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An Optimal-Control Approach to Infinite-Horizon Restless Bandits:
Achieving Asymptotic Optimality with Minimal Assumptions

Chen Yan

Abstract— We adopt an optimal-control framework for ad-
dressing the undiscounted infinite-horizon discrete-time restless
N-armed bandit problem. Unlike most studies that rely on
constructing policies based on the relaxed single-armed Markov
Decision Process (MDP), we propose relaxing the entire bandit
MDP as an optimal-control problem through the certainty equiv-
alence control principle. Our main contribution is demonstrating
that the reachability of an optimal stationary state within the
optimal-control problem is a sufficient condition for the existence
of an asymptotically optimal policy. Such a policy can be devised
using an "'align and steer'' strategy. This reachability assumption
is less stringent than any prior assumptions imposed on the
arm-level MDP, notably the unichain condition is no longer
needed.

I. INTRODUCTION

The Restless Bandit (RB) problem addresses the challenge
of optimally allocating limited resources across a set of
dynamically evolving alternatives [21]. Each alternative, or
"arm", changes state over time according to a Markov
Decision Process (MDP), irrespective of whether it is currently
being exploited or not, hence the term "restless". This problem
encapsulates a broad range of real-world scenarios, from
queue management and sensor scheduling to wireless com-
munication and adaptive clinical trials . Despite its theoretical
and practical significance, finding optimal solutions remains
notoriously challenging [17], driving ongoing research into
efficient heuristics and asymptotically optimal policy design
[19], [4], [11], [13], [8]. This paper contributes to this vibrant
field by proposing an optimal-control framework that offers
fresh insights into the asymptotic optimality of policies for
the RB problem.

Contributions:

« We propose a novel approach by relaxing the stochastic
bandit problem into a deterministic optimal-control
problem, diverging from the conventional strategy of
relaxation into a single-armed problem (see Figure 1).

o We link asymptotic optimality in the bandit problem
to the reachability of an optimal stationary point via
feasible control, bypassing the unichain assumption for
a broader applicability that includes multichain models.

o We propose the "align and steer" strategy for constructing
asymptotically optimal policies, assuming reachability.
Our numerical studies highlight the superiority of inte-
grating model predictive control within this strategy.

Notations: To differentiate between the single-armed MDP
and the N-armed bandit MDP, we use the letter s to denote
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the state of the former, which assumes a finite set of S values,
and x, X for the state of the latter, represented as a population
vector within the unit simplex A of dimension S upon
dividing by N. For the bandit-level problem, capital letters
indicate stochastic systems, lowercase for deterministic, and
boldface for vectors, treated as row vectors. The subset AW)
of A consists of points whose coordinates are multiples of
1/N. Vector inequality x > y are defined componentwise. We
use control rule w for deterministic optimal-control problems
and policy 7 for stochastic N-armed bandit MDPs. Control
mappings are denoted as m(x) = u, with x™(¢) (resp. u™(¢))
representing the state (resp. control) after applying 7 over ¢
steps on an initial state x(0).

II. PROBLEM SETUP AND LITERATURE REVIEW

A. Model Description

Consider the undiscounted infinite-horizon discrete-time
Restless Bandit (RB) problem with N homogenous arms.
Each arm itself is a Markov Decision Process (MDP) with
state space S := {1,2,...,5} and action space A := {0,1}.
There is a budget constraint requiring that at each time step,
exactly a/N arms can take action 1, with 0 < o < 1. For
simplicity we assume that a/V is always an integer. The state
space of the N-armed bandit is therefore S™V and the action
space is a subset of A", The arms are weakly-coupled, in the
sense that they are only linked through the budget constraint,
i.e. for a given feasible action a € AN | the bandit transitions
from a state s € SV to state s’ € SV with probability
P(s'|'s,a) = [T,_y P (s, | snyan) = [Ty P, where
for each action a,, = a € A, the matrix P¢ is a probability
transition matrix of dimension S x S. Upon choosing an
action a in state s, we receive an instant-reward 22;1 e,
where r¢ € R depends on the state s and action a.

A Markovian policy 7" for the N-armed problem chooses
at each time t a feasible action a(t) based solely on the
current state s(t). It is stationary if in addition it does not
depend on t. Our goal is to maximize the long-term average
expected reward from all NV arms across all stationary policies,
facing an exponentially large state and action space as N
increases. ! Formally, this bandit MDP with a given initial

Tn contrast to stochastic and adversarial bandits, where the model is
not fully known and the emphasis is on minimizing regret compared to a
hindsight optimal [16], the current Markovian bandit setting assumes all
problem parameters and the system states are known, focusing on the design
of efficient and effective algorithms.
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state s(0) is formulated as:
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The difficulty of the RB problem is that the N arms
are coupled by the constraints in Equation (3), and the
conventional approach begins with relaxing these constraints
in Equation (3), which must be met at every time ¢ with proba-
bility one, to a single time-averaged constraint in expectation:
limy o0 & S Eon [a(t) - 17] = aN. This effectively
decompose the N armed problem into N independent single-
armed problem, each having the following form in relation
to a single-armed policy 7 and an initial arm state s(0):

