the overall computational complexity of B&B schemes for
MILP. The computational complexity can be measured in
terms of, e.g., LP iterations, flops, or the required number of
B&B nodes for the entire B&B scheme including the heuris-
tics. This has a significant value for real-time applications
such as hybrid MPC.

II. PROBLEM FORMULATION

We consider an mp-MILP problem in the form,

min
x

cTx, (1a)

PmpMILP(θ) : s.t. Ax ⩽ b+Wθ, (1b)
xk ∈ {0, 1}, ∀k ∈ B (1c)

where x = [xT
c , x

T
b ]

T ∈ Rnc×{0, 1}nb denotes the vector of
n = nc + nb continuous and binary decision variables, and
θ ∈ Θ0 ⊂ Rnθ is the parameter vector. The parameter set
Θ0 is assumed to be polyhedral. The constants that define
the mp-MILP are given by c ∈ Rn, A ∈ Rm×n, b ∈ Rm,
and W ∈ Rm×nθ . Moreover, B is the index set of binary
variables. The problem (1) is non-convex and is known to
be NP-hard [10].

Definition 1: Let F̂ ∈ Rn×nθ and Ĝ ∈ Rn. Then, the
affine function x̂(θ) = F̂ θ + Ĝ, ∀θ ∈ Θ̂ ⊆ Θ0, where Θ̂ is
a polyhedral region, is called
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• infeasible for (1) if it does not satisfy (1b) and (1c),
• LP-feasible for (1) if it satisfies (1b), and 0 ⩽ x̂k ⩽
1,∀k ∈ B,

• mixed-integer for (1) if it satisfies (1c),
• integer-feasible for (1) if it satisfies (1b) and (1c).
Relaxing the integrality constraints (1c) to interval con-

straints results in the following convex relaxation in the form
of an mp-LP problem,

min
x

cTx, (2a)

PmpLP(θ) : s.t. Ax ⩽ b+Wθ, (2b)
0 ⩽ xk ⩽ 1, ∀k ∈ B, (2c)
xk = 0, ∀k ∈ B0, xk = 1, ∀k ∈ B1 (2d)

where B0,B1 ⊆ B and B0 ∩ B1 = ∅ are the index sets of
binary variables fixed to 0 and 1, respectively.

To solve MILPs, a standard B&B method is used in this
work [8]. In B&B, a sequence of relaxations is ordered and
solved in a binary search tree, where each node in the tree
corresponds to a convex relaxation [10]. A node containing a
relaxation defined in (2) is here denoted η(θ) ≜ (B0,B1, θ),
where B0 and B1 are defined in (2d) and are node dependent.
An important concept when solving a relaxation is the active
set, denoted A, which is the index set of all active constraints
at the optimal solution [13]. Note that a constraint is said to
be active if it holds with equality.

For a specific parameter θ̄ ∈ Θ0, the problem (1) simplifies
to the following (non-parametric) MILP problem,

min
x

cTx, (3a)

PMILP(θ̄) : s.t. Ax ⩽ b̄, (3b)
xk ∈ {0, 1}, ∀k ∈ B (3c)

where b̄ = b+Wθ̄. The decision variables and other problem
matrices are defined similarly as in (1). The LP relaxation
of (3) is obtained by relaxing the integrality constraints (3c)
into (2c) and (2d). A node containing a relaxation of (3) in
the B&B tree is here denoted η = (B0,B1) for a specific θ̄.

III. HEURISTICS FOR MILP
The heuristics considered in this work are procedures that

try to compute feasible solutions computationally inexpen-
sively. There is a wide variety of heuristics proposed in the
literature for MILPs [11], [12]. The focus in this paper is on
start heuristic methods, where the goal is to find a feasible
solution, e.g., after solving the first relaxation (root node).
Finding feasible solutions early can result in a useful upper
bound that can help to prune some nodes in the B&B search
tree, reducing the tree size and the overall effort. Three
commonly-used start heuristics, i.e., relaxation enforced
neighborhood search (RENS), diving, and feasibility pump
(FP) methods are considered here. Algorithms 1–3 present
these methods, respectively. As inputs, they take a problem
formulation, an LP-feasible solution x and the corresponding
active set A, and some extra information depending on the
heuristic method. They then output a possibly found integer-
feasible solution x̂ and the accumulated complexity measure
κh, e.g., the total number of LP iterations, flops, or nodes. We
review these methods for the MILP problem (3) for a specific

θ̄ ∈ Θ̄ in the following subsections, where Θ̄ is a polyhedral
region, and we refer the reader to [11] for extensive details.

A. RENS for MILP
After obtaining an optimal (LP-feasible) solution x of a

relaxation, e.g., in the root node, the rounding methods, such
as simple rounding and RENS, try to round relaxed binary
variables up or down, such that the resulting variable x̂
becomes integer feasible. This paper considers RENS, but
it can be extended to other rounding methods as well.

The idea of RENS, presented in [11], is to solve a sub-
MILP problem PRENS(x) that is created from the original
MILP (3) plus the following additional constraints,

xk = xk, ∀k ∈ B \ B̄ (4)

where B̄ is the index set of integrality constraints (2c) that are
not active (see Step 1 of Algorithm 1), that is, the candidate
list of relaxed binary variables. The additional constraints (4)
in PRENS(x) fixes all relaxed binary variables xk, ∀k ∈ B,
for which the LP-feasible solution xk is binary. Algorithm 1
outlines this heuristic method. The SOLVEMILP procedure
at Step 6 is the B&B-based MILP solver that solves the sub-
MILP and returns the possibly found integer-feasible solution
x̂ with the required complexity measure κh.

