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Abstract—Many sequential decision-making problems need
optimization of different objectives which possibly conflict with
each other. The conventional way to deal with a multi-task
problem is to establish a scalar objective function based on
a linear combination of different objectives. However, for the
case where we have conflicting objectives with different scales,
this method needs a trial-and-error approach to properly find
proper weights for the combination. As such, in most cases,
this approach cannot guarantee an optimal Pareto solution. In
this paper, we develop a single-agent scale-independent multi-
objective reinforcement learning on the basis of the Advantage
Actor-Critic (A2C) algorithm. A convergence analysis is then
done for the devised multi-objective algorithm providing a
convergence-in-mean guarantee. We then perform some experi-
ments over a multi-task problem to evaluate the performance of
the proposed algorithm. Simulation results show the superiority
of developed multi-objective A2C approach against the single-
objective algorithm.

Index Terms—Multi-objective reinforcement learning, advan-
tage actor-critic algorithm, convergence analysis.

I. INTRODUCTION

Many sequential decision-making problems include mul-
tiple objective functions competing with each other. The
common approach to finding an optimum solution for these
problems is a scalarization approach based on considering
a preference for different objectives. However, the Pareto
solutions cannot be obtained via this method [1]. As such, a
trial-and-error approach might be needed to tune optimum
scalarization settings. This difficulty also appears for the
sequential decision-making problems being modeled based
on a Multi-Objective Markov Decision Process (MO-MDP)
[2]. To find an optimal policy for a MO-MDP with different
tasks, a Multi-Objective Reinforcement Learning (MO-RL)
algorithm needs to be developed. A typical method for MO-
RLs is the scalarization approach to first construct a scalar
reward based on a combination of competing rewards (either
linear or non-linear), and then apply a single-objective RL
algorithm [3], [4]. However, this approach mainly makes the
solution highly dependent on the selected combination.

Most developed MO-RL algorithms are restricted to the
discrete environment. [5] consider a multi-objective Bellman
operator by which a value-based reinforcement learning al-
gorithm is devised to obtain the Pareto solutions in a discrete
environment. [6] develop a MO-RL algorithm on the basis of
deep Q-learning and optimistic linear support learning. They
consider a scalarized vector and potential optimal solutions to
have a convex combination of the objectives. However, they

need to search over all potential scalarizing vectors as the
importance of distinct objectives is not a priori knowledge.
[7] leverage a multi-objective variant of Q-learning with a
single-agent approach in order to learn a preference-based
adjustment being generalized across different preferences.
However, they use a convex envelope of the Pareto frontier
during the updating process. This is often sample inefficient
and leads to a sub-optimal policy, though it is efficient
from the computational complexity viewpoint. Apart from
the approach for discrete state-action spaces, there exist
MO-RL algorithms devised for the continuous environment.
[8] devise a MO-RL by meta-learning. They learned a
meta-policy distribution trained with multiple tasks. The
multi-objective problem is converted to a number of single-
objective problems using a parametric scalarizing function.
However, the solution depends on the distribution based on
which the parameters of the scalarizing function are drawn.
Reward-specific state-value functions are formulated based
on a correlation matrix to indicate the relative importance
of the objectives on each other [9]. However, they need to
tune this matrix weight to find the proper inter-objective
relationship. [10] develop a MO-RL framework based on the
maximum a posteriori policy optimization algorithm [11].
They learned objective-specific policy distributions to find
the Pareto solutions in a scale-invariant manner. However,
they still need to adjust objective-specific coefficients con-
trolling the influence of objectives on the policy update.

In this paper, we propose a MO-RL algorithm for the
continuous-valued state-action spaces without considering
any preferences for different objectives. In contrast to [10],
[9], [8], a single-policy approach is devised which simplifies
the algorithm architecture, and additionally there is no need
for an initial assumption for reward preference. As such, the
devised algorithm can be considered scale-invariant.

The contributions of this paper are summarized as follows:
i. We devise a single-policy multi-objective RL algorithm
without the importance of the competing objectives available
as a priori knowledge. We develop our algorithm on the basis
of Advantage Actor-Critic (A2C) [12] using reward-specific
state-value functions.
ii. We provide a convergence analysis of the proposed scale-
invariant MO-RL algorithm.
iii. We evaluate the devised algorithm over a multi-task prob-
lem. Results show that it outperforms the single-objective
A2C algorithm with a scalar reward from the sample-
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efficiency and scale-invariance perspectives.
Notations: In this paper, we mainly use lower-case a for

scalars, bold-face lower-case a for vectors and bold-face up-
percase A for matrices. Further, A⊤ is the transpose of A, ∥a∥
and ∥A∥ are the euclidean norm of a and the corresponding
induced matrix norm of A, respectively, and ∇ag(·) is the
gradient vector of multivariate function g(·) with respect to
(w.r.t.) vector a. We indicate the m-th element of the vector
a by am. Further, {am}n1 collects the components of vector
a from m = 1 to m = n. We use In, 1n, 0 and em to denote
the identity matrix of size n×n, a n-dimensional vector with
all elements equal to one, a vector with all elements equal
to zero, and a vector with all elements being zero except the
m-th element that is one, respectively.

II. BACKGROUND

A. Pareto Optimality

We brief the notion of Pareto optimality for a multi-
objective optimization (MOO) problem. For this, consider
the following unconstrained problem:

Q1 : min
x∈X

[f1(x), . . . , fr(x)],

where fj : RN → R, X is the feasible set, and r is the
number of objectives. Then, x∗ ