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Abstract— We develop controllers for Connected and Au-
tomated Vehicles (CAVs) traversing a single-lane roundabout
so as to simultaneously determine the optimal sequence and
associated optimal motion control jointly minimizing travel
time and energy consumption while providing speed-dependent
safety guarantees, as well as satisfying velocity and acceleration
constraints. This is achieved by integrating (a) Model Predictive
Control (MPC) to enable receding horizon optimization with
(b) Control Lyapunov-Barrier Functions (CLBFs) to guaran-
tee convergence to a safe set in finite time, thus providing
an extended stability region compared to the use of classic
Control Barrier Functions (CBFs). The proposed MPC-CLBF
framework addresses both infeasibility and myopic control
issues commonly encountered when controlling CAVs over
multiple interconnected control zones in a traffic network,
which has been a limitation of prior work on CAVs going
through roundabouts, while still providing safety guarantees.
Simulations under varying traffic demands demonstrate the
controller’s effectiveness and stability.

I. INTRODUCTION

It has been well documented that urban congestion has
reached critical levels in terms of time, pollution, and fuel
consumption [1]. The emergence of Connected and Auto-
mated Vehicles (CAVs) along with real-time communication
between mobile endpoints and the infrastructure [2] make
it possible to achieve smoother traffic flow through better
information utilization and trajectory design.

Most research to date has focused on the control and
coordination of CAVs within a single Control Zone (CZ)
that encompasses a conflict area such as merging roadways,
[3], lane changing [4] and unsignalized intersections [5].
However, the transition from a single CZ to multiple in-
terconnected CZs is particularly challenging [6]: while in
an isolated CZ it is assumed that vehicle states initially
satisfy all constraints upon entering this CZ, when several
CZs are interconnected it is generally the case that the state
of a vehicle exiting one CZ does not satisfy the next CZ’s
constraints. Additionally, since the traffic flow is propagated
throughout a network of CZs, myopic optimal control limited
to one CZ may require extra control effort in the next and
even cause congestion if CZs are in close proximity, resulting
in blocked traffic. Thus, directly applying control techniques
used in a single CZ to multiple CZs without considering
system-wide or local neighboring traffic information leads
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to performance degradation and lack of safety guarantees,
especially when the CZs are tightly coupled.

A typical case in point of interconnected CZs arises in
a roundabout, a configuration which is attractive to traffic
control because its geometry enhances safety by promoting
lower speeds, better visibility, increased reaction time for
drivers, and resulting in less severe crashes when they do oc-
cur [7]. Though roundabouts offer many such benefits, their
effective implementation requires more careful planning,
since the compact geometry with multiple closely-spaced
Merging Points (MPs) requires tighter control and more
stringent safety constraint satisfaction. Both model-based
[8]–[10] and learning-based methods [11], [12] have been
considered to deal with the control and coordination of CAVs
at roundabouts (see [13] for details). In order to improve
computational efficiency, a joint Optimal Control and Control
Barrier Function (OCBF) approach is used in [14] such that
unconstrained control trajectories are optimally tracked while
also guaranteeing the satisfaction of all constraints using
Control Barrier Functions (CBFs). In addition, in order to
optimize the estimated future performance, Model Predictive
Control (MPC) is used in [15] and [8].

However, these works fall short of addressing the control
issues that arise in interconnected CZs as described ear-
lier. Learning-based methods are reward-driven and cannot
reliably prevent conflicts between vehicles. Among model-
based techniques, some fail to account for the tightly coupled
conflict structure and regard a roundabout as consisting of
multiple independent CZs, prone to safety violation, energy
waste, and congestion. Our previous work [6] deals with the
infeasibility as vehicles progress through successive CZs by
defining a Feasibility Enforcement (FE) mode within which
a maximum deceleration is set. This approach sacrifices
considerable energy to enforce feasibility, inefficient that
can be avoided with proper control. Therefore, the first
contribution of this paper is to propose a decentralized MPC-
CLBF framework which leverages the coupled structure of
multiple interconnected CZs and addresses both infeasibility
and myopic control issues. When constraints from the next
CZ are not satisfied for vehicles entering that CZ, we use
Control Lyapunov-Barrier Functions (CLBFs) [16] to ensure
convergence back to a safe set in finite time, thus providing
an extended stability region relative to classic CBFs. In
order to overcome the myopic nature of prior CBF-based
controllers, Model Predictive Control (MPC) is used to ac-
count for future performance across different CZs, therefore
achieving optimality over a tunable receding horizon.