As the sub-MILP PRENS(x) might be expensive to solve,
some limits, e.g., on the total number of nodes, can be added
to the the B&B-based MILP solver (at Step 6). Moreover,
this heuristic is utilized if a sufficiently small number of
binary variables remain to be fixed, i.e., when |B̄| ≤ r|B|,
where |.| denotes the cardinality of a set, and r ∈ (0, 1) is
a user-defined parameter [11]. In this way, the risk that the
sub-MILP problem is harder than the original MILP (3) can
be reduced.

Algorithm 1 RENS heuristic for online B&B

Input: PMILP, x, A
Output: x̂, κh

1: B̄ ← {k ∈ B | k /∈ A}
2: if |B̄| > r|B| then
3: return NULL, 0
4: else
5: Formulate PRENS(x) from the original PMILP (3)

subject to the additional constraints (4)
6: x̂, κh ← SOLVEMILP(PRENS(x))
7: return x̂, κh

B. Diving for MILP
Starting from an optimal (LP-feasible) solution x of

the current relaxation, e.g., in the root node, the diving
method iteratively fixes relaxed binary variables to promising
values and solves the obtained relaxations. The procedure
is terminated once infeasibility is detected or an integer-
feasible solution is found. Thereby, this method resembles
a depth-first node selection strategy of a promising root-leaf
path by “diving” in the B&B tree until a hopefully good
feasible solution is found. The general principle of a diving
heuristic is shown in Algorithm 2. Here, l denotes the loop
iteration and SOLVELP(η̄) is a procedure for solving LPs,
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e.g., the dual simplex method in [13]. This procedure returns
a possibly found LP-feasible solution x, the complexity
measure for solving the LP problem κ (e.g., the LP iteration),
and the corresponding active set A. To control the time and
effort the heuristic gets, some limits, e.g., on the accumulated
complexity measure κh

max and/or loop iterations lmax, have
been added to the algorithm. If the procedure succeeds in
finding an integer-feasible solution, x̂ ̸= NULL as well as κh

result from Algorithm 2.

Algorithm 2 DIVING heuristic for online B&B

Input: η = (B0,B1), x, A
Output: x̂, κh

1: κh ← 0, l← 0, x̂← NULL
2: while (κh < κh

max and l < lmax) do
3: l← l + 1
4: B̄ ← {k ∈ B | k /∈ A}
5: if B̄ = ∅ then x̂← x break
6: Select k : k ∈ B̄
7: η̄ ← (B0 ∪ {k},B1) or η̄ ← (B0,B1 ∪ {k})
8: x, κ,A ← SOLVELP(η̄)
9: κh ← κh + κ

10: if η̄ is infeasible then break
11: if x is integer feasible then x̂← x, break
12: return x̂, κh

C. Feasibility pump for MILP

The idea of the FP method is to construct two sequences
of points that hopefully converge to a feasible solution [14].
One sequence contains LP-feasible solutions that are not
necessarily integer-feasible, and the other contains mixed-
integer solutions that are not necessarily LP-feasible. Starting
from an optimal solution x of a relaxation, e.g., the root
node, these points are generated by iteratively rounding the
LP-solution x to a mixed-integer solution x̂ (rounding step),
and then finding an LP-feasible solution closest to x̂ in terms
of the Manhattan distance (pumping step), which is then used
as the new x in the next iteration. The distance of two vectors
is defined as follows.

Definition 2: The L1-distance of two vectors x, x̂ ∈ Rn

with respect to the set B is defined as,

∆(x, x̂) =
∑
k∈B

|xk − x̂k| (5)

For MILPs in the form of (3), where integer variables are
modeled using binaries, the nonlinear function (5) can be
reformulated as follows [11],

∆(x, x̂) =
∑

k∈B:x̂k=0

xk +
∑

k∈B:x̂k=1

1− xk (6)

To find the LP-feasible solution x closest to x̂, the follow-
ing problem is then solved at the pumping step of FP,

min
x

∆(x, x̂) (7a)

PFP(x̂) : s.t. Ax ⩽ b̄, (7b)
0 ⩽ xk ⩽ 1, ∀k ∈ B (7c)

A modified version of FP, the so-called objective feasibil-
ity pump (OFP), has been introduced in [15] to also take the
original objective function into account. In OFP, the objective
function of (7) is replaced with a convex combination of (6)
and the original objective function as follows,

∆α(x, x̂) = (1− α)∆(x, x̂) + α

√
|ĉ|
∥c∥

cTx (8)

where α ∈ [0, 1], c ∈ Rn\{0}, and ĉ is the objective function
vector of (6). At each iteration l, αl is decreased as αl =
ϕαl−1, where ϕ ∈ [0, 1) is a fixed factor and α0 ∈ [0, 1].
To find a solution x closest to x̂ in the OFP, Pα

FP(x̂) created
from (7), where (8) is substituted for (7a), is instead solved.

Note that, if α0 = 0, the original FP is achieved. Algo-
rithm 3 shows the OFP heuristic. The ROUND procedure here
simply rounds the relaxed binary variables x̂k, ∀k ∈ B̄, to
the closest binary values. The possibly found integer-feasible
solution x̂ ̸= NULL and the accumulated complexity measure
κh are outputted from this algorithm.

