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Abstract— Social learning strategies have been recently de-
veloped for multi-agents to learn progressively an underlying
state of nature by information communications and evolutions.
Existing works define algorithms mainly by swapping the
Bayesian update and belief aggregation steps and/or discovering
diverse underlying network structures. Inspired by the diversity
of agents when they are exposed to new information, this work
designs a non-Bayesian learning strategy, named as Parametric
Social Learning, by introducing an agent stubbornness param-
eter to trade-off the significance between its internal belief and
external information. This strategy thus allows for tuning the
convergence rate by adjusting the introduced parameter, which
is consistent highly with the sociological intuition. Theoretical
analyses and numerical examples are provided to illustrate
several sociological insights. Our work therefore has appealing
potential in practical tasks such as dispersed information
aggregation and distributed parameter estimation.

I. INTRODUCTION

Collective consensus is generally reached through local
exchange of information. This topic attracts extensive studies
on distributed learning over the last few decades. Typical sce-
narios include the dispersed information aggregation problem
in multi-agent systems and distributed parameter estimation
task in data communication networks. In social networks,
modeling and regulating the opinion formation are essential
topics [1]–[3], motivating the development of social learning
strategies for agents to learn progressively an underlying state
of nature by information communications and evolutions.

Banerjee [4] and Bikhchandani et al. [5] seminally formu-
late the social learning paradigm in a fully Bayesian manner,
and Smith and Sørensen [6] further provide a comprehen-
sive analysis of this environment, introducing the important
concepts of bounded and unbounded beliefs. Because of the
requirement for a priori information and the computational
burden, Bayesian learning is prohibitive even in simple
networks [7]. Non-Bayesian algorithms [8]–[11], consisting
of a belief aggregation step and a Bayesian update step,
are then introduced into social learning and prosperously
developed following the celebrated work of Jadbabaie et
al. in [12]–[14]. In [15], a distributed parameter estimation
model is presented using logarithmic aggregation, with its
convergence and asymptotic normality being proved. Kar
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et al. [16] design a set of distributed parameter estimation
algorithms by combining a consensus step and an innovation
step in the update rule and apply them in sensor networks.
Shahrampour et al. [17] and Nedić et al. [18] consider and
prove the convergence of similar learning rules, under the
assumption of bounded ratios of likelihood functions, while
the latter further analyze the learning rule for time-varying
graphs [19]. Convergence result of non-Bayesian learning
algorithm for fixed graphs is provided in [20] and large
deviation convergence rates are given, proving the existence
of a random time after which the beliefs will concentrate
exponentially fast. Authors in [21] consider the learning
rules on weakly-connected graphs, and social learning with
time-varying weights is studied in [22]. Recently, Bordignon
et al. [23] propose a novel learning strategy, called adap-
tive social learning, addressing the poor performance under
nonstationary conditions. A comprehensive review can be
referred to [24].

However, existing works extend the field of social learn-
ing mainly through swapping the update and aggregation
steps and/or discovering diverse underlying network struc-
tures [25], neglecting the diversity of agents. In practical
terms, the stubbornness or openness varies from individual
to individual, hence agents will assign weights to trade-off
the significance between their internal beliefs and external
information. This inspires us to design a new learning strat-
egy, named as Parametric Social Learning (PSL), allowing
for tuning the convergence rate by adjusting the introduced
parameter describing the stubbornness of the agents. The
Bayesian update step of the proposed strategy arises naturally
from an optimization problem balancing the internal belief
and external information. We demonstrate the importance of
being able to tune the convergence rate through presenting
the fact that too quick convergence will even result in false
learning. Our analysis reveals the sociological phenomenon
that open-mind contributes to faster reach of consensus.
Numerical examples also provide interesting insights that in
a group open agent with higher social influence and/or being
more informative accelerates the learning time.