The second contribution of this paper is to consider
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Fig. 1: A roundabout with 3 entries

the joint solution of the sequencing and motion control
problems. The problem of sequencing vehicles through a
roundabout has been dealt with by mostly assuming that
CAVs maintain a FIFO order, which has been shown to be
often inefficient [17]. This assumption is replaced by other
sequencing schemes [14], but they fail to consider control
after merging, thus not able to ensure optimal coordination
over interconnected CZs. Our proposed solution combines an
optimal sequencing process with the MPC-CLBF framework
mentioned above so as to select an optimal sequence and
motion control of each CAV in this sequence to jointly
optimize the future vehicle speed and its energy consumption
while guaranteeing safety.

II. PROBLEM FORMULATION

We consider a single-lane triangle-shaped roundabout with
N entry and N exit points where N ≥ 2. For simplicity
we limit our analysis here to N = 3, as depicted in Fig.
1, with straightforward extensions to N > 3. We chose a
triangular geometry to simplify the analysis, focusing on the
joint sequencing and motion control problem; the extension
to circular roundabouts complicates things, but can still be
handled as demonstrated in [18]. Additionally, implementing
a triangular layout enables us to carry out direct performance
comparisons to prior results using a similar configuration in
[14] so as to evaluate the advantages of the joint sequencing
and motion control approach developed in this paper with
all traffic consisting of CAVs. Thus, as in [14], we consider
the case where all traffic consists of CAVs which randomly
enter the roundabout from three different origins O1, O2 and
O3 and have randomly assigned exit points E1, E2 and E3.
We assume all CAVs move in a counterclockwise way.

The entry road segments are connected with the triangle at
the three Merging Points (MPs) labeled as M1, M2 and M3,
where CAVs from different road segments may potentially
collide with each other. Centered at each MP, we partition
the roundabout into three Control Zones (CZs), labeled CZ1,
CZ2 and CZ3, and shaded in green, blue, grey respectively
in Fig.1. Each CZ includes two road segments towards the
corresponding MP: one is the entry road indexed by 1, and
the other is the segment within the roundabout, indexed by 0.
Thus, we define ci ∈ {0, 1} as the road segment where CAV
i is currently located, where ci = 1 indicates CAV i is at an
entry road, otherwise ci = 0. We also assume that all road

segments have the same length L (extensions to different
lengths are straightforward). The full trajectory of a CAV in
terms of the MPs it must go through can be determined by
its entry and exit points.

The vehicle dynamics for each CAV i ∈ S(t) along the
road segment to which it belongs take the form[

ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(1)

where xi(t) denotes the distance from the origin of the
road segment where CAV i currently locates, vi(t), ui(t)
denotes the velocity and acceleration respectively. We limit
our discussion to simple dynamics to emphasize the proposed
framework. More advanced dynamics can be used to refine
the control without affecting the core effectiveness (see [19]).

Let S(t) be the set of indices of CAVs present in the
roundabout at time t. The cardinality of S(t) is denoted
by N(t). When a new CAV arrives at the roundabout, it is
assigned the index N(t) + 1. Each time a CAV i leaves the
roundabout, it is removed from S(t) and all CAV indices
larger than i decrease by 1. We then partition S(t) into
subsets based on their current CZ and define a merging group
as a set of CAVs present at the same CZ at time t. Let
Sk(t), k ∈ {1, 2, 3}, be the set of indices of CAVs (from
S(t)) within the merging group of CZk at time t, where
S1(t)∩S2(t)∩S3(t) = ∅, S(t) = S1(t)∪S2(t)∪S3(t). The
cardinality of Sk(t) is denoted by Nk(t) with k ∈ {1, 2, 3}.