Algorithm 3 OBJECTIVEFEASIBILITYPUMP heuristic for
online B&B
Input: η = (B0,B1), x, A, ϕ, α0

Output: x̂, κh

1: κh ← 0, l← 0, x̂← NULL
2: while (κh < κh

max and l < lmax) do
3: l← l + 1
4: B̄ ← {k ∈ B | k /∈ A}
5: x̂← ROUND(x, B̄)
6: if x̂ is integer feasible then break
7: αl = ϕαl−1

8: x, κ,A ← SOLVELP(Pαl

OFP(x̂))
9: κh ← κh + κ

10: if x is integer feasible then x̂← x, break
11: return x̂, κh

12:
13: procedure ROUND(x, B̄)
14: x̂← x
15: while B̄ ̸= ∅ do
16: Select k : k ∈ B̄, B̄ ← B̄ \ {k}
17: if x̂k ≤ 0.5 then
18: x̂k = 0 ▷ round down
19: else
20: x̂k = 1 ▷ round up
21: return x̂

IV. COMPLEXITY CERTIFICATION OF
START-HEURISTIC-BASED B&B METHODS

In order to extend the certification framework presented
in [8] to include the heuristics, parametric versions of these
methods are required. This extension is the main contribution
of this work. This section introduces the start heuristics for
mp-MILPs, with the main idea of computing the complexity
measure κ(θ) as a function of θ.

Algorithms 4–6 extend the heuristic methods reviewed in
Section III for mp-MILPs, respectively. These algorithms
iteratively divide and explore the parameter space based on
the polyhedral partition from, e.g., certifying MILPs or LPs.

2294



As inputs, they take a problem formulation, an LP-feasible
solution x(θ) and the corresponding active set A, a single
polyhedral region Θ̄, and some extra information depending
on the heuristic method. Note that A associated to the
solution x(θ) is fixed inside Θ̄. They then output a partition
{Θj}j of Θ̄ in which each region Θj is associated with a
possibly-found explicit integer-feasible solution x̂j(θ) and
the accumulated complexity measure κhj . These algorithms
are discussed in more detail in Sections IV-A–IV-C, and are
integrated into B&B in Section IV-D.

A. RENS for mp-MILP
Algorithm 4 certifies the complexity of the RENS Al-

gorithm 1 for all parameters taken from a polyhedral re-
gion Θ̄. Similar to Algorithm 1, if |B̄| ≤ r|B|, then the
parametric sub-mpMILP PRENS(x(θ)) is formed and cer-
tified by the SOLVEMILPCERT procedure ∀θ ∈ Θ̄. The
SOLVEMILPCERT is the complexity certification framework
for MILPs, e.g., the one presented in [8], that takes an mp-
MILP problem and a polyhedral region Θ̄ and returns a
polyhedral partition {Θj}j along with the explicit (integer-
feasible) solution x̂j(θ) and the accumulated complexity
measure κhj . A list of tuples containing the terminated
regions. i.e., Fh = {(Θj , x̂j(θ), κhj )}j , is outputted by
Algorithm 4, where x̂j(θ) ̸= NULL if an integer-feasible
solution has been found in Θj .

Algorithm 4 RENS heuristic for parametric B&B

Input: PmpMILP, x(θ),A, Θ̄
Output: Fh = {(Θj , x̂j(θ), κhj )}j

1: B̄ ← {k ∈ B | k /∈ A}
2: if |B̄| > r|B| then
3: return Fh = {(Θ̄, NULL, 0)}
4: else
5: Formulate PRENS(x(θ)) from the original PmpMILP (1)

subject to the additional constraints (4)
6: {(Θj , x̂j , κhj )}Nj=1 ← SOLVEMILPCERT(PRENS(x(θ)),

Θ̄)

7: return Fh = {(Θj , x̂j , κhj )}j

B. Diving for mp-MILP
Algorithm 5 illustrates the complexity certification of the

diving heuristic method, where it applies Algorithms 2 for
all parameters. Two lists of tuples are used in this algorithm
to store information. One is the list Sh to hold regions in
the parameter space that the analysis has not yet terminated.
Each tuple in Sh consists of a polyhedral region Θ, an (LP-
feasible) explicit solution x(θ), the accumulated complexity
measure κh, the active set A, and the loop iteration l, for θ ∈
Θ. The other list is Fh holding regions in the parameter space
where the process has terminated. It contains tuples with the
information (Θ, x̂(θ), κh) for every terminated region.

At each iteration of Algorithm 5, a popped region Θ (at
Step 3) is terminated and added to Fh (at Step 21) if the
limits on the accumulated complexity measure κh

max and/or
loop lmax have been reached. Otherwise, the candidate list
B̄ of relaxed binary variables is updated (Step 6) and an
index k ∈ B̄ is selected and fixed to generate the next

node (Step 11) if B̄ ≠ ∅. The selection rule for k ∈ B̄
at Step 10 and the selection of the 0- or 1-branch at Step 11
are here chosen identically to Steps 6 and 7 of the online
Algorithm 2, respectively. The SOLVELPCERT then solves
and certifies the relaxation in this node over Θ at Step 12.
Note that SOLVELPCERT can be chosen as any complexity
certification framework for LPs, e.g., [16], where it takes
an mp-LP problem and a polyhedral region Θ and returns a
polyhedral partition {Θj}j of Θ each with the corresponding
explicit (LP-feasible) solution xj(θ), the complexity measure
κj , and the active set Aj .