.1
= Jim = S B [r00)] 4)

st P(s(t+1) ] s(t),a(t)) = P2V

s@)s(er1)r V=0

=
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This single-armed problem can be equivalently formulated
using state-action frequency variables, see [18, Section 8.9.2]
and Problem (8) below. We denote by 7* as one such
optimal single-armed policy with an optimal value Vz«(s(0)).
Note that the initial arm state s(0) € S can be extended
to a probability distribution in S, represented by a point
x(0) € A. Under the unichain assumption, the optimal value
Vz+(x(0)) of Problem (4) is independent of the initial arm
state distribution x(0) [18].

B. The Approach via Optimal-Control

In this paper, our approach is to approximate Problem (1)
with an optimal-control problem via the Certainty Equivalence
Control (CEC) principle ([3, Chapter 6]). Throughout this
paper, we will not make the blanket assumption that the
single-armed MDP is unichain.

1) Arm States Concatenation and the CEC Problem:
Given that the N arms are homogeneous, representing the
bandit state through the concatenation of arm states can
significantly simplify subsequent analysis. To achieve this,
denote by X € AM) where X, is the fraction of arms in
state s € S, normalized by division by N. A similar notation
goes for the control U, so that Uy is the fraction of arms in
state s taking action 1 under the control U.

Using this arm states concatenation, the Markovian evolu-
tion of the bandit state in Equation (2) can be expressed as
X(t+1) £ ¢(X (), U(t)) + E(X(t), U(t)), where ¢(-,-) is
the deterministic /inear function:

H(X,U):=(X-U)-P’+U. P!, 5)

and £(-,-) is a Markovian random vector, whose properties
are summarized in the following lemma, with a proof utilizing
standard probability techniques available in [11, Lemma 1]:

Lemma 1 ([11]): The random vector £(X(¢), U(t)) <
X(t+1) — ¢(X(t),U(t)) verifies:
E[£(X,U) | X, U] = 0;
E[lE(X, V)], | X, U] < VS/VN;

P[EX,U)[y = ¢ | X, U) <25-e
Given a state x € A, define the following two control sets:

—2N¢g2) 82

Ux):={u|u- 1T—aand0§u§x};
UM (x) := {u|uel(x)and N -uis an integer vector} ;

as well as the linear instant-reward function:
(x—u)- (1‘0)—r +u- (rl)T.

Note that U/(x) is always non-empty, and U/¥)(x) is non-
empty if x € AW)_ A feasible control T is a map from
X € A to U(x), while a feasible policy ™ maps x into
UM (x). An equivalent formulation of Problem (1) using
arm states concatenation (where s(0) yields x(0)) is:

R(x,u) :=

max  Vox (x(0)) = Thi‘éf ZE N (), Ut))]
(6)
st X(t+1) L ¢(X(1), U) + E(X (1), U(L)),

U(t) e UM (X(t) a.s., Vt>0.

The two requirements below Equation (6) result from arm
states concatenation of Equations (2) and (3), respectively.

We now link Problem (6) to its corresponding CEC
problem, where the uncertainties £(-,-) are assumed to be
identically zero. Specifically, the CEC problem is defined
as a maximization task over all stationary control rules 7,
described as follows:

1 T-1

max  Vz(x(0) := lim > R(x(t),u(t) (7
t=0
st x(t+1)=¢(x(t),u(t)),
u(t) e U(x(t)), Vt>0.

Bearing its resemblance to Problem (6), the above Problem (7)
is now deterministic with uncountable state and action space.
In contrast to the single-armed MDP Problem (4) that relaxes
the constraints (3) into a single time-averaged expectation
constraint, the CEC problem relaxes these constraints into
expectation constraints at every time step, represented by
u(t)- 17 = a for all t+ > 0. It is a linear control problem
where the set of feasible controls depends on the state. Note
that there are two distinct paths that naturally lead to consider
Problem (7): the first involves taking the large N limit in
Problem (6) and referring to Lemma 1 as we previously
discussed; the second entails taking the large 7" limit from the
finite-horizon RB relaxation to a linear program, as considered
in various works [4], [11].
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As Problem (6) is generally intractable [17], our strategy
employs a stationary control rule 7 that optimally solves
the more tractable Problem (7). From this, we construct an
induced policy 7V that matches as much as possible to 7.
This is made precise in the following definition:

Definition 1: (Induced Policy 7 from Control Rule 7)
For a feasible stationary control rule m of Problem (7), a
corresponding induced policy 7 for Problem (6) is defined
as any stationary policy such that for an input state X € A®V)
with U = 7(X), it outputs a control 7V(X) = U € UM (X)
satisfying ||U — U||, < S/N.