The Coordinator Table. A coordinator table is used for
each CZ to record the essential state information for all CAVs
within it, and to identify all conflicting CAVs under a given
merging sequence. An example of such table corresponding
to Fig. 1 for CZ1 is shown in Table I. The definition of
each column is as follows: idx is the unique CAV index at
the roundabout; state is the CAV state xi = (xi, vi) where xi

is the distance to the location of CAV i from the entry point
of its current road segment and vi is the velocity of CAV i;
initial CZ is the index of the CZ from which CAV i enters the
roundabout; final CZ is the index of the CZ through which
CAV i exits the roundabout; current CZ is the index of the
CZ where CAV i is currently located; ci is the classification
index of the road segment where CAV i is currently located:
ci = 1 for an entry segment and ci = 0 for the segment
within the roundabout; ip is the index of the CAV which
physically immediately precedes CAV i in the roundabout
(if one exists), noting that CAV ip is not necessarily located
in the same CZ as CAV i; im is the index of the last CAV
that precedes CAV i (if one exists) at the next MP within
a given sequence. CAV im must be in the same CZ but a
different road segment than that of CAV i, i.e., ci ̸= cim .

The three coordinator tables Sk(t), k ∈ {1, 2, 3}, are up-

TABLE I: The Coordinator Table S1(t)

S1(t)
idx state initial CZ final CZ current CZ ci ip im
0 x0x0x0 3 1 1 0
1 x1x1x1 3 2 1 0 0 4
4 x4x4x4 1 2 1 1 3
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dated simultaneously in an event-driven manner. The detailed
triggering events and logic can be found in [13].

A. Optimal Control Problem (OCP)

We consider two objectives for each CAV subject to four
constraints, as detailed next.

Objective 1 Minimize the travel time Ji,1 = tfi −t0i where
t0i and tfi are the times CAV i enters and exits the roundabout.

Objective 2 Minimizing energy consumption:

Ji,2 =

∫ tfi

t0i

C(ui(t))dt, (2)

where C(·) is a strictly increasing function since the energy
consumption rate is a monotonic function of the acceleration.

Constraint 1 (Rear end safety constraints): Let ip denote
the index of the CAV which physically immediately precedes
i in the roundabout (if one is present), whether they are
at the same CZ or not. We define the distance zi,ip(t) :=
x̄ip(t) − xi(t) where x̄ip(t) = xip(t) + L∆ if CAV ip and
CAV i are at different CZs and the CZ difference is ∆ (taken
counterclockwise); otherwise x̄ip(t) = xip(t). We require:

zi,ip(t) ≥ φvi(t) + δ, ∀t ∈ [t0i , t
f
i ], (3)

where vi(t) is the speed of CAV i ∈ S(t) and φ denotes the
reaction time (as a rule, φ = 1.8s is used, e.g., [20]). If we
define zi,ip to be the distance from the center of CAV i to
the center of CAV ip, then δ is a constant determined by the
length of these two CAVs (generally dependent on i and ip
but taken to be a constant for simplicity).

Constraint 2 (Safe merging constraint): Let im denote the
index of the CAV traveling on a different road segment of
the same CZ that shares the same next MP, Mk, as CAV i.
CAV im directly precedes CAV i in arriving at Mk among
all vehicles in its segment under a given crossing sequence.
Let tkim , k ∈ {1, 2, 3} be the arrival time of CAV im at MP
Mk. The distance between im and i, given by zi,im(t) ≡
xim(t)− xi(t), is constrained by

zi,im(tkim) ≥ φvi(t
k
im) + δ, ∀i ∈ S(t), k ∈ {1, 2, 3} (4)

Constraint 3 (Vehicle limitations): There are constraints
on the speed and acceleration for each i ∈ S(t), i.e.,

vmin ≤ vi(t) ≤ vmax,∀t ∈ [t0i , t
f
i ], (5)

ui,min ≤ ui(t) ≤ ui,max,∀t ∈ [t0i , t
f
i ], (6)

where vmax > 0, vmin ≥ 0, ui,min < 0 and ui,max > 0
denote the speed and control limits respectively.

Problem 1: Our goal is to determine a control law to
achieve objectives 1-2 subject to constraints 1-3 for each
i ∈ S(t) governed by the dynamics (1). Thus, we combine
Objectives 1-2 by constructing a convex combination:

Ji(ui(t)) := β(tfi − t0i ) +

∫ t
f
i

t0i

1

2
u2
i (t)dt, (7)

where β ≥ 0 is a weight factor that can be adjusted to
penalize travel time relative to the energy cost, subject to
(1), (3)-(6) given t0i , xi(t

0
i ), vi(t

0
i ).

Obviously, solving this problem for any CAV i requires
knowledge of ip and im in (3)-(4) whose assignment is
dynamically changing, especially when a CAV changes CZs.