Algorithm 5 DIVING heuristic for parametric B&B

Input: η(θ) = (B0,B1, θ), x(θ),A, Θ̄
Output: Fh = {(Θj , x̂j(θ), κhj )}j

1: Push {(Θ̄, x(θ), 0,A, 0)} to Sh
2: while Sh ̸= ∅ do
3: Pop (Θ, x(θ), κh,A, l) from Sh
4: if (κh < κh

max and l < lmax) then
5: l← l + 1
6: B̄ ← {k ∈ B | k /∈ A}
7: if B̄ = ∅ then
8: Push (Θ, x(θ), κh) to Fh

9: else
10: Select k : k ∈ B̄
11: η̄(θ)← (B0 ∪ {k},B1, θ) or η̄(θ)← (B0,B1 ∪ {k}, θ)
12: {(Θj , xj , κj ,Aj)}Nd

j=1 ← SOLVELPCERT(η̄(θ),Θ)

13: for j ∈ {1, . . . , Nd} do
14: if η̄(θ) is infeasible ∀θ ∈ Θj then
15: Push (Θj , NULL, κh + κj) to Fh

16: else if xj(θ) is integer feasible ∀θ ∈ Θj then
17: Push (Θj , xj(θ), κh + κj) to Fh

18: else
19: Push (Θj , xj(θ), κh + κj ,Aj , l) to Sh
20: else
21: Push (Θ, NULL, κh) to Fh

22: return Fh

After processing this node, for each j over a for-loop
at Step 13, the new tuple (Θj , xj(θ), κh + κj) is added
to Fh if either infeasibility is detected (Step 15), or the
solution turned out to be integer feasible (Step 17) in Θj .
Otherwise, the new tuple (containing the extra information)
is appended to Sh at Step 19 to be processed further in the
loop, completing an iteration of Algorithm 5.

C. Feasibility pump for mp-MILP

Algorithm 6 presents the proposed complexity certification
algorithm for the OFP heuristic shown in Algorithm 3 for all
parameters taken from a polyhedral region Θ̄. Two lists of
tuples Sh and Fh are again used to hold currently processed
and terminated regions, respectively, in this algorithm, where
each tuple in Sh also holds the parameter αl (see (8)).

At each iteration of Algorithm 6, a popped region Θ (at
Step 3) is terminated and added to Fh (at Step 20) if the
limits on κh

max and/or lmax have been reached. Otherwise,
the candidate list B̄ is updated (Step 6) and the parametric
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LP-feasible solution x(θ) is rounded by the ROUNDPARAM
function (Step 7).

Algorithm 6 OBJECTIVEFEASIBILITYPUMP heuristic for
parametric B&B

Input: η(θ) = (B0,B1, θ), x(θ),A, ϕ, α0, Θ̄
Output: Fh = {(Θj , x̂j(θ), κhj )}j

1: Push {(Θ̄, x(θ), 0,A, 0, α0)} to Sh
2: while Sh ̸= ∅ do
3: Pop (Θ, x(θ), κh,A, l, αl) from Sh
4: if (κh < κh

max and l < lmax) then
5: l← l + 1
6: B̄ ← {k ∈ B | k /∈ A}
7: {Θi, x̂i(θ)}Nr

i=1 ← ROUNDPARAM(x(θ), B̄,Θ)
8: for i ∈ 1, . . . , Nr do
9: if x̂i(θ) is integer feasible ∀θ ∈ Θi then

10: Push (Θi, x̂i(θ), κh) to Fh

11: else
12: αl = ϕαl−1

13: {(Θj , xj(θ), κj ,Aj)}Np

j=1 ← SOLVELPCERT(Pαl
FP

(x̂i(θ)),Θi)
14: for j ∈ {1, . . . , Np} do
15: if xj(θ) is integer feasible ∀θ ∈ Θj then
16: Push (Θj , xj(θ), κh + κj) to Fh

17: else
18: Push (Θj , xj(θ), κh + κj ,Aj , l, αl) to Sh
19: else
20: Push (Θ, NULL, κh) to Fh

21: return Fh

22:
23: procedure ROUNDPARAM(x(θ), B̄, Θ̃)
24: Push {(Θ̃, x(θ), B̄)} to Sr
25: while Sr ̸= ∅ do
26: Pop (Θ, x̂(θ), B̄) from Sr ▷ x̂(θ) = F̂ θ + Ĝ
27: if B̄ ̸= ∅ then
28: Select k : k ∈ B̄, B̄ ← B̄ \ {k}
29: Θ0 ← {θ ∈ Θ|F̂kθ + Ĝk ≤ 0.5}, ▷ x̂k be round down

Θ1 ← {θ ∈ Θ|F̂kθ + Ĝk > 0.5} ▷ x̂k be round up
30: if Θ1 = ∅ then ▷ no further partitioning
31: x̂k ← 0, push (Θ, x̂(θ), B̄) to Sr
32: else if Θ0 = ∅ then ▷ no further partitioning
33: x̂k ← 1, push (Θ, x̂(θ), B̄) to Sr
34: else ▷ partition Θ to Θ0 and Θ1

35: x̂k ← 0, push (Θ0, x̂(θ), B̄) to Sr
36: x̂k ← 1, push (Θ1, x̂(θ), B̄) to Sr
37: else
38: Push (Θ, x̂(θ)) to Fr