The general observation from Lemma 1 is that if 7 is
optimal, then the induced policy 7V as in Definition 1 should
also be close to optimal for large values of N. This will be
precisely formulated in Theorem 1 below.

2) Stationary Problems: By definition, a stationary point
(%e,ue) of Problem (7) is one such that u. € U(x.) and
Xe = ¢(Xe,u.). A stationary point (x*,u*) is optimal if
it solves the corresponding static problem with (7). This is
what we refer to as the conventional static problem. In this
paper, however, in order to also take into account multichain
models, we shall consider the refined static problem with
optimal value denoted as V*(x(0)), following [2], [15]:

max Ve(x(0)) := R(x,u) 8)
s.t. x =¢(x,u),
u € U(x),

x+h’+h! —h"-P° —h'. P! =x(0), (9
x>0, h >0, h! > 0.

We recover the conventional static problem if in the above
optimization problem Equation (9) is replaced by x- 1T =1
and there are no h°, h! variables. Problem (8) is a refinement
since multiply Equation (9) by 1T on the right gives the
relation x-1" = 1. The additional variables h®, h! appearing
in Problem (8) can be interpreted as a deviation measure [2].
In fact, by [15, Theorem 10], if the single-armed MDP is
unichain, then for any initial condition x(0) Problem (8) is
equivalent to the conventional static problem, so the two
formulations make no difference. However, we will illustrate
in Section III-E the necessity of considering the refined static
problem for the more general multichain models.

Every time probability Every time expec- Time averaged expec-
one constraints (rela<x) tation constraints, < tation constraint

(relax)
N-armed problrm: 7V

(Intractable)

CEC problem: 7 [Single-armed problem: ﬁ]

(Tractable) (Over-simplified)

Fig. 1: Relationship of the three optimization problems

3) Value Comparison and Asymptotic Optimality: The
links between the three major problems considered in this
work are summarized in Figure 1. The relationships among
the values of the various optimization problems defined up

to this point are as follows:
Van (s(0)) = Van (x(0))

< Vr(x(0)) < V- (x(0)) = VI (x(0)), (10)

where the first relationship arises from the concatenation of
arm states; the second is established in the technical report [22,
Section VI], whose proof is based on induction on the horizon;
the third results from Problem (4) being a more relaxed
formulation than Problem (7); and the final relationship can
be deduced, for instance, from [15], by treating x — u and u
as state-action frequency variables. Equation (10) leads us to
propose the following definition:

Definition 2: (Optimal Stationary Point and Asymptotic
Optimality) For a given initial state X, we call (x*,u*)
that solves the refined static Problem (8) with x(0) = X
an optimal stationary point, and x* an optimal stationary
state. We call a control rule m of Problem (7) averaged-
reward optimal if V(x(0)) = V*(x(0)); the corresponding
stationary policy 7V of Problem (6) in Definition 1 is said
to be asymptotically optimal for the N-armed RB problem,
if it verifies limy_, o0 Vi~ (x(0)) = VF(x(0)).

C. Comparison with Related Works

Existing literature on infinite-horizon RB problems typ-
ically constructs policies 7" based on the single-armed
problem in Figure 1. We have demonstrated that the latter
essentially conveys the same information as an optimal
stationary point within this control problem framework, thus
revealing that achieving asymptotic optimality necessitates
additional model assumptions.

Firstly, traditional methods assume the unichain condition
for the single-armed MDP. Additionally, specific policies like
the Whittle index policy [20] and the fluid priority policy
[19] necessitate their induced dynamical systems conforming
to the Global Attractor Property. Furthermore, to affirm the
exponential convergence rate, [11] introduces a more stringent
Uniform Global Attractor Property (UGAP). These assump-
tions on global dynamical system behavior are theoretically
challenging to verify. In response, [13] proposes a more easily
verifiable Synchronization Assumption for the optimal single-
armed policy 7*, achieving O(v/N) asymptotic optimality
with the Follow-the-Virtual-Advice (FTVA) policy. Extending
this approach, [14] further simplifies the criteria, showing that
the unichain and aperiodic assumptions on 7* are sufficient for
their ID / Focus Set policies. Lemma 2 will demonstrate that
this sufficient condition implies our reachability condition
in Definition 4. On the other hand, without the unichain
assumption, a stationary optimal single-arm policy may not
even exist ([15]; see also Section III-E). Therefore, new ideas
are required to construct asymptotically optimal policies. This
paper aims to address this challenge.

Roadmap: We overcome this issue by focusing on the
dynamical yet still tractable CEC problem. Theorem 1
demonstrates that for the induced policy 7V to achieve
asymptotic optimality, the corresponding control rule 7 must
be average-reward optimal, and additionally, a bias-related
term (Equation (11)) needs to be a continuous function.
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Theorem 2 demonstrates that this can be achieved through the
"align and steer" strategy (Algorithm 1) with a linear control
for steering, provided that a mild reachability condition, as
detailed in Definition 4, is met by the model.

A comprehensive comparison of various existing policies
on the undiscounted infinite-horizon discrete-time RB problem
is summarized in the table below.

Policies Assumptions Rate
Whittle / LP-Priority [11] | UGAP &Regular& Unichain | e~ 2(N)
FTVA [13] Synchronization & Unichain | O(v/N)
ID / Focus-Set [14] Unichain O(\/ﬁ)
Align and Steer [this work] | Communicating O(1)

ITI. REACHABILITY AND ASYMPTOTIC OPTIMALITY

Throughout this section, we fix an initial condition x;; € A
and a corresponding optimal stationary point (x*,u*) of
Problem (8). Denote by ST := {se€S|z*>0}. It is
important to remember that, in the case of multichain models,
all quantities we deduce are dependent on the initial state.
We will make this dependence explicit whenever possible.

A. The Effective Control Rules

In order to formulate the effectiveness of a control beyond
average-reward optimality, we define, for a control rule 7,
the following possibly unbounded functions for all x = x(0):

oo
G™(x) = Y _(x"(1),u" () — (x7,u’),

t=0

(11)

where we recall that (x*,u*) is an optimal stationary point
by solving Problem (8) with initial state x. We define a
stationary control rule 7 for Problem (7) as effective if G™(x)
is a continuous function over x € A under the £!-norm. This
implies that G™(+) is bounded given the compactness of A.
The concept and justification for an effective control rule are
encapsulated in the subsequent theorem:

Theorem 1: (Effective Control Rule Leads to Asymptoti-
cally Optimal Policy) Fix an initial state x;,;. For a stationary
control rule 7 of Problem (7) with an optimal stationary point
(x*,u*) and optimal value V.*(x(0)) defined in Problem (8)
with x(0) = Xini, consider the function G™(x) defined in
Equation (11). If G™(x) is a continuous function over x € A
(under the £'-norm). Then the induced stationary policy 7V
for Problem (6) in Definition 1 is asymptotically optimal:
th—wo Vﬂ.N (X(O)) = Ve* (X(O))

The proof of Theorem 1 employs the standard Stein’s
method ([12]) and is detailed in the technical report [22,
Section VII]. Informally, for a control rule 7 to be averaged-
reward optimal, the state-control pairs (x™(¢),u”(t)) need
to converge to (x*, u*) independently of the initial state. To
establish and study refined notions of optimality beyond the
average-reward criterion, particularly for comparison with the
stochastic N-armed problem, we must consider a function of
the type G™(x). We refer to [6] for an in-depth discussion
of various optimality criteria in this context.

It is important to note that with further regularity of the
function G™(x) in the vicinity of x*, i.e. Lipschitz-continuity

or C'-smoothness, the convergence rate of V,~ (x(0)) to-
wards V*(x(0)) can be determined. Similar ideas have been
explored in prior research, including [12], [10]. The primary
challenge is determining whether such an effective control rule
can be established and the methodology for its construction,
which we aim to explore subsequently.

B. The Align and Steer Policy

Our idea of constructing an effective control rule can be
summarized as "align and steer", which is based on the
following observation from the linearity nature of Problem (7):
If we decompose x € A into a sum of two parts x =
Valign + Vsteer With Vyjign, Vsieer > 0, then the normalized
VeCtOrs Xylign = Valign/ | Valign”l and Xgeer := Vsteer/ Hvsleer||1
again belong to the simplex A. Now take Waign € U (Xaiign)
and Ugeer € U (Xgieer) as feasible controls for Xgjign and Xgieer
respectively. The linear combination

||Valign 1~ Ualign + ||Vsteer||1 * Ugteer

turns out to be a feasible control for x. The key is to split x
so that V,jign iS collinear with x* and possesses the maximum
possible L'-norm. This enables the choice of Uglign aS U™
with a maximum alignment (refer to Equation (13) below).

Definition 3: (Maximum Alignment Coefficient with x*)
For x € A, we call the real constant

0(x):=max{d >0|x>0d-x"} (12)

the maximum alignment coefficient of x with the target x*.

From this definition, it follows that 0 < 6(x) < 1, with
§(x) = 0 if and only if there exists an arm state s € St =
{s € §| x* > 0} with z; = 0; and §(x) = 1 occurs if
and only if x = x*. For any x € A, it can be expressed
as x = 0(x) - x* + x — 0(x) - x*. Here, the component
Valign = 0(X)-x* represents the mass in x already in alignment
with stationarity, whereas vgeer = X — §(X) - X* requires the
application of a specific control, mge., designed to steer
the remaining mass into ST for subsequent alignment. This
concept is further explored in the following subsection.