Our goal is to determine an optimal sequence for each
merging group of CAVs, which is centrally determined by
the coordinator, while also determining the corresponding
optimal control ui(t), which is calculated in a decentralized
manner.

III. OPTIMAL SEQUENCING AND MOTION CONTROL

We propose a joint sequencing and motion control pro-
cess that comprises three parts: (a) determine all feasible
sequences that all CAVs in a CZ can follow when crossing
its MP, (b) evaluate each candidate feasible sequence using
the MPC-CLBF framework, and (c) determine the optimal
sequence and associated control for each CAV.

Feasible Sequences. A feasible sequence is a prioritized
list of indices for all CAVs currently within the same CZ,
ordered by projected CZ exit times (either progressing to
the next CZ or leaving the roundabout). Given the single
lane assumption (which excludes overtaking), the sequence
must maintain relative on-road precedence. The CAVs not
located at their final CZ can conflict with CAVs from other
inbound road segments heading to the shared next MP. Thus,
the relative merging order of CAVs is flexible, comprising the
feasible set of sequences to evaluate. We denote the set of all
feasible sequences for CZk at time t as Fk(t). For example,
the feasible sequences for S1(t) as shown in Table I are
F1(t) = {[0, 1, 4], [0, 4, 1], [4, 0, 1]}. Each feasible sequence
is equivalent to a pair of ip, im assignments for each i. See
[13] for the detailed assignment process.

Evaluate a Feasible Sequence. For each merging group
in CZk, k ∈ {1, 2, 3}, we need to evaluate each feasible
sequence f ∈ Fk(t) determined above, which is associated
with a specific pair of ip and im assignments for every i in
this sequence. Thus, we need to evaluate the performance of
each CAV i ∈ f under optimal motion control.

1) Optimal Control of Single CAV: We start with the
unconstrained optimal control solution of (7) when safety
constraints (3) and (4) are inactive. This has been derived in
prior work [14] based on a standard Hamiltonian analysis.

However, if ip or im exists, the constrained optimal control
problem becomes hard to solve as multiple constraints can
become active. To overcome this, Control Barrier Functions
(CBFs) have been used [21] for three main reasons: (a) The
original constraints (3)-(6) can be replaced by CBF-based
constraints that imply (3)-(6), hence they guarantee their
satisfaction, (b) the forward invariance property of CBFs
guarantees constraint satisfaction over all future times, (c) the
new CBF-based constraints are linear in the control, which
drastically reduces the computational cost of determining
them and enables real-time implementation. In particular,
based on the vehicle dynamics (1), we define f(xi(t)) =
[vi(t), 0]

T , g(xi(t)) = [0, 1]T . Each of the constraints (3)-(6)
can be expressed in the form bj(xi(t)) ≥ 0, j ∈ 1, 2, . . . and
the CBF method maps bj(xi(t)) ≥ 0 into a new constraint
which directly involves the control ui(t) and takes the form

Lfbj(xi(t)) + Lgbj(xi(t))ui(t) + γj(bj(xi(t))) ≥ 0 (8)
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where Lf , Lg denote the Lie derivatives of bj(xi(t)) along
f and g respectively and γj(·) denotes some class-K func-
tion (in practice, a linear class-K function is often used).
This CBF-based constraint is a sufficient condition for
bj(xi(t)) ≥ 0 (see [21]) and may, therefore, be conservative
depending on the choice of γj(·).

With CBF-based constraints of the form (8) replacing the
original ones, the new OCP can be efficiently solved by dis-
cretizing time and solving a simple Quadratic Program (QP)
over each time step (details can be found in [21]) exploiting
the linearity in u in (8). One limitation of this approach is
that it is “myopic” in the sense that the control determined at
a specific time step cannot ensure that all constraints remain
satisfied at future steps (e.g., they may conflict with the
control constraints in (6)). Given the roundabout’s compact
geometry which couples closely-spaced MPs, control actions
propagate rapidly across different CZs and this myopic na-
ture of control selection becomes inadequate. This motivates
the two new elements we bring to the solution of this
problem. First, we use a receding-horizon MPC framework
to evaluate future performance not only over a single time
step, but over a receding horizon H of multiple lookahead
steps. The choice of H improves accuracy at the expense
of computational cost. Second, we address the problem of a
CAV entering the next CZ in its path without necessarily
satisfying the safety constraints required in this new CZ.
We resolve this issue through the use of Control Lyapunov-
Barrier Functions (CLBFs) instead of basic CBFs, which
allows us to ensure the satisfaction of these constraints within
a properly selected finite time interval.