39: return Fr

In the ROUNDPARAM function, again, two list of tuples Sr
and Fr are used to hold currently processed and terminated
regions, respectively. Over a while loop at Step 25, for a
popped region Θ, as long as B̄ ̸= 0, an index k of a relaxed
binary variable is selected to be rounded and consequently
removed from B̄ (Step 28). Note that the selection of k has
to be done identically to the online Algorithm 3 at Step 16.
Now, based on the variable x̂k(θ) = F̂kθ+Ĝk that should be

rounded down or up, Θ is potentially split into two regions
Θ0 and Θ1, respectively, at Step 29, where x̂k(θ) is fixed to
0, ∀θ ∈ Θ0 (Step 31 or 35), and 1, ∀θ ∈ Θ1 (Step 33 or 36).
A partition {Θi}Nr

i=1 containing the rounded solutions x̂i(θ)
is outputted from this procedure.

Returning to the main loop (Step 7), for each i ∈ N1:Nr
,

if the rounded solution x̂i(θ) is also integer feasible ∀θ ∈
Θi, this region is labeled as terminated and added to Fh at
Step 10. Otherwise, the pumping step is performed in Θi by
solving and certifying the following mp-LP problem by the
SOLVELPCERT procedure,

min
x

∆α(x(θ), x̂i(θ)) (9a)

Pα
OFP(x̂

i(θ)) : s.t. Ax ⩽ b+Wθ, (9b)
0 ⩽ xk ⩽ 1, ∀k ∈ B (9c)

where ∆α(x(θ), x̂i(θ)) given in (8) is an affine function of
θ in Θi. This potentially further partitions Θi to polyhedral
regions {Θj}j at Step 13. Finally, for all j ∈ N1:Np

, if a
resulting LP-feasible solution xj(θ) is also integer feasible,
the OFP procedure terminates for Θj and adds it to Fh

at Step 16. Otherwise, the new tuple is appended to Sh at
Step 18 to be processed further, concluding an iteration of
Algorithm 6.

D. Integration of the start heuristics into the B&B certifica-
tion framework

We are now ready to integrate the parametric versions of
the start heuristics into the complexity certification frame-
work of B&B-based MILP solvers presented in [8]. In the
following, we first show how the online Algorithms 1–
3 are incorporated into the online B&B algorithm, and
then integrate Algorithms 4–6 into the B&B certification
framework.

Consider the online B&B Algorithm 1 in [8], and let
STARTHEURIS denote any of the online start heuristics
reviewed in Section III. Then, after processing a relaxation
η (in the root node in this case) and obtaining a lower bound
solution x with the corresponding active set A at Step 6 by
the LP solver, Step 8 of Algorithm 1 in [8] (Step 8∗ below)
that calls the EVALCUTCOND procedure (to evaluate the cut
conditions) is replaced with the following extra steps,

if root node then ▷ call heuristic
x̂, κh ← STARTHEURIS (η, x,A)
κ∗

tot ← κ∗
tot + κh

if x̂ ̸= NULL then
x̄← x̂, J̄ ← cT x̄
T , x̄, J̄ ← EVALCUTCOND(η, x, J, λ,A, x̄, J̄ , T ) ▷ Step 8∗

where if a node is the root node, a start heuristic is called
and the best-known integer-feasible solution x̄ and the upper
bound J̄ are updated if an integer-feasible solution x̂ ̸=
NULL has been found by the heuristic. Also, κh is added
to the accumulated complexity measure of B&B (κ∗

tot) to
achieve the overall B&B complexity measure. The last step
is Step 8 of the online B&B algorithm that is executed
regardless of whether a node is the root node or not.

Now consider the B&B certification Algorithm 4 in [8].
Let STARTHEURISCERT denote any of the parametric start
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heuristics introduced in Sections IV-A–IV-C. After process-
ing a relaxation η(θ) (the root node in this case) at a region
Θ, a partition {Θj}Nj=1 is obtained by the mp-LP certification
procedure at Step 11, where each Θj is associated with the
lower bound solution xj(θ) and the active set Aj . Then for
each individual region Θj (associated with the accumulated
complexity measure κj

tot), Step 14 of Algorithm 4 in [8]
(Step 14∗ below) that calls the EVALCUTCONDCERT pro-
cedure (to parametrically evaluate the cut conditions in Θj)
is replaced with the following extra steps

if root node then ▷ call heuristic
{(Θi, x̂i, κhi)}Nh

i=1 ← STARTHEURISCERT(η(θ), xj(θ),
Aj ,Θj)
for i = {1, . . . , Nh} do
κi

tot ← κj
tot + κhi

J̄ i(θ)← J̄(θ)
if x̂i(θ) ̸= NULL then
x̄i(θ)← x̂i(θ), J̄ i(θ)← cT x̄i(θ)

S ← EVALCUTCONDCERT(η, Jj , λj ,Aj , J̄ i, T , κi
tot,

Θi,S)
else
S ← EVALCUTCONDCERT(η, Jj , λj ,Aj , J̄ , T , κj

tot,Θ
j ,S)

▷ Step 14∗

where if a node is the root node, then Θj is potentially further
partitioned to {Θi}i by the start heuristic. For each i ∈ N1:Nh

then, the accumulated complexity measure for B&B κi
tot,

∀θ ∈ Θi, is updated. Next, the best-known integer-feasible
solution x̄i(θ) and the upper bound J̄ i(θ) are updated if an
integer-feasible solution has been found in Θi. Finally, the
EVALCUTCONDCERT is applied for Θi with the possibly
new upper bound J̄ i(θ). Otherwise, if the node is not the root
node, then the heuristic is omitted and the last step which is
Step 14 of Algorithm 4 in [8] will be executed ∀θ ∈ Θj .