The remaining part of this paper is organized as follows:
Section II provides a full description of the problem settings,
reviewing necessary algorithms and proposing our PSL s-
trategies. Section III presents sufficient assumptions/lemmas
and proves the convergence of the proposed algorithms. Sec-
tion IV provides extensive numerical examples illustrating
the theoretical results and revealing sociological insights.
The findings are concluded in Section V with possible future
works directed.
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II. PRELIMINARIES AND MODELS

A. Problem formulation

Consider a group of n agents, trying to reveal the underly-
ing true state of nature θ∗ from a finite set of hypotheses Θ =
{θ1, θ2, · · · , θm}. At each discrete time step t = 1, 2, · · · ,
each agent i obtains an observation si,t of an environ-
mental random process, where st = (s1,t, s2,t, · · · , sn,t)>
is generated according to likelihood function `(·|θ∗). The
corresponding random variable of agent i’s observation at
time t is denoted as Si,t and St = (S1,t, · · · ,Sn,t)>. Here
each Si,t has its individual observation space Si and is i.i.d.
with respect to t.

The signal structure of agent i for state θ is described by
a probability distribution `i(·|θ). In these settings `i(si,t|θ)
characterizes the probability that signal si,t can be observed
by agent i at time t when he/she believes θ is the true
state. It is required that `i(·|θ∗) coincides with the i-th
marginal distribution of `(·|θ∗), which thus also describes
the probability distribution of Si,t.

The agents interact in a networked fashion [26]–
[28], which is usually modelled by a directed
graph G = (V, E). V = {1, 2, · · · , n} is the
set of vertices representing the n agents, and
E = {(i, j)|agent j can receive information from agent i}
is the set of directed edges. We denote A = (aij)n×n as the
weight matrix of G, which is assumed to be row-stochastic,

i.e.,
n∑
j=1

aij = 1,∀i = 1, · · · , n, and aij > 0 if (j, i) ∈ E .

The belief of agent i at time t is denoted as µi,t, which
is a probability distribution over the set of states Θ, i.e.,
m∑
k=1

µi,t(θk) = 1,∀i = 1, · · · , n,∀t = 0, 1, · · · . Here µi,0

represents the initial belief of agent i.

B. Parametric Social Learning

Traditional social learning usually consists of two steps at
each time for agents to update their beliefs, i.e., the Bayesian
update step and the step of aggregating neighbors’ beliefs.
Taking different orders of these two steps leads to the two
basic social learning strategies, called LoAB (Logarithmic
Aggregation and Bayesian update) and BLoA (Bayesian
update and Logarithmic Aggregation) respectively [24].

In the Bayesian update step, at time t + 1, every agent i
combines its prior belief µi,t with observation si,t+1 from
environment to form its posterior belief µ̃i,t+1. This process
is usually described as solving an optimization problem:

µ̃i,t+1 = arg min
f∈P(Θ)

{DKL(f ‖ µi,t)−
∑
θ∈Θ

f(θ) log(`i(si,t+1|θ))},

(1)
where DKL(· ‖ ·) is the Kullback-Leibler divergence (KL-
divergence) between two probability distributions. Specif-
ically, DKL(f ‖ µi,t) =

∑
θ∈Θ

f(θ) log f(θ)
µi,t(θ)

, which can

be interpreted as the difference between the prior belief
and the posterior belief. The second term on r.h.s. of (1)
describes the maximum likelihood estimation given the latest
observation si,t+1. In real-world scenarios, different agents

may assign different weights to balance the two terms.
For example, some people are stubborn or unwilling to
accept new information, while in contrast some others are
sensitive to external information and easily make changes.
Considering the cases, we improve the update rule (1) by
introducing an individual parameter δi ∈ (0, 1) for agent i
to trade-off the two terms:

µ̃i,t+1 = arg min
f∈P(Θ)

{δiDKL(f ‖ µi,t)

− (1− δi)
∑
θ∈Θ

f(θ) log(`i(si,t+1|θ))}.