Now assume that a certain feasible 7y has been specified.
The corresponding align and steer control rule Tajigngsteer :
x — U(x) is defined as:

Walign&sleer(x) =
5(x) - u + (1 - 6(x)) - (X_‘S(X)X> (13)
ﬂ-StCCl’ 1 _ 6(X) M
We emphasize that 0(x) plays a crucial role in ensuring that
(x —0(x)-x*)/(1 —(x)) is a well-defined state vector in
the simplex A. Algorithm 1 describes the induced align and
steer policy Y ngsieer * X — UM (x) in detail.

An advantage of the align and steer approach is the
considerable flexibility in selecting the appropriate steering
control, Tgeer, in Algorithm 1. Throughout the rest of this
section, we focus on the linear steering control 7y(x) =
« - x. Our objective is to introduce a mild reachability
assumption, under which wé}ggn %0 18 theoretically established
to be asymptotically optimal. Subsequently, in the next
Section IV, we adopt Model Predictive Control (MPC) as the
steering control and conduct numerical studies on W;Xgn &MPC-
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N
align&steer*

Algorithm 1: The align and steer policy 7

Input: A feasible steering control myee of
Problem (7); An initial state Xj,; for the
N-armed bandit Problem (6).
1 Solve the static Problem (8) with initial state
x(0) = Xy to obtain an optimal stationary state x*;
2 Set Xcurrent = Xinit 5
3fort=0,1,2,... do

4 Set ﬁcurrent = 7Talign&steer(}(current) from
Equation (13) ;
5 Compute a control Uygen With inputs Xyprene and

Ucurrent as outlined in Definition 1 ;
6 ApPply Ucyrrent 01 Xeurene and advance to the next
state Xex, then set Xeyprent := Xpext

7 end

C. Reachability and a Linear Control Rule

To introduce the key concept of reachability, we derive two
observations from the construction in Equation (13). First,
for any given x € A with éy := §(x) and any ¢t > 0, the
maximum alignment coefficient of x™ensseer () - after applying
Talign&steer ON X for ¢ steps, is at least as large as dp. Second,
defining x := (x — dp - x*)/(1 — &), then for a certain
time T > 1, the value of § (x™im&seer (T4)) remains equal to
8o if and only if 7y fails to steer mass from X into S
for alignment in the preceding 7, — 1 steps. Equivalently,
the maximum alignment coefficient of X™(¢) is 0 for all
1<t <Tp—1 (note that 6(x) is 0 by construction).

Definition 4: (Reachability of Optimal Stationary State
x*) Fix an initial state Xj,;. An optimal stationary state x*
of the refined static Problem (8) with x(0) = x;,;; is called
reachable, if there exists a feasible and stationary control
rule Trgeer, a positive constant € > 0 and a finite time Ty > 1
such that the maximum alignment coefficient in Definition 3
satisfies 0 (x™==r (1)) > 6, with x™==r(0) = x for all x € A.
Otherwise we call x* unreachable.

From this definition, if x* is unreachable, then for any
feasible control 7rgeer and for any Ty > 1, there always exists
a counterexample x € A along with an arm state s € ST,
such that the s-th coordinate of x™«r(Tg) is 0. This situation
can arise due to the non-communicating nature and periodicity
issues within the single-armed MDP. By definition, a MDP
with state space S is called weakly communicating if S
can be partitioned into a closed set S¢ of states in which
each state is accessible under some deterministic stationary
policy from any other state in the set, plus a possibly empty
set of states that are transient under every policy. An arm
state s € S is aperiodic under a single-armed policy 7 if
ged{n € N| (P™)% > 0} = 1, with PT the transition matrix
of the single-armed Markov chain induced by policy 7.

We now consider the linear control defined by 7,(x) :=
« - x. This is a feasible control according to the definition
of U(x). For t > 0, by plugging into Equation (5) this
control rule we obtain that x™ (t) = x - (P%)?, where P® :=

a-P!+ (1 —«a)-P°% Note that P“ is also the transition
matrix of the single-armed Markov chain induced by policy
7¢ "always take action 1 with probability «". We argue that
a certain communicating and aperiodic condition is sufficient
for reachability:

Lemma 2: (Weakly-Communicating and Aperiodic Single-
Armed MDP Implies Reachability) Fix an initial state X;p;.
Let x* be an optimal stationary state of the refined static
Problem (8) with x(0) = xj, and denote by ST =
{s € §| x* > 0}. If the single-armed MDP in Problem (4)
is weakly communicating and the set of arm states ST are
aperiodic under the single-armed policy 7, "always take action
1 with probability ", then x* is reachable.

Proof: Take Tyeer = 7, in Definition 4. Since ST C S¢,
combine with the aperiodicity assumption, there exists 7o > 1
such that min,e g o es+ (P“)ST;), := po > 0. Consequently for
all x € A, it holds true that

5 (x™ (1) = 8 (x - (P*)T0) > &2

maXses Th

=60 >0.

(14)
|
As a clarification, we point out that the condition of "being
aperiodic under 7" is less stringent than "being aperiodic
under an optimal single-armed policy 7*" assumed in [14].
This is because periodicity is a pure graph-theoretic question,
and 7, leads to the maximum number of directed edges
in the connectivity graph among all single-armed policies.
In addition, we highlight that by refining the notion of
reachability in Definition 4, we can also accommodate non-
communicating cases within our framework. The reason is that
any MDP can be partitioned uniquely into communicating
classes plus a (possible empty) class of states which are
transient under any policy. Hence the approach in this paper
can be directly generalized to the multichain case when
initially non arm is in a transient state. This adaptation
requires only those x that possess the same positive mass
in communicating classes common with the initial state Xy
to be in accordance with the reachability assumption within
each class.

D. Reachability Implies Asymptotic Optimality

We are now ready to state the main result of this paper,
which demonstrates that Wé}fign&f is asymptotically optimal
under the reachability assumption. The key idea is to compare
the control rule maigng¢ that maximize the alignment whenever
possible with another rule mgelayse that delay the alignment.
We emphasize that, while the function G™*w&¢(x) for the
latter is easier to handle, the delayed alignment control rule
is not stationary and depends on the entire history of the
deterministic state trajectory. As such it cannot be used to
construct a stationary policy for the N-armed bandit.

Theorem 2: (Reachability of x* Implies Asymptotic Op-
timality) Fix an initial state Xj,;. Suppose Problem (8) with
x(0) = X possesses an optimal stationary state x* that is
reachable as defined in Definition 4. Let myjgng¢ Tepresent
the align and steer control rule from Equation (13), with the
linear steering control rule 7,(x) = a-x. In this case Tyjigngr
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is effective. Thus, in conjunction with Theorem 1, the policy
Tignge from Algorithm 1 is asymptotically optimal.
Proof: For each finite horizon 7' > 1, define

T-1

GT(x,T) =) (x"(t),u"(1)) — (x",u).

t=0

The function x — G7(x,T) is a continuous function,
provided that the control rule 7 is a continuous map, which
holds for mygng¢. Our strategy for proving the continuity
of GMism«t(x) is to show that the sequence of continuous
functions G™i=t (x T') indexed by T' converges uniformly
to G™imet (x) over all x € A.

a) Step One: To ease the notation, let us fix x € A
and write dy := §(x). Consider another feasible control rule
Tdelay&e that delay the alignment in the following sense: We
align a fixed amount &y of its mass with x* for the first Tg
time steps, where T is defined as in Lemma 2, and constantly
apply 7¢ on the steering part. Formally, the control rule is

> , (15)

for x’ = x™ewa(Q) = x, and subsequently for x’
XM (1), x™emes (T — 1), Denote by x(P) := (x — -
x*)/(1 — dp). Then the system trajectory under the control
T delay&# in Equation (15) is

x' — 0 - x*

Wdelay&é(xl) = 50'u*+(1—50)'71'g ( 1_50

Xl (1) = 5 - x* 4+ (1 — &) - <. (Poz)ii7 0<t<Ty.

As a consequence of Lemma 2, there exists x(2) € A such
that x( . (P*)To = g.x* 4+ (1 —0)-x?), with § > 0 defined
in Equation (14). Hence

xﬂ' delay&# ( TO )
=(1—(1=6)-(1—80) -x*+(1—20) (1-6) x.

Now for time steps Ty + 1,7y + 2,...,2Ty we repeat the
same procedure, except that now we start with an alignment
of mass 1 — (1 — dg) - (1 — 6) with x*. Note that

bo<1-— (1 — (50) : (1 — 9) < (S(Xﬂ'de“y&e (To))

With the same reasoning we deduce that there exists x(3) € A
such that

¥ Tdelay&t (2TO)
=(1-(1-d0) (1—-6)%) x*+(1—8) (1-0)?2 x3.

By a straightforward induction, we infer that for all integer
k > 1, there exists x*T1) € A such that

Xﬂ'delay&l (k . TO)
= (1= (1=80)- (1=0)") -x"+ (1= 3p) - (1 — 0)F - x*+1),
and consequently
§(x™emer (¢)) > 1— (1—dg) - (1 — )" (16)

fOfkT0§t<(k+1)To

b) Step Two: Our next observation is that for ¢ > 0 it
holds true that

§ (xemsr (1)) < § (xTmee (1)) (17)

Indeed, delaying the alignment of a certain mass with x*
invariably leads to a reduced maximum alignment coefficient
in the future, compared to aligning this mass with x* at an
earlier time. To illustrate, consider 0 < d; < dp and express
x as follows:

X:(sl'X*—F((SO_(Sl)-X*+(1—50)-X(1).

