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Abstract— In this paper, an event-based quantized sampled-
data control strategy is proposed for the plasma glucose regula-
tion problem in Type 2 diabetic patients. In particular, the pro-
posed event-triggered digital glucose regulator is designed by
exploiting a nonlinear time-delay model of the glucose-insulin
regulatory system which takes into account the subcutaneous
infusion of insulin. It is proved that the provided quantized
sampled-data glucose controller, updated via a proposed event-
based mechanism, guarantees the semi-global practical stability
property of the related closed–loop tracking error system, with
arbitrarily small steady–state tracking error. The stabilization
in the sample–and–hold sense theory is used as a tool to
prove the results. An approximation scheme based on first–
order splines is used in order to cope with the problem of
the possible non–availability in the buffer of the value of the
system variables at some past times which are needed for the
implementation of the proposed digital controller. The possible
non-uniform quantization of the input/output channels as well
as the case of time–varying sampling periods are included in the
theory here developed. The validation of the proposed glucose
control strategy is carried out via simulations.

I. INTRODUCTION

Diabetes Mellitus (DM) is a chronic disease caused by
high levels of blood glucose concentrations which are gener-
ated from defects in insulin secretion, insulin action, or both.
The most widespread type of diabetes is Type 2 DM (T2DM)
which is mostly related to an inadequate production of
insulin and/or to insulin resistance. T2DM involves about 415
million patients worldwide and its management has a heavy
impact on national healthcare budgets ([33]) with a recent
amplification due to pandemic COVID–19 and the related
effects on diabetic patients (see, for instance, [20], [44]).
Glucose control strategies are built-up in practice by com-
bining a set of technologies, such as computing systems,
actuators and sensors, to realize an Artificial Pancreas (AP).
In the literature concerning AP, many results are given for
Type 1 DM (T1DM), i.e. for diabetic patients that totally lack
of a pancreatic endogenous insulin release (see among the
others, [2], [3], [8], [18], [19], [22], [24], [25], [27], [31],
[47] and the references therein). In the context of the AP,
glucose control strategies for T2DM are commonly actuated
by: the direct infusion of insulin in vein resulting in an
invasive therapy for the patients (see, for instance, [4], [10],
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[13], [15], [16], [30], [39]); the subcutaneous infusion of
insulin (see, for instance, [5], [9], [35], [36] and [37]). A
crucial aspect to take into account in the design and practical
implementation of glucose regulators is the unavoidable
presence of sampling and quantization in the digital devices
composing the AP. In [9], a quantized sampled-data glucose
regulator using a subcutaneous insulin infusion strategy is
proposed and theoretical results are provided concerning the
semi-global practical stability property of the related tracking
error system. A popular approach for the design of sampled–
data stabilizers, not considered in [9], is the one based on
the event–triggered control, which has been proved to be
successful in properly managing shared computation and
communication resources in the digital world [21], [46] as
necessary, for instance, in the context of AP where glucose
control algorithm are implemented on microcontrollers. The
main idea behind such an approach is to control the system
whenever it really needs attention, by avoiding continuous-
time state/output monitoring and control updates unless they
are necessary (see, for instance, [1], [4], [17], [23], [43],
[45] and references therein). In this paper, for the first time
in the literature concerning the AP, a quantized sampled–
data glucose regulator for T2DM patients, updated via a
proposed event-based mechanism and actuated by means
of subcutaneous insulin infusion, is provided. Indeed, to
our best knowledge, theoretical results concerning event-
triggered quantized sampled-data glucose control strategies
based on the subcutaneous infusion of insulin have never
been provided in the literature of the AP for T2DM.

In this paper, we fill this gap. In particular, in the present
contribution, an event-based mechanism is proposed for the
update of the quantized sampled-data glucose control law
provided in [9] and the recent results in [10] concerning
the stabilization in the sample–and–hold sense theory (see,
for instance, [6], [11], [12], [14], [43] and the references
therein) are used in order to prove the semi-global practical
stability property of the related closed–loop tracking error
GI system, with arbitrarily small final target ball of the
origin. We highlight here that: (i) differently from [9] here
an event-based quantized sampled-data glucose controller is
proposed; (ii) differently from [10], in which an an event-
based quantized sampled-data glucose controller based on the
intravenous insulin administration strategy is proposed, here
the subcutaneous infusion of insulin is considered, leading
to a complete reformulation of the controller in order to
take into account the subcutaneous insulin absorption. In the
theory here developed the non–uniform quantization of the
input/output channel and aperiodic sampling are taken into
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account. The results are validated through simulations which
pave the way for further investigations.