2) MPC-based optimal control problem solution: Starting
from current time t, we discretize time using time steps of
equal length Td. The dynamics are also discretized and we
set xi,h = xi(t+ h · Td) where h = 1, 2, . . . is the hth time
step since t. The decision variables ui,h = ui(t+(h−1)·Td)
are assumed to be constant over each time step. Therefore,
we set the control, velocity, position trajectory over next
H time steps as a vector respectively: ui = [ui,1, . . . ui,H ],
vi = [vi,1, . . . vi,H ] and xi = [xi,1, . . . xi,H ]. When adopting
sequence f , the corresponding trajectories are denoted as
ui(f), vi(f) and xi(f). We also denote the performance of
CAV i over the next H time steps under a given sequence f as
JH
i (f). This OCP can then be efficiently tackled by solving

a QP at each round. Next, we derive the CBF constraints for
∀h ∈ {1, . . . H} which replace the original constraints.

Constraint 1 (Vehicle limitations): Let b1(xi,h) = vmax−
vi,h, b2(xi,h) = vi,h − vmin. Following (8), the two corre-
sponding CBF constraints are:

−ui,h+γ1(b1(xi,h)) ≥ 0, ui,h+γ2(b2(xi,h)) ≥ 0 (9)

Constraint 2 (Rear end safety constraint): Let b3(xi,h) =
xip,h − xi,h − φvi,h − δ. Similarly, the CBF constraint is:

vip,h − vi,h − φui,h + γ3(b3(xi,h)) ≥ 0 (10)

Constraint 3 (Safe merging constraint): The safe merging
constraint (4) only applies to specific time instants tkim . This

poses a technical complication since that a CBF must be in
a continuously differentiable form. We can convert (4) to a
continuous time form using the technique in [3] to obtain:

zi,im(t) ≥ φ · xim(t)

L
vi(t) + δ, ∀t ∈ [tk,0i , tkim ] (11)

where tk,0i denotes the time CAV i enters the road segment
connected to Mk. Note that the boundary condition in (11) at
t = tkim when xim(t) = L is exactly (4). Letting b4(xi,h) =
xim,h − xi,h − φ

Lxim,h · vi,h − δ, the CBF constraint is

vim,h − vi,h − φ

L
xim,h · ui,h

− φ

L
vim,h · vi,h + γ4(b4(xi,h)) ≥ 0 (12)

Problem 2: Our aim is to calculate JH
i (f), ui(f), vi(f)

and xi(f) for a single CAV i given a sequence f . Since
the travel time (tfi − t0i ) in (7) can no longer be directly
minimized in the receding horizon optimization process, we
instead maximize the speed applying a linear (similar to
(tfi −t0i )) penalty. Since this is inversely proportional to travel
time when considering the entire CAV trip, we achieve an
equivalent optimization effect:

min
ui

JH
i (f) =

H∑
h=1

(
1

2
u2
i,h − λvi,h)

s.t. (1), (9), (10), (12)

(13)

where λ is a weight for balancing energy and speed.
3) MPC-CLBF framework: When the constraints (3)-(6)

are initially satisfied, the forward invariance property of
CBFs guarantees their satisfaction at all times. However, an
unsafe initial state commonly occurs in a CZ when (4) is
violated as the relative distance from the current position of
CAV i to the next MP is similar to the distance from CAV im
to the same MP. This motivates the use of Control Lyapunov-
Barrier Functions (CLBFs) where a proper choice of class-
K function allows us to achieve finite-time convergence to a
safe set if a system is initially outside this set [16].

Although the continuous form (11) is used for the safe
merging constraint, its satisfaction is only needed at the
MP. Thus, if (11) is not satisfied before MP, there is some
time over which the CAVs i and im can adjust their states
and approach the safe set, instead of maximally decelerating
to enforce feasibility as in earlier work [6], which implies
expending energy and causes discomfort. In particular, the
CLBF formulation for the safe merging constraint is:

Lfb4(xi(t)) + Lgb4(xi(t))ui(t)

+ p · b4(xi(t))
q ≥ 0, ∀t ∈ [tk,0i , tkim ] (14)

where b4(xi(t)) = xim(t)− xi(t)− φ
Lxim(t) · vi(t)− δ and

the parameters p, q need to be properly selected.
p,q value determination. We define a safe merging set