Should the mass amounting to §y — ¢; remain unaligned, it
will be subjected to the linear control rule 7, along with
x(). A portion of this mass may eventually become aligned
at a later time. However, irrespective of the specific decisions
made concerning (8o —d7)-x*, what happens on (1 —dg)-x(!)
remains unchanged. Consequently, at any future point, the
maximum alignment coefficient achieved by aligning J, at
an initial step is always larger than that of aligning §; at the
same juncture.

c) Step Three: To conclude the proof, let € > 0 be fixed.
We define a finite horizon T'(e) = k(e) - Tp, where the value
of k(e) € N will be chosen later. Then

HGﬂ'align&e (X) _ Gﬂalign&z (X, T(E)) Hl
<Y (sl (n)
t=T(e)
() = x7 [y + e () —uly)
x Malign&e (t) _ 5(Xﬂa1ign&tz (t)) . x*
1— 5(Xﬂ'augn&z (t))

<We abbreviate as X(t) )

<2 4a)- Y (1—8(x™we(t))) (By Equation (17))
t=T(e)
<2(1+a)(1-8)To- Y (1-06)" By Equation (16))
k=k(e)

=21+ a)(1—d)(1—6)*=). %.

It suffices to choose k(e) := ’710g179 mw to
deduce that |Gt (x) — GMieet (x,T'(€))|l; < e for all
x € A. Since the choice of € > 0 is arbitrary, we conclude
by the uniform convergence theorem that G™i=&¢(x) is a
continuous function defined over all x € A. [ ]

E. Discussion on the Reachability Assumption

We first remark that it is crucial to utilize the refined
static Problem (8) for computing the optimal stationary
point in multichain models. For instance, consider PO

L0) o = (1,00, ot

1 _

P = 0 1) r

0 < a < 1. This model is non-communicating. If we solve
the conventional static problem described after Problem (8),
then the optimal stationary state is x* = («,1 — «) and is
unreachable unless x;,; = (o, 1 — «); while if we take the
initial state X;,; into account and solve the refined static

(0,1), and with any
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Problem (8) with x(0) = Xy, the optimal stationary state is
X* = Xy itself and becomes reachable.

We now compare previous methods based on the single-
armed MDP with our approach in a multichain model. Set

1 0 0 0 09 01 0 O
09 0 01 O 01 09 0 O
0 _ 1 _
Pt = 0 0 09 01) P = 0 0 1 0)
0 0 01 09 01 0 09 O

r = (0,0,1,1), v* = (1,1,0,0) and o = 0.5. The
initial state is Xiy; = (0.4, 0,0.6,0), with the corresponding
optimal stationary point x* = (0.25,0.25,0.25,0.25), u* =
(0.25,0.25,0,0). It turns out that a stationary optimal single-
armed policy does not exist for this problem, due to the
state-action frequency constraint. As highlighted in [15],
exploring the broader class of Markovian policies is necessary
to find an optimal solution. Consequently, approaches based
on stationary optimal single-armed policies, as seen in [13],
[14], are inadequate. Similarly, for the fluid priority policy
[19], any priority "permutation of (1,2) > permutation of
(3,4)" falls within this category. However, prioritizing "4 >
3" for this particular initial state x;,; = (0.4,0,0.6,0) is
essential for asymptotic optimality; without it, the 0.6 portion
of arms in states {3,4} cannot transition to states {1,2}.
Policies based on the single-armed MDP typically lack the
capability to make such critical distinctions. In contrast, since
the model is communicating and aperiodic, by Lemma 2, we
deduce that x* is reachable and consequently by Theorem 2,

the policy ﬂﬁgn&z is asymptotically optimal.

IV. NUMERICAL EXPERIMENTS

It can be seen that the simple linear control 7, that
has played a key role in Theorem 2 may not be the best
candidate for the task of steering. Ideally the steering control
Tseer Should be designed to take any vector x towards
x* in the most reward-efficient manner. Motivated by the
Model Predictive Control (MPC), a such control can be
constructed by solving a finite look-ahead window T, version
of Problem (7), which is a linear program ([11]), followed
by adopting the first control from this solution, see e.g. [7,
Section 3]. We refer to this policy using MPC steering strategy
as wﬁgn «mpc- 1n this section, we set a look-ahead window
of Ty, = 100, noting that the MPC appears to stabilize at 50
steps ahead on the examples encountered [7]. Simulations are
conducted over a horizon of 7' = 10000. As highlighted in
Section III-E, previous methods generally fail with multichain
models. Hence our focus in this section lies on unichain
models and the performance differences for finite V.

We first consider an example with three states that has been
studied in [10], [13]. A noticeable feature of this example
is that the Whittle index policy, which is actually the best-
performed priority policy among all possible priorities, is not
asymptotically optimal, as can be inferred from Figure 2. We
also plot 6(X(t)) over a sample run for the three policies with
N = 1000 once each 5 time steps for the first 200 time steps.
The oscillation of mprity presented here is caused by the fact
that its dynamics is attracted to a period-2 cycle. The ID policy
is introduced in [14]. Both the ID policy and the align and

steer policy proposed in the current paper are asymptotically
optimal, but the later performs better. We believe that this
is because the closed-loop MPC is constantly driving the
steering part to align with x* in the most reward-efficient
way. We note that it is also possible to plot the alignment of
the control variable with u*, which exhibits similar behavior
compared to the alignment of the state variable.