Notation. N denotes the set of integer numbers in [0,+∞),
R denotes the set of real numbers, R⋆ denotes the extended
real line [−∞,+∞], R+ denotes the set of nonnegative reals
[0,+∞). The symbol |·| stands for the Euclidean norm of a
real vector, or the induced Euclidean norm of a matrix. For
a positive integer n, for a positive scalar ∆, a Lebesgue
measurable function f : [−∆, 0] → Rn is said to be
essentially bounded if ess supt∈[−∆,0] |f(t)| < +∞, where
ess supt∈[−∆,0] |f(t)| = inf{a ∈ R⋆ : λ({t ∈ [−∆, 0] :
|f(t)| > a}) = 0}, λ denoting the Lebesgue measure. The
essential supremum norm of an essentially bounded function
is indicated with the symbol ∥·∥∞. For a positive integer
n, for a positive real ∆ (maximum involved time-delay):
Cn and W 1,∞

n denote the space of the continuous functions
mapping [−∆, 0] into Rn and the space of the absolutely
continuous functions, with essentially bounded derivative,
mapping [−∆, 0] into Rn, respectively. For a positive scalar
p, for ϕ ∈ Cn, Cn

p (ϕ) = {ψ ∈ Cn : ∥ψ − ϕ∥∞ ≤ p}. The
symbol Cn

p denotes Cn
p (0). For a continuous function x :

[−∆, c) → Rn, with 0 < c ≤ +∞, for any real t ∈ [0, c),
xt is the function in Cn defined as xt (τ) = x (t+ τ) , τ ∈
[−∆, 0]. C1 (R+;R+) denotes the space of the continuous
functions from R+ to R+, admitting continuous deriva-
tives; C1

L (R+;R+) denotes the subset of the functions in
C1 (R+;R+) admitting locally Lipschitz derivatives. Let us
here recall that a continuous function γ : R+ → R+ is: of
class P0 if γ (0) = 0; of class P if it is of class P0 and
γ (s) > 0, s > 0; of class K if it is of class P and strictly
increasing; of class K∞ if it is of class K and unbounded.
The symbol Id denotes the identity function in R+. For a
given positive integer n, for a symmetric, positive definite
matrix P ∈ Rn×n, λmax (P ) and λmin (P ) denote the max-
imum and the minimum eigenvalue of P , respectively. The
symbol ◦ denotes composition (of functions). For positive
integers n, m, for a map f : Cn × Rm → Rn, and for a
locally Lipschitz functional V : Cn → R+, the derivative
in Driver’s form (see [42]) D+V : Cn × Rm → R⋆, of the
functional V , is defined, for ϕ ∈ Cn, u ∈ Rm, as:

D+V (ϕ, u) = lim sup
h→0+

V (ϕh,u)−V (ϕ)
h ,

where, for 0 ≤ h < ∆, ϕh,u ∈ Cn is defined, for s ∈ [−∆, 0],

as ϕh,u (s) =

{
ϕ (s+ h) , s ∈ [−∆,−h) ,
ϕ (0) + (s+ h) f (ϕ, u) , s ∈ [−h, 0] .

II. THE GLUCOSE-INSULIN MODEL

The nonlinear DDE model exploited for the design of the
proposed glucose regulator is composed by the coupling of
the GI system [34], [41] with a two-compartmental model

of the subcutaneous insulin absorption ([7], [28], [32], [48])
.

G(t) = −KxgiG(t)I(t) +
Tgh

VG
,

.

I(t) = −KxiI(t) +
TiGmax

VI
φ(G(t− τg)) +

S2(t)
VItmax,I

,
.