(2)
Notice that large values of δi corresponds to stubborn agent i,
whereas small values of δi means agent i is sensitive to new
information. Specifically, when δi = 1/2, equal weight is
assigned to both terms, and the case degenerates to traditional
social learning (1). We thus name the parameter δi as the
stubbornness of agent i. By directly solving the optimization
problem (2), we obtain the update formula for the posterior
belief as follows:

µ̃i,t+1(θ) =
µi,t(θ)`

γi
i (si,t+1|θ)∑

θ′∈Θ

µi,t(θ′)`
γi
i (si,t+1|θ′)

,

where γi = 1/δi − 1. Further combining the improved
Bayesian update step and the aggregation step in different
orders, we obtain two new learning algorithms, i.e.,

a) PSL-LoAB (Parametric Social Learning-Logarithmic
Aggregation and Bayesian update):

µi,t+1(θ) =

n∏
j=1

µ
aij
j,t (θ)`γii (si,t+1|θ)∑

θ′∈Θ

n∏
j=1

µ
aij
j,t (θ′)`γii (si,t+1|θ′)

; (3)

b) PSL-BLoA (Parametric Social Learning-Bayesian up-
date and Logarithmic Aggregation):

µi,t+1(θ) =

n∏
j=1

µ
aij
j,t (θ)`

γjaij
j (sj,t+1|θ)∑

θ′∈Θ

n∏
j=1

µ
aij
j,t (θ′)`

γjaij
j (sj,t+1|θ′)

. (4)

We should emphasize that the PSL strategies differ from
[23] in which a parameter called step-size is introduced to
improve the model’s adaptive performance. Moreover, our
PSL strategies are more sociologically explicable as their
Bayesian update step is derived by directly solving (2),
instead of modifying the update rules implicitly.

III. ASSUMPTIONS AND RESULTS

As widely discussed in previous works of social learning,
we care about the convergence of the algorithms as well
as the rate of convergence. The following assumptions are
required to ensure the convergence of our PSL strategies:

Assumption 1 (Communication network): The graph G =
(V, E) and its weight matrix A satisfy that:

a) The graph is strongly-connected;
b) A has positive diagonal entries.
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Here Assumption 1b) describes the fact that all agents
can at least receive information from themselves. Moreover,
Assumption 1 guarantees that A is the transition matrix of
an irreducible, aperiodic Markov chain of finite states. We
recall the following lemma [29]:

Lemma 1: If a Markov chain of finite states is irreducible,
then it has a unique stationary distribution π. Let A be the
transition matrix of the Markov chain and further suppose it
is aperiodic, then we have lim

k→∞
[Ak]ij = πj , for 1 6 i, j 6 n.

The stationary distribution π can be interpreted as the
normalized left eigenvector of A with respect to eigenvalue
1, which is known as the eigenvector centrality in related
literatures. Perron-Frobenius theorem ensures that all com-
ponents of π are strictly positive.

Assumption 2 (Belief and signal structure): For all
agents i = 1, 2, · · · , n,

a) they have positive initial beliefs on all states, i.e.,
µi,0(θ) > 0 for all θ ∈ Θ;

b) they have positive signal structures, i.e., `i(si|θ) > 0
for all si ∈ Si and θ ∈ Θ.

Notice that if the initial belief of agent i on state θ is zero,
following our learning algorithms, its belief remains zero all
the time. In this circumstance θ is meaningless for agent i,
and we thus eliminate the situation by imposing Assumption
2a). For the signal structures and Assumption 2b), the same
explanation can be applied.

Two states θj and θk are called observationally equivalent
for agent i if `i(si|θj) = `i(si|θk),∀si ∈ Si, in which
case the agent can not distinguish these states with its own
information. The true state is called globally identifiable

if the set Θ∗ =
n⋂
i=1

Θ∗i has only one element θ∗, where

Θ∗i = {θ ∈ Θ|`i(si|θ) = `i(si|θ∗),∀si ∈ Si}. Intuitively, if
a state θ̂ is observationally equivalent to θ∗ for all agents,
i.e., Θ∗ = {θ∗, θ̂}, then the two states are exactly the same
from the view of all agents and they can not learn the true
state collectively, which in addition induces:

Assumption 3 (Globally identifiable): The true state θ∗ is
globally identifiable.

Under this assumption, for all θ 6= θ∗, there exists at
least an agent i such that DKL(`i(·|θ∗) ‖ `i(·|θ)) is strictly
positive.

Denote in the following that Ki(θ
∗, θ) = DKL(`i(·|θ∗) ‖

`i(·|θ)), and define a probability triple (Ω,F ,P∗), where
Ω = {ω|ω = (s1, s2, · · · )}, F is the σ-algebra generated by
the observations, and P∗ is the probability measure induced

by paths in Ω, i.e., P∗ =
∞∏
t=1
`(·|θ∗). We use E∗[·] to denote

the expectation operator associated with measure P∗. Now
we can state the main results describing the convergence of
the PSL strategies.

Theorem 1: Under Assumptions 1, 2 and 3, the update
rules (3) and (4) satisfy the following properties:

lim
t→∞

1

t
log

µi,t(θ)

µi,t(θ∗)
= −

n∑
j=1

πjγjKj(θ
∗, θ), ∀θ 6= θ∗,

(5)

and

lim
t→∞

µi,t(θ
∗) = 1, P∗−a.s., ∀i = 1, · · · , n. (6)

Proof: We consider the update rule (3) first. For each
agent i and θ 6= θ∗, we have

log
µi,t+1(θ)

µi,t+1(θ∗)
=

n∑
j=1

aij log
µj,t(θ)

µj,t(θ∗)
+ γi log

`i(si,t+1|θ)
`i(si,t+1|θ∗)

.

By denoting νi,t+1(θ) = log
µi,t+1(θ)
µi,t+1(θ∗) and Li,t+1(θ) =

log
`i(si,t+1|θ)
`i(si,t+1|θ∗) , the above equation simplifies to

νi,t+1(θ) =

n∑
j=1

aijνj,t(θ) + γiLi,t+1(θ). (7)

Rewrite (7) in matrix form:

νt+1(θ) = Aνt(θ) + ΓLt+1(θ),

where Γ = diag(γ1, · · · , γn). Now it follows that

1

t
νt+1(θ) =

1

t
Aνt(θ) +

1

t
ΓLt+1(θ) = · · ·

=
1

t
At+1ν0(θ) +

1

t

t∑
k=1

AkΓLt+1−k(θ) +
1

t
ΓLt+1(θ).

(8)
The assumptions admit that the first and the third terms on
r.h.s. of (8) go to zero as t → ∞. The second term can be
deformed as

1

t

t∑
k=1

AkΓLt+1−k(θ) =
1

t

t∑
k=1

(Ak − 1nπ)ΓLt+1−k(θ)

+
1

t

t∑
k=1

1nπΓ(Lt+1−k(θ) +K(θ∗, θ))

− 1

t

t∑
k=1

1nπΓK(θ∗, θ),

(9)
where 1n is an n-dimensional column vector of ones. Lemma
1 admits that lim

k→∞
Ak = 1nπ. Noticing that all elements of

Ak(k = 1, 2, · · · ) are bounded, the first term on r.h.s. of (9)
converges to zero as t→∞. Moreover,

E∗[Li,t(θ)] = E∗[log
`i(si,t|θ)
`i(si,t|θ∗)

]

=

∫
s∈Si

`i(s|θ∗) log
`i(s|θ)
`i(s|θ∗)

ds

= −DKL(`i(·|θ∗) ‖ `i(·|θ)) = −Ki(θ
∗, θ).

(10)
The Kolmogorov’s strong law of large numbers gives that

1

t

t∑
k=1

Lt+1−k(θ)− 1

t

t∑
k=1

E∗[Lt+1−k(θ)]→ 0, P∗−a.s.,

as t→∞, which leads to

lim
t→∞

1

t

t∑
k=1

1nπΓ(Lt+1−k(θ) +K(θ∗, θ)) = 0, P∗−a.s..
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Now (9) gives that

lim
t→∞

1

t

t∑
k=1

AkΓLt+1−k(θ) = −1nπΓK(θ∗, θ), P∗−a.s..

(11)
Therefore, property (5) can be directly induced from (8) and
(11). It follows that with probability one, for any ε > 0, there
exists an integer T such that ∀t > T and ∀θ 6= θ∗,∣∣∣∣∣∣1t log

µi,t(θ)

µi,t(θ∗)
+

n∑
j=1

πjγjKj(θ
∗, θ)

∣∣∣∣∣∣ < ε.

Noticing that
∑
θ 6=θ∗

µi,t(θ) = 1− µi,t(θ∗), we have

1

1 +
∑
θ 6=θ∗

exp

((
ε−

n∑
j=1

πjγjKj(θ∗, θ)

)
t

) < µi,t(θ
∗) 6 1.

(12)
Letting t → ∞, property (6) is then proved because of the
arbitrariness of ε.

For update rule (4), analogous to (7), we have

νi,t+1(θ) =

n∑
j=1

aij(νj,t(θ) + γjLj,t+1(θ)). (13)

Rewriting (13) in matrix form and by recursion we have

νt+1(θ) = At+1ν0(θ)+

t∑
k=1

Ak+1ΓLt+1−k(θ)+AΓLt+1(θ).

The same analysis gives that (5) and (6) also hold for update
rule (4).

Theorem 1 indicates that all agents will eventually learn
the underlying true state as long as the assumptions are
satisfied. Moreover, the convergence rate is closely related
to the stubbornness δi of each agent i. Specifically, the
smaller stubbornness all agents have, hence larger γi, the
faster the group’s beliefs converge. This result is consistent
with our intuition that a group with open-minded agents is
more willing to adapt to new environment, leading to faster
reach of consensus. We will illustrate these insights through
numerical examples in the next section. From Theorem 1,
the following result characterizing the convergence rate can
also be obtained:

Corollary 1: Under Assumptions 1, 2 and 3, the update
rules (3) and (4) satisfy that for all i = 1, 2, · · · , n and all
θ 6= θ∗,

lim
t→∞

µi,t(θ) 6 exp(−αθt), P∗−a.s.,

where αθ =
n∑
j=1

πjγjKj(θ
∗, θ).

Consider a special case of δi = 1 for an agent i, from (2)
it can be interpreted that agent i is completely stubborn or
blocked from environment. In this circumstance, γi = 0 and

both update rules (3) and (4) become

µi,t+1(θ) =

n∏
j=1

µ
aij
j,t (θ)

∑
θ′∈Θ

n∏
j=1

µ
aij
j,t (θ′)

,

indicating agent i does not accept any external information
at the Bayesian update step. Practically, to minimize the in-
fluence on learning performance brought by the stubbornness
of some agent, we can characterize its location by solving
arg min
i=1,··· ,n

∑
j 6=k

πiKi(θj , θk). Particularly, if all agents have e-

quivalent information on all states, i.e., Ki(θj , θk) ≡ K, for
all i = 1, · · · , n and j 6= k, then the optimal location is the
one with lowest eigenvector centrality (or remotely located
in the network). If all agents have identical eigenvector
centrality, i.e., πi ≡ π∗ for all i = 1, · · · , n, the optimal
one should be the least informative agent. These results will
be demonstrated in numerical examples in Section IV.

The following example shows that practically it is not
always better to accelerate the convergence. Too quick con-
vergence will result in false learning of the true state, due to
limited communication precision in real scenarios.