C := {x ∈ R2 : b4(x) ≥ 0}. If xi(t) ∈ C, we choose
p > 0, q = 1, so that the last term of (14) reduces to a
linear class-K function as in the formulation of a classic
CBF constraint. Otherwise, if xi(t) /∈ C, we set p > 0,
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q = 1
2n+1 , n ∈ Z+. It is proved in [16] that any control

satisfying (14) can force the state to converge to the safe set
within time tm ≥ tconv where:

tconv =
b4(xi(t))

1−q

p(1− q)
(15)

Setting b̄(t) = φ
Lxim(t)ui,min + φ

Lvim(t)vi(t) + vi(t) −
vim(t), the following provides a sufficient condition for such
finite time convergence, whose proof can be found in [13]:

Proposition 1: Given a safe set C and xi(0) /∈ C, a feasi-
ble control ui(t) ≥ ui,min ensures xi(tm) ∈ C for any tm ≥
tconv if ui(t) satisfies (14) with p ∈ [ b4(xi(0))

1−q

(1−q)tm
, b̄(0)
b4(xi(0))

q ],
and q = 1

2n+1 , n ∈ Z+.
In view of Proposition 1, we can choose proper p, q values

in which we set the required convergence time tm as the
remaining time for CAV im to reach the next MP (this is
known since we have already calculated the trajectory of
CAV im). If we cannot find p, q values satisfying Proposition
1, then we cannot ensure that the associated control sequence
is feasible and we proceed to consider the next sequence in
the feasible sequence set Fk(t).

After choosing proper p, q values, we can replace (12) by
the CLBF constraint and replace Problem 2 by Problem 3:

min
ui

JH
i (f) =

H∑
h=1

(
1

2
u2
i,h − λvi,h)

s.t. (1), (9), (10)

vim,h − vi,h − φ

L
xim,hui,h − φ

L
vim,hvi,h + p · (xim,h

− xi,h − φ

L
xim,hvi,h − δ)q ≥ 0, ∀h ∈ {1, . . . H}

(16)

The solution is obtained in a decentralized way for each i
in a given f . This process is carried out sequentially, with the
trajectories of preceding CAVs providing specific constraints
for subsequent CAVs at each time step. We prioritize the CZ
with the first CAV having the largest gap between conflicting
vehicles, and then consider the upstream CZs.

Determine Optimal Sequence and Motion Control.
Once we have evaluated the performance of each feasible
sequence, the optimal sequence is chosen as the one with
the best performance, i.e., f∗ = argminf

∑
i∈f J

H
i (f). See

[13] for the detailed procedure.

IV. SIMULATION RESULTS

In this section, we model a roundabout of the form in
Fig. 1 in Eclipse SUMO, using its car-following model
as a human-driven baseline to compare against our MPC-
CLBF controller for CAVs. In addition, we compare with the
OCBF controller from our previous work [14]. The OCBF
controller first derives the unconstrained optimal solution
as shown in Section III-.1. This solution is used as a
reference control which is optimally tracked by minimizing
quadratic control and speed deviations subject to the CBF
constraints corresponding to (3)-(6). As in past work (e.g.,
[14]) this tracking is done by solving a sequence of QPs

at each discrete time step in a myopic way. This approach
is computationally efficient but its myopic nature lacks the
ability to predict future CAV behavior over multiple time
steps as accomplished through the MPC-CLBf approach.
Both First-In-First-Out (FIFO) and Shortest-Distance-First
(SDF) sequencing policies are adopted under the OCBF
controller, where SDF prioritizes a CAV with a smaller
distance to the next MP and larger speed. We adopt the same
configurations and vehicle arrival patterns in all methods for
consistent comparison purposes. The basic parameter settings
are as follows: L = 60m, δ = 0m, φ = 1.8s, vmax =
30m/s, vmin = 5m/s, umax = 4m/s2, umin = −4m/s2.

Balanced traffic demand: In this case, the simulated
incoming traffic is generated through Poisson processes with
all rates set to 396 CAVs/h, with randomly assigned exit
points. The simulation results are shown in Table II with all
performance metrics for the total system and within each CZ
using β = 0.89 in (7). The “infeasible count” denotes the
number of times when no sequence is feasible for a merging
group by solving Problem 3. This infeasibility is always
due to conflicts between CLBF constraints and control limits
when a new CAV enters the roundabout randomly, and no
feasible p, q values can be found. The “unsafe count” denotes
the number of times when the rear-end safety constraint (3)
is violated by a CAV, which could happen due to insufficient
space between a CAV and its conflicting CAV (im) at the next
MP when CAV im just crossed the MP. Note that “unsafe” is
only in terms of the conservative speed-dependent rear-end
safety constraint rather than a physical collision. In fact, no
collision is ever observed during our simulation experiments.

Table II shows that MPC-CLBF controllers outperform
the SUMO (human-driven vehicle) baseline, as well as the
OCBF controller under both sequencing policies in terms
of travel time, energy consumption, and safety. The total
objective value under MPC-CLBF with H = 20 shows
71.0%, 30.2% and 11.8% improvements compared to the
SUMO baseline, OCBF with FIFO and SDF respectively,
with the total energy consumption reduced by 94.1%, 72.4%
and 24.5% respectively. The main reason that CAVs outper-
form Human-Driven Vehicles (HDVs) in terms of energy is
that HDVs tend to drastically accelerate and decelerate in
order to stop and wait for vehicles in another road segment
to cross, or travel through the current road segment quickly
when not seeing conflict vehicles. In addition, the MPC-
CLBF method outperforms OCBF since it can predict future
conflicts and preempt them with smoother control actions,
avoiding maneuvers with drastic control changes.

An example of comparing trajectories for vehicle i = 30
is shown in Fig. 2. While the human-driven vehicles in
the SUMO model tend to brake and accelerate sharply, the
control for CAVs is much smoother. Compared to OCBF,
speed varies less drastically with our method due to the
ability of predicting future motion changes of other CAVs.
In addition to saving energy, our method also allows faster
roundabout traversal through reduced braking. In addition,
we observe that the rear-end unsafe count is reduced by more
than 99% compared to both SUMO and OCBF.
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Fig. 2: Comparison of trajectories from vehicle 30

TABLE II: Performance Comparison under Balanced Traffic
Metric total time total energy total obj. infeasible count unsafe count
SUMO Baseline 4425.7 12431.54 16365.50 7558
OCBF+FIFO 4657.6 2662.95 6803.04 404 1544
OCBF+SDF 4958.2 974.43 5381.72 343 449
MPC-CLBF, H=10 5033.3 898.54 5372.58 387 15
MPC-CLBF, H=20 4514.4 735.81 4748.61 256 4
MPC-CLBF, H=30 4326.4 989.59 4835.28 295 3

Unbalanced traffic demand: In this case, we set the
traffic arrival rates to be 108 CAVs/h, 540 CAVs/h, and 540
CAVs/h for O1, O2 and O3 respectively, so that the total
traffic demand level for the whole roundabout is similar to
the previous case. All other parameter settings are the same.
Unlike the previous balanced case where MPC-CLBF with
H = 20 was optimal, the total objective achieved now peaks
at H = 30 using our MPC-CLBF method, demonstrating
sensitivity to the traffic demand structure, which can be
analyzed from historical statistics. Additional results under
unbalanced and heavy traffic demand can be found in [13]
suggesting that the MPC-CLBF controller is consistently
robust to different traffic conditions.

Computational Complexity Analysis Let the number of
CZs in a roundabout be N and the number of CAVs in the
roundabout and entry road segments of CZ k ∈ {1, . . . N}
be N0

k and N1
k respectively. It can be shown (see [13])

that the theoretical number of times to solve Problem 3
can be expressed as

∑N
k=1

(N0
k+N1

k

N0
k

)
· (N0

k +N1
k ), where N0

k

and N1
k are bounded by the road segment length L. In our

simulations, when H = 30, the average computation time
for a single solution is around 100ms on an Intel Core m5
with two 1.2GHz cores using Gurobi as a numerical solver.
This suggests the ability to adopt the MPC-CLBF controller
for real time implementation.

V. CONCLUSION AND FUTURE WORK

We presented a decentralized MPC-CLBF framework
which addresses both infeasibility and myopic control is-
sues commonly encountered when coordinating CAVs over
multiple interconnected CZs. This approach is then used
to simultaneously determine the optimal sequence and as-
sociated control that jointly optimizes speed and energy

consumption while guaranteeing safety. Future research is
directed at sequencing and safe control over mixed-traffic
scenarios where human-driven vehicles are involved.
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