S2(t) =
S1(t)
tmax,I

− S2(t)
tmax,I

,
.

S1(t) = − S1(t)
tmax,I

+ u(t),

(1)

G(τ) = G0(τ), I(τ) = I0(τ), S2(τ) = S2,0(τ), S1(τ) =
S1,0(τ), τ ∈ [−2τg, 0], where: G(t), [mmol/L], and I(t),
[pmol/L] are the plasma glucose and insulin concentrations,
respectively; S1(t) and S2(t) [pmol/L] are the insulin in
the mass accessible and not–accessible subcutaneous depot,
respectively. φ(·) models the endogenous pancreatic insulin
delivery rate according to the following sigmoidal function:

φ(G(t− τg)) =

(
G(t−τg)

G∗

)γ

1 +
(

G(t−τg)
G∗

)γ .

In case of no exogenous insulin input, by neglecting the
insulin dynamics in the subcutaneous depot, model (1)
reduces to a basic GI regulatory system, and belongs to
the family of DDE models described in [34] (see [34],
[41] for more details on the qualitative behaviour and
model parameters) which are clinical validated in [40],
[41]. (G0(τ), I0(τ), S2,0(τ), S1,0(τ)) constitute the initial
conditions of the model usually assessed equal to the constant
basal levels (Gb, Ib, 0, 0). u(t), [pmol/min], is the subcuta-
neous insulin delivery rate, i.e., the control input. By the
choice of a desired glucose concentration Gref , from the first
equation in (1), the related insulin reference is obtained:

Iref =
Tgh

VGGrefKxgi
.

On the other hand, the references S1,ref and S2,ref , related
to the subcutaneous compartments (i.e. related to S1(t) and
S2(t)) will be treated as virtual inputs (see (5)).

III. SUBCUTANEOUS DIGITAL CONTROL FOR THE
GLUCOSE-INSULIN SYSTEM

In the following, the subcutaneous glucose controller
provided in [9] is recalled and an event-based digital im-
plementation is proposed by making use of the results in
[10]. In particular, we will theoretically show that the pro-
posed event-based quantized sampled-data implementation of
the considered continuous-time controller ensures the semi-
global practical stability property of the related closed–loop
tracking error system with arbitrarily small final tracking
error. The continuous-time glucose regulator for the system
(1) is here described by (see [9])

u(t) = k(σ(xt)) =
.

S1,ref(t) +
S1,ref (t)
tmax,I

− x3(t)
tmax,I

−KS1
x4(t)

= k4(σ(xt)) +
k3(σ(xt))
tmax,I

− x3(t)
tmax,I

−KS1
x4(t),

(2)

6870



where: xt ∈ C4 is the extended state variable defined as

xt(τ) =

x1,t(τ)
x2,t(τ)
x3,t(τ)
x4,t(τ)

 =

 Gt(τ)−Gref

It(τ)− Iref
S2,t(τ)− S2,ref,t(τ)
S1,t(τ)− S1,ref,t(τ)

 , τ ∈ [−2τg, 0] ;

(3)
the map σ : C4 → R12 is defined as

σ(ϕ) =
[
ϕ(0)T ϕ(−τg)T ϕ(−2τg)

T
]T
, ϕ ∈ C4; (4)

the functions ki : R12 → R, i = 1, · · · , 4, are defined as

k1(σ(xt)) = S2,ref(t) = VItmax,I

(
Kxi(x2(t) + Iref)

−KIx2(t)− TiGmax

VI
φ(x1(t− τg) +Gref)

+
Kxgi

ρ x21(t) +
KxgiGref

ρ x1(t)
)
,

k2(σ(xt)) =
.

S2,ref(t),

k3(σ(xt)) = S1,ref(t) = tmax,I

(x3(t)+k1(σ(xt))
tmax,I

+ k2(σ(xt))

−KS2
x3(t)− ρ

VItmax,I
x2(t)

)
,

k4(σ(xt)) =
.

S1,ref(t),
(5)

with
.

S2,ref(t) and
.

S1,ref(t) denoting the first-order time
derivatives of the virtual control inputs S2,ref(t) and
S1,ref(t), respectively; ρ, KI , KS1

and KS2
are scalar

positive control tuning parameters; the function k : R12 → R
is readily defined by (2). In the following, the proposed
quantized sampled-data event-based implementation of the
continuous–time controller is presented. It is highlighted here
that the first–order splines approximation method will be
used in order to obtain an approximation of the required
delayed measurements x(t − τg) and x(t − 2τg) (see (2)-
(5)) which, in real practice, are often not available in the
buffer due to technological constraints mainly related to the
involved sensors. Firstly, in order to present the proposed
event-based quantized sampled-data implementation of the
controller (2), the notions of quantizer ([29]), of partition
with a dwell time ([6], [43]) and of spline approximation
(see [10], [43]) are recalled.

For a given positive real n and x ∈ Rn, a quantizer is
a piecewise constant function qx : Rn → Qn

x , Qn
x ⊂ Rn,

characterized, for some given positive reals E (range of the
quantizer) and µx (error bound of the quantizer), by the
following implication ([29])

|x| ≤ E ⇒ |qx(x)− x| ≤ µx, (6)

Definition 1: For a positive integer l, a partition π =
{ti, i = −l,−l + 1, · · · } of [−2lτg,+∞) is a countable,
strictly increasing sequence ti ∈ [−2lτg,+∞), with t0 = 0,
such that ti → +∞ as i→ +∞. The diameter of π, denoted
diam(π), is defined as supi≥−l ti+1 − ti. The dwell time of
π, denoted dwell(π), is defined as infi≥−l ti+1− ti. For any
positive real a ∈ (0, 1], δ > 0, πa,δ is any partition π with
aδ ≤ dwell(π) ≤ diam(π) ≤ δ.

For given δ ∈ (0, 2τg) and a ∈ (0, 1], let l be the smallest
positive integer such that laδ ≥ 2τg . Let Tl,a,δ ⊂ Rl+1 be

the set defined as follows ([43])

Tl,a,δ =
{
w =

[
w0 w1 · · · wl

]T ∈ Rl+1,

wi ∈ [−lδ, 0], i = 0, 1, · · · , l, w0 = 0, w0 − wl ≥ 2τg,

δ ≥ wi − wi+1 ≥ aδ, i = 0, 1, · · · , l − 1
}
.

(7)
Let Pl,a,δ : R4(l+1) × Tl,a,δ → C4 be the map defined [43],
for z =

[
z0 z1 · · · zl

]T ∈ R4(l+1), zi ∈ R4, i =

0, 1, · · · , l, w =
[
w0 w1 · · · wl

]T ∈ Tl,a,δ , τ ∈
[−2τg, 0], as follows

(Pl,a,δ(z, w))(τ) = zi+1 +
τ−wi+1

wi−wi+1
(zi − zi+1), (8)

where i is the smallest integer in {0, 1, · · · , l − 1} such
that wi ≥ τ ≥ wi+1. In order to introduce the event-
based mechanism which will be used for the update of the
quantized sampled-data controller, let:

(a) P = 0.5


h 0 0 0
0 ρh 0 0
0 0 h 0
0 0 0 h

 , h > 0;

(b) V3 : C4 → R+ be the functional defined, for ϕ ∈ C4, as
V3(ϕ) = supθ∈[−∆,0] e

µθϕT (θ)Pϕ(θ);
(c) V∞ : C4 → R+ be the functional defined, for ϕ ∈ C4,

as V∞(ϕ) = ϕT (0)Pϕ(0) + ηV3(ϕ);
(d) D∞ : C4×R → R be the functional defined, for ϕ ∈ C4,

u ∈ R, as

D∞(ϕ, u) = D+V (ϕ, u)− ηµV3(ϕ)
+ηmax {0, D+V1(ϕ, u) + µV1(ϕ (0))} ,

(9)
with µ ≤ min{KxgiIref , KI , KS2

, KS1
} and η > 0.