Remark 1: A general piecewise affine function τ(θ) :
Θ0 → R for triggering a start heuristic can be applied in the
online and certification algorithms to possibly also trigger
a start heuristic at other stages of the B&B process, e.g.,
after reaching to some specific levels in the B&B tree. Note
that, however, if a heuristic is called after an integer-feasible
solution has been found (i.e., not at the root node) where
J̄ ̸= ∞, then x̄(θ) and J̄(θ) should only be updated for
these parts of the parameter set where x̂(θ) provides a better
solution, cf. the dominance cut condition.

V. PROPERTIES OF THE CERTIFICATION ALGORITHMS

We now study the properties of the proposed complexity
certification algorithms. Specifically, we show that the result
of the certification Algorithms 4–6 are exact.

A. Properties of the RENS certification algorithm

This subsection shows that the parametric RENS method
in Algorithm 4 coincides point-wise with the online Algo-
rithm 1. In the following, the properties of the certification
algorithm for RENS are investigated.

Lemma 1: The complexity measure κh(θ) : Θ̄ → N
returned by Algorithm 4 is polyhedral piecewise constant
(PPWC), that is, κhj (θ) = κhj , ∀θ ∈ Θj ⊆ Θ̄, ∀j.

Proof: The one and only step that partitions an inputted
region Θ̄ in Algorithm 4 is performed at Step 6. As the certi-
fication algorithm presented in [8] is here used to certify the
computational complexity of the sub-mpMILP PRENS(x(θ)),
the desired result follows from Lemma 4 in [8] with replacing
Θ0 with Θ̄ here.

Theorem 1: Let κh∗(θ) be the accumulated complexity
measure returned by Algorithm 1 for a given θ ∈ Θ̄.
Moreover, let {Θj , x̂j , κhj}j be the collection of tuples in Fh

returned by the Algorithm 4. Then κhj = κh∗(θ), ∀θ ∈ Θj ,
∀j.

Proof: Consider Algorithms 1 and 4 for an arbitrary
fixed θ ∈ Θ̄. The one-to-one correspondence of Steps 1–5 of
these algorithms follows from visual comparison. At Step 6,
the sub-MILP is solved online for the fixed θ ∈ Θ̄ in Algo-
rithm 1, whereas it is certified ∀θ ∈ Θ̄ in Algorithm 4. As the
online B&B Algorithm 1 and the certification Algorithm 4 in
[8] are here used as the SOLVEMILP and SOLVEMILPCERT
procedures in Algorithms 1 and 4, respectively, the desired
result follows from Corollary 1 in [8].

B. Properties of the diving certification algorithm
This subsection shows that the parametric diving method

in Algorithm 5 coincides point-wise with the online Algo-
rithm 2. Since diving explores a possible root-leaf path of the
B&B search tree with the depth-first node selection strategy,
the online Algorithm 2 and the complexity certification
Algorithm 5 can be seen as (simplified) special cases of the
online B&B Algorithm 1 and the certification Algorithm 4 in
[8], respectively. More precisely, the set of nodes T in the
diving Algorithms 2 and 5 always includes just one node
and, additionally, testing the dominance cut condition (i.e.,
Steps 12–13 of Algorithm 1, and Steps 18–22 of Algorithm 4
in [8]) are excluded. Consequently, the results in [8] can be
immediately applied here, which are summarized in what
follows while replacing Θ0 with Θ̄.

Lemma 2: Assume Assumption 1 in [8] holds. The com-
plexity measure κh(θ) : Θ̄→ N returned by Algorithm 5 is
PPWC, that is κhj (θ) = κhj , ∀θ ∈ Θj ⊆ Θ̄, ∀j.

Proof: See [8], Lemma 4.
Theorem 2: Assume Assumption 1 in [8] holds. Let

κh∗(θ) be the accumulated complexity measure returned by
Algorithm 2 for a given θ ∈ Θ̄. Moreover, let {Θj , x̂j , κhj}j
be the collection of tuples in Fh returned by Algorithm 5.
Then κhj = κh∗(θ), ∀θ ∈ Θj , ∀j.

Proof: The proof follows from an analogous reasoning
as in the proof of Corollary 1 in [8].

C. Properties of the feasibility pump certification algorithm
This subsection shows that the parametric OFP in Algo-

rithm 6 coincides point-wise with the online Algorithm 3.
There are two sources of partitioning a region at each itera-
tion of Algorithm 6; the ROUNDPARAM and SOLVELPCERT
procedures. In the following, we consider the first one that
is called at Step 7 over a single polyhedral region Θ̃.