We next consider an

o example with eight states
o that has been proposed
§0120 in [13]. A noteworthy
;éom Mo teer polcy feature of this example

—e— Priority policy

o6 RS is that there are a to-
'\.\.__._9_._.__‘ s
e —— tal number of 36 priority
e _ policies that are asymptot-
oo / ically optimal: "any per-
el TEET L muaton of 234)> 1>
gl | - pririty Policy X 5 > any permutation of
2. /WW%N\/\[\/\A{W\N (6,7,8)" are all observed to
> be asymptotically optimal
CET P ™ policies. The performance
of these priority policies
are actually slightly su-
perior than wﬁgn &MPCs s
can be seen from Figure 3.
We visualize that the steering of both policies align with the
deterministic MPC, while the steering of the ID policy is
different.

From the numerical
analysis presented in this oouzs0
section, it is evident that MMO //r*a—'-*—*“
Thigngmpe consistently de-  Zonws
livers outstanding perfor- o o teer polcy
mance. However, given its 00100 - Zj?:(tg);w"cv
computational efficiency e SR e
and simplicity, a priority 10 w
policy such as the LP- /
index policy from [11]
should be considered at
first hand. Only in in-
stances where the global o0
attractor property does
not seem to be fulfilled

0.114

Fig. 2: An example where no
priority policy is asymptotically
optimal.

Avg R

—— Deterministic MPC x
ID Policy X
Align and Steer Policy X
—e— Priority Policy X

Alignment 6(x)

0 25 50 75 100 125 150 175 200

Time

Fig. 3: An example where cer-
by these priority policies  tain priority policies perform
should we consider resort- slightly better than ﬂ.ﬁgn SMPC-

ing to the ID policy or ﬂi}{gn «vpc- The former necessitates
sampling of arm actions and their rectification at every
decision epoch, which requires at least O(N) time; the latter
entails solving a linear program being the transient problem
of (7) with a horizon of T, at each time step.

V. EXTENSION AND CONCLUSION

A. On the Generalization to Weakly-Coupled MDPs

The weakly-coupled MDP is a substantial and natural
extension of the restless multi-armed bandit, characterized
by each (homogeneous) arm having multiple actions (i.e.,
|A] > 2) and the imposition of multiple budget constraints
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on the bandit. To ensure problem feasibility, it is assumed that
there exists an action 0 that does not consume any resources,
as for the RB. This topic has been explored in a series of
studies, including [1], [9], [5], within both finite-horizon
and discounted infinite-horizon frameworks, but not within
the undiscounted setting addressed in the current paper. A
notable aspect of the optimal-control approach adopted in this
paper is its straightforward applicability to weakly-coupled
MDPs with minimal additional effort required, thus filling an
important gap in existing research.

Indeed, the CEC problem for weakly-coupled MDPs can
be generally expressed as

max Vo(x(0) = lim %iR(x(t),u(t)) (18)
t=0
st x(t+1) = ¢(x(t), ult)),
Fx(t),u() =0, g(x(t),u(r) <0, V>0,

Here, the control variable u is a vector of size |S| x |Al;
R(x,u) represents a general linear function denoting the
instant-reward; ¢(x,u) is a linear function describing the
expected Markovian transition as in Equation (5); and f(x,u),
g(x,u) are linear functions related to budget and problem
structure constraints. Leveraging results from [2], [15], which
focus on undiscounted average-reward multichain MDPs with
linear state-action frequency constraints, we can deduce as in
the RB case the relationships in Equation (10) for the various
optimization problems. Consequently, the approach outlined
in this paper can be applied to this more general context as
well. The crucial aspect that facilitates this extension is the
linearity of the CEC optimal-control Problem (18).

B. Conclusion

In this work, we have introduced an optimal-control
framework for the undiscounted infinite-horizon N-armed RB
problem, focusing on relaxing hard constraints to expected
trajectory constraints at each time step, unlike traditional
methods that average these constraints over time. This
approach, balancing complexity between overly-simplified
single-armed MDPs and intractable N-armed RB problems,
allows us to derive asymptotically optimal policies by steering
the system towards an optimal stationary state within a
deterministic framework. Future research directions include:

1) The Lipschitz-Continuity of G™(x): Under the gen-
erality considered in this work, the possibility of ensur-
ing Lipschitz-continuity for G™(x), which implies O(v/N)
convergence rates of the induced policy 7V [10], remains
open. The applicability of Lyapunov-function-based proof
techniques from single-armed MDPs to multichain scenarios
would significantly advance our understanding.

2) The Exponential Turnpike Property and Choice of
Lookahead Window: Investigating the exponential turnpike
property’s role ([7]) in determining the finite lookahead
window T, for MPC controls could greatly impact the
efficiency of applying our framework in practice. This
exploration could also yield crucial insights into the dynamics
of RB optimal-control problems.
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