Example 1: Consider a group of two agents, and assume
Θ = {θ1, θ2} with θ1 being the underlying true state
θ∗. Both agents have positive initial beliefs over Θ, i.e.,
µi,0(θ) > 0,∀i = 1, 2 and ∀θ ∈ Θ. Signals are assumed to
be generated at each time from sets S1 = S2 = {H,T}, and
according to the probability distribution of `(H|θ∗) = 0.8
and `(T|θ∗) = 0.2. Moreover, signal structures are set as
`i(H|θ1) = `i(T|θ2) = 0.8, `i(H|θ2) = `i(T|θ1) = 0.2,
for i = 1, 2. The two agents can receive information from
each other, thus the network is strongly-connected and has all
positive elements in the weight matrix. PSL-BLoA algorithm
is performed on the group. Firstly, the Bayesian update step
admits that for i = 1, 2, the private beliefs on true state θ1

at time step 1 satisfy:

µ̃i,1(θ1) =
µi,0(θ1)`γii (si,1|θ1)

µi,0(θ1)`γii (si,1|θ1) + µi,0(θ2)`γii (si,1|θ2)
.

If at time 1 signal T is generated, with probability 0.2, then
we have

µ̃i,1(θ1) =
µi,0(θ1)

µi,0(θ1) + (1− µi,0(θ1))4γi
.

Here we consider a special but common in reality case that
the network is subject to some communication constraint,
i.e., the communication between the agents is quantized.
In this circumstance, the messages sent by the agents are
reduced to [Dµ̃i,1(θ)], where D ∈ Z+ is predefined and

[x] =

{
bxc, if x 6 bxc+ 0.5,

bxc+ 1, if x > bxc+ 0.5.

Therefore, if the stubbornness of any agent i is small
enough that γi > log4

(2D−1)µi,0(θ1)
1−µi,0(θ1) , then µ̃i,1(θ1) < 1

2D

and [Dµ̃i,1(θ1)] = 0, which leads to µi,1(θ1) = 0 for i = 1, 2
after aggregation step. In this case, no agent in the network
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can learn the true state θ1. This schematic example illustrates
that small stubbornness, hence fast convergence, does not
always lead to good learning performance, signifying the
importance of the capability to tune the convergence rate.

We state in the following the other main theoretical result
of this work:

Theorem 2: Under Assumptions 1, 2 and 3, following the
update rules (3) and (4), for all i = 1, · · · , n, θ 6= θ∗, and
all t > 0, we have

E∗[νi,t+1(θ)] 6 βθ − (t+ 1)αθ,

where

βθ =
4γ∗ log n||K(θ∗, θ)||∞

1− λmax(A)
+ max

16i6n
log

µi,0(θ)

µi,0(θ∗)
,

γ∗ = max
16i6n

γi, ||K(θ∗, θ)||∞ = max
16i6n

Ki(θ
∗, θ),

λmax(A) = max
λi(A)6=1

{|λi(A)|}, λi(A) denotes one of A’s

eigenvalues, and λ0(A) = 1. αθ is as defined in Corollary 1.
The next lemma [17] is required to prove Theorem 2:
Lemma 2: Let the strong connectivity of network hold,

and define λmax(·) as in Theorem 2. Then for any t, the
stochastic matrix A satisfies

t∑
k=1

n∑
j=1

|[Ak]ij − πj | 6
4 log n

1− λmax(A)
.

Proof: We only consider update rule (3) here and proof
for the other one is similar. From (9) and (12), it follows that

E∗[νt+1(θ)] = AE∗[νt(θ)]− ΓK(θ∗, θ).

By recursion we have

E∗[νt+1(θ)] =At+1ν0(θ) +

t∑
k=0

(1nπ −Ak)ΓK(θ∗, θ)

−
t∑

k=0

1nπΓK(θ∗, θ).

Now from Lemma 2, we can obtain

E∗[νt+1(θ)] 6||ν0||∞1n +
4γ∗ log n||K(θ∗, θ)||∞

1− λmax(A)
1n

− (t+ 1)1nπΓK(θ∗, θ).

In social learning literatures, νi,t+1(θ) is referred to as the
rejection extent of wrong state θ in favor of θ∗ for agent i
at time t+ 1. Theorem 2 implies that the expectation of the
rejection extent of wrong states can be bounded by a linear
function of time t. Hence the belief of each agent on any
wrong hypothesis will eventually decay exponentially, while
there will be a transient due to the existence of βθ. The
transient is influenced by the inhomogeneity of initial beliefs,
the stubbornness of the group, and the mixing properties of
the graph. It is interesting that increasing γ will raise the
value of βθ, thus prolonging the transient time.

Corollary 2: Assumptions 1, 2 and 3 hold, and further
assume that all agents have bounded signal structures, i.e.,
∃0 < l < L, such that l < `i(si|θ) < L for all si ∈ Si and

θ ∈ Θ. Let ρ ∈ (0, 1) be a given confidence level. Update
rules (3) and (4) have the following property: there exists
an integer N(ρ) such that with probability 1 − ρ, for all
t > N(ρ) there holds that for any θ 6= θ∗,

µi,t(θ) 6 exp(−α
∗

2
t+ β∗),

where N(ρ) =
8 log2 l log 1

ρ

(β∗)2 +1, α∗ = min
θ 6=θ∗

αθ, β∗ = max
θ 6=θ∗

βθ.

The proof of Corollary 2 can be referred to [18]. Corollary
2 provides the theoretical upper bound of beliefs on wrong
states under given confidence level and as t is large enough.

IV. NUMERICAL EXAMPLES

A. Tuning convergence rate

We first demonstrate the capability of the PSL strategies
in tuning the convergence rate.

Example 2: Consider a strongly-connected digraph con-
sisting of 5 agents, whose structure is shown in Fig. 1(a).
The weight of each directed edge is randomly generated from
(0, 1) and then normalized to satisfy the weight matrix A
is row-stochastic. We assume there are four possible states
Θ = {θ1, θ2, θ3, θ4} and θ1 is set as the true state. The initial
beliefs are also uniformly generated from interval (0, 1) and

subject to
4∑
j=1

µi,0(θj) = 1,∀i = 1, · · · , 5. At each time

step t, a signal st is randomly generated, following the
normal distribution N (µ1, 1) and observed by all agents.
As θ1 is the underlying true state, from assumptions we
have `i(·|θ1) = N (µ1, 1),∀i = 1, · · · , 5. The likelihood
functions of other states are randomly assigned as N (µ1, 1)
or N (µ2, 1) with µ1 6= µ2, while θ∗ = θ1 is globally
identifiable.

Here all agents share the same value of stubbornness, i.e.,
δi = δ, hence γi = γ, for i = 1, · · · , n. We focus on the
number of iterations for update rules (3) and (4) to collective-
ly learn the true state, where successful learning is considered

to be reached if
5∑
i=1

|µi,t(θ∗)−1| 6 10−3. According to (12),

we define the theoretical asymptotic curve for the conver-

gence as L(t) = 1/(1 +
∑
θ 6=θ∗

exp(−
n∑
j=1

πjγjKj(θ
∗, θ)t)).

Results in Fig. 2 validate the results in Theorem 1, which
further show that larger value of γ (smaller δ) leads to faster
convergence. Thus PSL strategies indeed enable fine tuning
of the convergence rate through the introduced parameter δ.

1

2

3

4

5

>

(a)

1 2 3

4 5 6

7 8 9

(b)

Fig. 1. Two network structures used in this work.
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Fig. 2. The evolution of beliefs on true state θ∗ for 5 agents interacted
in structure shown in Fig. 1(a) with different stubbornness. (a) and (b) are
results for update rules (3) and (4) respectively, where successful learning
are both reached at iteration number of 22 (γ = 2), 42 (γ = 1) and 72
(γ = 0.5).