Lemma 3: The ROUNDPARAM procedure in Algorithm 6
has the following properties,

(i) Polyhedral region Θ̃ in ⇒ polyhedral partition {Θi}i
out, where in and out denote the input and output of
the procedure.
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(ii) After an execution of the ROUNDPARAM procedure
in Algorithm 6, a returned x̂(θ) coincides with the
corresponding output x̂ from the ROUND procedure in
Algorithm 3 for any fixed θ ∈ Θ̃.
Proof: In each iteration of the while-loop in ROUND-

PARAM, a popped region Θ at Step 26 is potentially parti-
tioned by the hyperplane x̂k(θ) = F̂kθ+ Ĝk into Θ0 and Θ1

at Step 29. As the inputted region Θ̃ is polyhedral and is split
by a hyperplane, the resulting non-empty regions Θ0 and
Θ1, stored in Sr, are polyhedral. As the stored non-empty
regions in Sr are all polyhedral, and there is no overlap or
holes between them, they form a polyhedral partition of Θ̃
in Sr, consequently in Fr, confirming item (i).

Now consider an iteration of ROUNDPARAM for an arbi-
trary fixed θ ∈ Θ̃. For the fixed θ in Algorithm 6, as long
as there exists a relaxed binary variable in x̂(θ), its index
k ∈ B̄ is selected and removed from B̄ (Step 28), identically
to Step 16 in Algorithm 3. Now, depending on the value
of x̂k(θ) = F̂kθ + Ĝk, if x̂k(θ) ≤ 0.5, it is rounded down
(at Step 31, ∀θ ∈ Θ, or at Step 35, ∀θ ∈ Θ0), identically
to Step 18 in Algorithm 3. Otherwise, if x̂k(θ) > 0.5, it is
rounded up (at Step 33, ∀θ ∈ Θ, or at Step 36, ∀θ ∈ Θ1),
identically to Step 20 in Algorithm 3. The modified x̂(θ) is
stored in Sr and popped again at Step 26 and the procedure
is repeated. When all binary variables are fixed to either
0 or 1, x̂k(θ) is pushed to the final list Fr at Step 38.
This extra step does clearly not change x̂(θ), but stores
and returns it at Step 39, while it is returned immediately
at Step 21 in Algorithm 3. That is, an identical rounded
solution is outputted by both algorithms for θ. As θ was
chosen arbitrarily, it holds ∀θ ∈ Θ̃, confirming item (ii).

In the following, we confirm that the result of the certifi-
cation Algorithm 6 for the OFP method is exact.

Lemma 4: Assume Assumption 1 in [8] holds. The com-
plexity measure κh(θ) : Θ̄→ N returned by Algorithm 6 is
PPWC, that is κhj (θ) = κhj , ∀θ ∈ Θj ⊆ Θ̄, ∀j.

Proof: From Assumption 1 in [8], κj returned by
the SOLVELPCERT procedure is constant in Θj , so is the
accumulated complexity measure κh + κj , ∀θ ∈ Θj , at any
iteration of Algorithm 6. This in turn means that κh(θ) is
a PWC function of θ over all regions at all iterations in
Algorithm 6, and since all regions are polyhedral, κh(θ)
returned by the algorithm is PPWC.

Theorem 3: Assume Assumption 1 in [8] holds. Let
κh∗(θ) be the accumulated complexity measure returned by
Algorithm 3 for a given θ ∈ Θ̄. Moreover, let {Θj , x̂j , κhj}j
be the collection of tuples in Fh returned by Algorithm 6.
Then κhj = κh∗(θ), ∀θ ∈ Θj , ∀j.

Proof: From Assumption 1 in [8], the SOLVELPCERT
function correctly certifies the LP relaxations. That is, at
an arbitrary iteration in Algorithm 6, the resulting κj(θ) at
Step 13 is identical to the returned κ at Step 8 in Algorithm 3
for a fixed θ in that region. The accumulated complexity
measure κh(θ) is then updated for each Θj at Step 16
and 18, identically to Step 9 in Algorithm 3. This, in turn,
implies that the accumulated complexity measure returned
by Algorithm 6 is identical to κh∗(θ) from Algorithm 3 for
any θ ∈ Θ̄.

D. Properties of the start-heuristic-based B&B certification
framework

This subsection shows that the B&B certification frame-
work integrating the parametric start heuristics coincides
point-wise with the online B&B algorithm integrating the
online start heuristics. In the following, the properties of
the B&B certification algorithm including heuristics are
investigated.

Lemma 5: Assume Assumption 1 in [8] holds. Let
STARTHEURISCERT denote any of the certification proce-
dures in Algorithms 4–6 integrated into Algorithm 4 in [8].
Then, the complexity measure κtot(θ) : Θ0 → N returned
by the B&B certification Algorithm 4 in F is PPWC, that is
κi
tot(θ) = κi

tot, ∀θ ∈ Θi ⊆ Θ0, ∀i.
Proof: First, consider an iteration of the B&B certifi-

cation framework where a heuristic is called. From Assump-
tion 1 and Lemma 4 in [8], κj

tot is constant for a resulting
polyhedral region Θj at Step 13 of Algorithm 4 in [8].
Moreover, from Lemmas 1, 2, and 4, κhi returned by the
three start heuristics in the final list Fh is constant ∀θ ∈ Θi.
Now consider the extra steps of integrating a heuristic into
the B&B certification algorithm shown in Section IV-D. For
any i ∈ N1:Nh

, the overall accumulated complexity measure
κi

tot computed by κj
tot+κhi is again constant in the polyhedral

region Θi. This implies that κtot(θ) is PPWC at any iteration
of Algorithm 4 in [8] that a heuristic is called. If, on the
other hand, a heuristic is not called, the result follows from
Lemma 4 in [8]. Therefore, at any iteration of Algorithm 4
in [8] integrated heuristics, κtot(θ) is PPWC.