For a given partition πa,δ , for given quantizers qx : R4 →
Q4

x, qu : R → Qu and qσ : R12 → Q12
σ , the proposed event-

based quantized sampled-data glucose regulator is described
by

u(t) = qu(k (qσ(σ(Pl,a,δ(B
qx
S (ij), BT (ij)))))),

t ∈ [tj , tj+1) , j = 0, 1, ..., tj , tj+1 ∈ πa,δ
(10)

where: k is the controller in (2); Pl,a,δ is the map defined
in (8); Bqx

S : N → R4(l+1), BT : N → Rl+1 are defined
(recursively) as

Bqx
S (0) = [qx(x̄0(0))

T qx(x̄0(t−1))
T ... qx(x̄0(t−l))

T ]
T
,

qx(x̄0(τ)) = qx(x0(τ)), τ ∈ [−∆, 0] ,
qx(x̄0(τ)) = qx(x0(−∆)), τ ∈ [t−l,−∆] ,

Bqx
S (j) =

[
qx(x(tj))
04l×1

]
+

[
04×4l 04
I4l 04l×4

]
Bqx

S (j − 1),

BT (0) = [0 t−1 ... t−l]
T
,

BT (j) =

[
01×l 0
Il 0

]BT (j − 1)− (tj − tj−1)

1...
1

,
(11)

j = 1, 2, ...; the sequence ij , j = 0, 1, . . . , is defined as
i0 = 0 and, for j ≥ 1, ij = j in the event that (see [43] for
the case without quantization)

−D∞(Pl,a,δ(B
qx
S (j), BT (j)), u

∗(ij−1))

+ λD∞(Pl,a,δ(B
qx
S (j), BT (j)), u

∗(j)) ≤ 0
(12)
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and ij = ij−1 otherwise.
In the following, the main theoretical results of the paper

are provided. In the forthcoming Theorem 1, it is shown
that there exist a suitably fast sampling δ and an accurate
quantization of the input/output channels (i.e., ranges and
error bounds for the quantizers qx, qσ and qu in (10)) such
that the semi-global practical stability, with arbitrarily small
steady–state tracking error, is guaranteed for the related
quantized sampled–data closed–loop tracking error system
(see (1), (3), (5), (14) and the corresponding closed–loop
system (15)–(10)).

Theorem 1: Let a be an arbitrary real in (0, 1]. Then, for
any positive reals r, R with 0 < r < R, there exist positive
reals δ, T , E, H , U , µx, µσ and µu, such that: for any state
quantizer qx : R4 → Q4

x with error bound µx and range E,
for any σ-quantizer qσ : R12 → Q12

σ with error bound µσ

and range H , for any input quantizer qu : R → Qu with
error bound µu and range U , for any initial condition such
that ∣∣∣∣∣∣∣∣


G0(τ)−Gref

I0(τ)− Iref
S2,0(τ)− S2,ref,0(τ)
S1,0(τ)− S1,ref,0(τ)


∣∣∣∣∣∣∣∣ ≤ R, τ ∈ [−2τg, 0],

for any partition πa,δ = {ti, i = −l,−l + 1, ...}, where l is
the smallest (nonnegative) integer such that laδ ≥ 2τg and
{t−l, t−l+1, ..., 0} ∈ Tl,a,δ , the corresponding unique locally
absolutely continuous solution of the quantized sampled–data
closed–loop system (1)-(10) exists ∀ t ≥ 0 and, furthermore,
satisfies∣∣∣∣∣∣∣∣


Gt(τ)−Gref

It(τ)− Iref
S2,t(τ)− S2,ref,t(τ)
S1,t(τ)− S1,ref,t(τ)


∣∣∣∣∣∣∣∣ ≤ E, τ ∈ [−2τg, 0], ∀ t ∈ R+,

∣∣∣∣∣∣∣∣


Gt(τ)−Gref

It(τ)− Iref
S2,t(τ)− S2,ref,t(τ)
S1,t(τ)− S1,ref,t(τ)


∣∣∣∣∣∣∣∣ ≤ r, τ ∈ [−2τg, 0], ∀ t ≥ T.