B. Learning with completely stubborn agent

The PSL strategies prevail over existing methods on aspect
of its capability in learning with agents of diverse stubborn-
ness. Here we provide examples showing interesting soci-
ological phenomena how social influence and information
content of agents affect the group’s learning rate.

Example 3: Let Θ = {θ1, θ2, θ3, θ4} and θ∗ = θ1. Here
we consider 9 agents interacted in a 3 × 3 grid network
[Fig. 1(b)] with the weights determined by

aij =

{ 1
|Ni| , if j ∈ Ni,
0, otherwise,

where Ni denotes agent i’s neighboring set. For the defined
weight matrix, the eigenvector centrality of agent i, which
reflects its social influence, is in proportion to |Ni| (the
number of neighbors). The initial beliefs are uniformly

generated from interval (0, 1) and subject to
4∑
j=1

µi,0(θj) =

1,∀i = 1, · · · , 9.
We denote agents that have access to external information

(γ > 0) as open agents, and assume there is only one open
agent in the network and the others are completely stubborn.
Furthermore, all agents in the network are assumed to be
equivalently informative to the true state, with `i(·|θk) =
N (k, 1), i = 1, · · · , 9. At each time t, a signal vector st
is randomly generated, following the Gaussian distribution
`(·|θ∗) = N (19, I9×9) and observed by all agents.

By assigning the open agent in the corner (1, 3, 7, or 9),
margin (2, 4, 6, or 8), and centre (5), it has relatively small,
middle, and large eigenvector centrality respectively. Fig. 3
shows the convergence of agent 9, following update rules (3)
and (4) and demonstrating that the more social influence the
open agent is of, the faster the group can learn the true state.

Example 4: Consider the same network structure as in
Example 3 and let Θ = {θ1, θ2}, θ∗ = θ1. In this example
we fix the only open agent at corner, hence with same
eigenvector centrality. At each time step t, a signal vector st
is randomly generated, following the Gaussian distribution
`(·|θ∗) = N (19, I9×9) and observed by the agents. For
the signal structures, we set `i(·|θ2) = N (i + 1, 1), i ∈
{1, 3, 7, 9}, and `i(·|θ2) = N (1, 1), i ∈ {2, 4, 5, 6, 8},
leading to that K9(θ∗, θ) > K7(θ∗, θ) > K3(θ∗, θ) >
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Fig. 3. The evolution of beliefs on true state θ∗ for agent 9 with the only
open agent locating at different positions. (a) and (b) are results for update
rules (3) and (4) respectively. Notice that when the open agent is located
at centre or corner of the grid, the convergence rate is fastest or slowest
respectively.
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Fig. 4. The evolution of beliefs on true state θ∗ for agent 5 with the only
open agent being different extent of informative. (a) and (b) are results for
update rules (3) and (4) respectively. Notice that when the open agent is
more informative, the convergence rate is faster.

K1(θ∗, θ) > 0 and Kj(θ
∗, θ) = 0, j ∈ {2, 4, 5, 6, 8}. We

denote agent 9 as the most informative agent, which is the
most helpful to distinguish between true and wrong states.
Fig. 4 illustrates that open agent being more informative con-
tributes to higher convergence rate, validating our analysis in
Section III.

V. CONCLUSION AND FUTURE WORK

To conclude, we have proposed a non-Bayesian social
learning strategy by introducing a stubbornness parameter
balancing the agents’ internal belief and external informa-
tion. The update rules have been directly derived from an
optimization problem and their convergence have been an-
alytically estimated. Essentiality of tuning convergence rate
by adjusting the stubbornness parameters has been demon-
strated. Several sociological insights have been revealed both
analytically and numerically during the analyses of learning
with completely stubborn agents.

Our work can assist network designers to realize ad-
justable distributed estimation tasks and minimize losses
when some agents encounter sudden incapacitation of per-
ception. Because of its sociological nature, the PSL strategy
has potential theoretical and applied values. Future work
includes designing learning models with time delay, and
considering partial stubbornness on certain states or time-
varying stubbornness.
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