Corollary 1: Assume Assumption 1 in [8] holds. Let
κ∗
tot(θ) be the accumulated complexity measure returned by

Algorithm 1 in [8] integrating the STARTHEURIS procedure
for a given θ ∈ Θ0. Moreover, let {Θi, κi

tot}i be the
collection of tuples in F returned by Algorithm 4 in [8]
integrating the STARTHEURISCERT procedure. Then κi

tot =
κ∗
tot(θ), ∀θ ∈ Θi.

Proof: Consider the extra steps of integrating the start
heuristics into the B&B online and certification algorithms
shown in Section IV-D for an arbitrary fixed θ ∈ Θi.
If a heuristic is called for θ, the accumulated complexity
measures κ∗

tot(θ) and κi
tot are updated identically in both

algorithms, respectively, (see Section IV-D). As θ is chosen
arbitrary, it holds ∀θ ∈ Θi, and ∀i. The rest of the proof
follows from Corollary 1 in [8] and Theorems 1–3 for the
three start heuristics.

VI. NUMERICAL EXPERIMENTS

To illustrate the use of the proposed methods, the B&B
certification Algorithm 4 in [8] integrating Algorithms 4–
6 was tested on 25 randomly generated mp-MILPs. The
elements of the coefficients of (1) with n = 8, nb = 4,
nθ = 3, and m = 14, were generated according to,

ci ∼ N (0, 1), Aij ∼ N (0, 1), bi ∼ U([0, 2]), Wij ∼ N (0, 1)

where the considered parameter set is Θ0 = {θ ∈ R3| − 1 ≤
θ ≤ 1}. The complexity measures in the experiments are
considered as the number of LP iterations and the size of the
B&B tree. Moreover, the SOLVELPCERT procedure for the
dual simplex algorithm falls into the category of complexity
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certification algorithms covered by the framework in [16],
and in particular Section VI-B therein. Furthermore, the
next variable to branch on in diving has been selected as
the lowest index in the set in the online and certification
algorithms. Moreover, r = 0.5, α0 = 1, and ϕ = 0.9
are chosen for the RENS and OFP methods, respectively.
The numerical experiments were implemented in Julia and
executed on an Intel® Core 1.8 GHz i7-8565U CPU.

The obtained accumulated complexity measures from Al-
gorithm 4 in [8] integrated with the start heuristics in Sec-
tion IV individually, for all 25 mp-MILPs, were compared
with results from Monte-Carlo (MC) simulations. That is,
the online B&B Algorithm 1 in [8], integrated with each
one of the online start heuristics in Section III, was applied
to MILP instances defined by 1000 parameter samples taken
on a deterministic grid in Θ0. The Chebychev centers of the
resulting regions in the final partition were also considered as
extra parameter samples. The results from all 75 experiments
(25 mp-MILPs, each with the 3 start heuristics) are that the
resulting complexity measures from the certification and the
online algorithms when applying the three start heuristics
coincide for all samples in all problems, with no discrepancy,
confirming the validity of the proposed certification method.

As a demonstration of the usefulness of the proposed
start-heuristic-based certification algorithm, the performance
effect of individual heuristics when certifying the complexity
of generated mp-MILPs is studied and reported in Table I
for the 100 experiments. The values in Table I show,

• Iwc
gm and Iavg

gm : the geometric mean of the worst-case and
average number of LP iterations, respectively

• Nwc
gm and N avg

gm : the geometric mean of the worst-case
and average number of B&B nodes, respectively

• tcert
gm : the geometric mean of the execution time of the

certification algorithm in seconds
of 25 experiments with 4 different settings compared to the
default setting (with no heuristic), thereby value 1 in the first
row of Table I. From this table, all heuristics have decreased
the worst-case and the average complexity measures. OFP
might take longer to be certified offline, possibly due to
further partitioning of the space.

TABLE I: The geometric mean of the worst-case and average
complexity measures and the certification time for 25 random
mp-MILPs for the three heuristics w.r.t. the default setting.

Heuristic Iwc
gm I

avg
gm Nwc

gm N
avg
gm tcert

gm [s]
None 1 1 1 1 1
RENS 0.948 0.931 0.83 0.8 1
Diving 0.954 0.961 0.872 0.863 0.66
OFP 0.987 0.963 0.975 0.92 1.59

As a result, the proposed method provides a tool to analyze
the performance gain from a start heuristic. Moreover, as
each heuristic method has some user-defined parameters,
the method in this work could help in identifying high-
performing values of those.

VII. CONCLUSION

In this paper, complexity certification of three commonly
used start heuristics integrated in B&B has been considered.
Such knowledge is essential to have for real-time applications

such as hybrid MPC, where hard real-time requirements
have to be fulfilled. The main contribution of this work
is certification algorithms that can a priori offline compute
the exact worst-case computational complexity, e.g., the total
number of LP iterations or nodes, performed by a standard
B&B-based MILP solver also when these heuristics are
incorporated. Furthermore, the theoretical overall computa-
tional complexity is characterized and shown to be PPWC.
The algorithms have been successfully verified in numerical
examples. Moreover, as an application, it is illustrated that
the result from this work can be used to determine whether
a heuristic method helps in speeding up the B&B process,
and exactly to what extent. In future work, the complexity
certification of improvement heuristics will also be consid-
ered. Moreover, techniques to use this framework to optimize
the online performance will be investigated, and it will be
considered how to bound the computation time.
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