(13)

A. Proof of Theorem 1

In order to prove Theorem 1, we will make use of the
results concerning the stabilization in the sample-and-hold
sense theory in [10] applied to the glucose-insulin system
here considered. Firstly, taking into account (3), from (1),
we obtain the corresponding system rewritten with respect
to the displacement:

.
x1(t) = −Kxgi (x1(t) +Gref) (x2(t) + Iref) +

Tgh

VG
,

.
x2(t) = −Kxi (x2(t) + Iref)

+ TiGmax

VI
φ(x1(t− τg) +Gref) +

x3(t)+S2,ref (t)
VItmax,I

,

.
x3(t) =

x4(t)+S1,ref (t)
tmax,I

− x3(t)+S2,ref (t)
tmax,I

−
.

S2,ref(t),

.
x4(t) = −x4(t)+S1,ref (t)

tmax,I
+ u(t)−

.

S1,ref(t),
(14)

x(τ) = x0, τ ∈ [−2τg, 0], where xt, x0 ∈ C4. By
substituting the proposed virtual control inputs S2,ref(t) and

S1,ref(t) (5) in the second and third equation of (14), we
have
.
x1(t) = −Kxgi (x1(t) +Gref) (x2(t) + Iref) +

Tgh

VG
,

.
x2(t) =

x3(t)
VItmax,I

+
Kxgi

ρ x21(t)−KIx2(t) +
KxgiGref

ρ x1(t),
.
x3(t) =

x4(t)
tmax,I

−KS2x3(t)−
ρ

VItmax,I
x2(t),

.
x4(t) = −x4(t)+k3(σ(xt))

tmax,I
+ u(t)− k4(σ(xt)).

(15)
Taking into account that it is usually assumed that the glucose
and the insulin concentrations in the blood as well as the
insulin concentrations in the subcutaneous depots are equal to
their constant basal values before the beginning of the insulin
administration therapy, the initial state x0 ∈W 1,∞

4 and, there
exist a positive real q such that ess supθ∈[−2τg,0]

∣∣∣dx0(θ)
dθ

∣∣∣ ≤ q

(see Remark 1 in [9]). In order to prove Theorem 1, thanks
to the results in [10], we have to check that Assumption
2 in [10] (see also Assumption 1 in [11]) holds for the
GI system (15) and the static state feedback controller (2).
Indeed, if Assumption 2 in [10] holds for the GI system (15),
from Theorem 4 in [10], there exist a suitably fast sampling
and an accurate quantization of the input/output channels
such that the quantized sampled–data implementation of the
continuous-time static state feedback controller k in (2),
updated via the proposed event-based mechanism (see (10)-
(12)), ensures the semi–global practical stability property
of the related closed–loop system by (first–order) spline
approximation and thus the results in Theorem 1 follow.
According to Assumption 2 in [10], we have to prove that
there exist a smoothly separable functional V = V1 + V2
(see Definition 1 in [10]), positive reals η, µ, a function
p in C1

L (R+;R+) of class K∞, functions γi of class K∞,
i = 1, 2, 3, such that: (1) the map (ϕ, u) → D+V2 (ϕ, u) is
Lipschitz on bounded subsets of C4×R; (2) for any ϕ ∈ C4,
the following inequalities hold (with respect to the system
described by (15))

γ1(|ϕ(0)|) ≤ V (ϕ) ≤ γ2(∥ϕ∥∞),
D+V (ϕ, k(σ(ϕ))) ≤ −γ3(|ϕ(0)|),

(16)

D+V (ϕ, k(σ(ϕ))) + ηD+p ◦ V1(ϕ, k(σ(ϕ)))
+ηµp ◦ V1(ϕ(0)) ≤ 0.

(17)

The above conditions (i.e. Assumption 2 in [10]) are here
satisfied by choosing:
(i) the function V1 : R4 → R+ as V1(x̃) = x̃TPx̃, x̃ ∈ R4,
with P the matrix in point (a);
(ii) the functional V2 : C4 → R+ as V2(ϕ) = 0;
(iii) the functional V : C4 → R+ as V (ϕ) = V1(ϕ(0)) +
V2(ϕ), ϕ ∈ C4;
(iv) functions βi ∈ K∞, i = 1, 2, defined, for s ∈ R+, as
β1(s) = λmin(P )s

2 and β2(s) = λmax(P )s
2, respectively

(see Definition 1 in [10]);
(v) functions γi of class K∞, i = 1, 2, 3 defined, for s ∈ R+,
as γ1(s) = λmin(P )s

2, γ2(s) = λmax(P )s
2, and γ3(s) =

min{hKxgiIref , hρKI , hKS2 , hKS1}s2;
(vi) p = Id and the positive real µ, η as in point (d).
The proof of Theorem 1 is complete.
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IV. APPLICATION TO A T2DM PATIENT

In the following, the proposed event-based quantized
sampled-data controller is validated through an application
on a T2DM virtual patient and the related performances
are compared with the ones of the time-triggered counter-
part (see [9]). In particular, simulations have been carried
out on a T2DM virtual patient on the basis of parameter
estimates obtained from experimental data related to an
IVGTT experiment conducted on a real patient (see [38],
[40]). In the following, the estimated values are reported (see
[22], [38], [40]): Gb =10.66[mmol/L], Ib =49.29[pmol/L],
TiGmax = 0.236[min−1(pmol/kgBW)], tmax,I = 55[min],
VG = 0.187[L/kgBW], Kxi = 1.211 · 10−2[min−1],
Tgh = 0.003[min−1(mmol/kgBW)], τg = 24[min], VI =
0.25[L/kgBW], Kxgi =3.11 · 10−5[min−1(pmol/L)−1], γ =
3.205, G∗=9[mmol/L]. In the performed simulations, it has
been chosen: Gref =4.5 [mmol/L]; KI =0.01, KS1 =0.05,
KS2 = 0.02 and ρ = 10−3; an uniform sampling (i.e.
a=1) with δ=10[min]; logarithmic quantizers characterized
by Q4

x = {x ∈ R4|xi = ±0.01j, i = 1, · · · , 4, j =
0, 1, · · · , 104}, Q12

σ = {σ(ϕ) ∈ R12, ϕ ∈ C4|σ(ϕ)i =
±0.01j, i = 1, · · · , 12, j = 0, 1, · · · , 104} and Qu = {u ∈
R|u = ±0.01j, j = 0, 1, · · · , 200}. In Fig. 1, the evolution
of the state variables G(t), I(t), S2(t), S1(t) and of the
control input u(t) are reported in the case of time-triggered
controller (red line) and in the case of event-based controller
(black line) with λ = 0.3. Fig. 1 clearly shows that the
event-triggered solution achieves very good performances,
similar to the ones of the time–triggered solution, in spite
of the much lower average frequency of control updates
with respect to the quantized sampled-data time-triggered
controller with the same sampling interval (around 8% of
the sampling intervals).

V. CONCLUSIONS

In this paper, an event-based quantized sampled–data
static state feedback glucose regulator for T2DM patients by
means of subcutaneous insulin infusion has been provided.
In particular, an event-triggered digital glucose regulator has
been designed by exploiting a nonlinear time-delay model
of the glucose-insulin regulatory system which takes into
account the subcutaneous infusion of insulin. Quantization
(also non–uniform) in both input/output channels and time–
varying sampling periods have been taken into account. A
spline approximation methodology has been exploited in
order to cope with the problem of non-availability in the
buffer of suitably needed past values of the system state. It
has been proved that the digital event-based implementation
of the proposed glucose control strategy guarantees the semi–
global practical stability property of the related closed–loop
tracking error system, with arbitrarily small final tracking
error. The stabilization in the sample–and–hold sense theory
has been used as a tool to prove the results. The proposed
theoretical results have been validated through simulations.
Further investigations will concern the design of an event-
based quantized sampled–data glucose controller making use
of the only glucose measurements as well as an intensive

Fig. 1. Evolution of the state variables and of the control input.

pre–clinical validation of the proposed glucose control strat-
egy on a population of virtual patients: (1) by exploiting
the framework of a virtual environment accepted by the
Food and Drug Administration (FDA) for testing insulin
infusion therapies (see [26]); (2) concerning the analysis
of the efficacy and robustness properties with respect, for
instance, to the influence of meals, physical exercises and
the inter-individual variability.
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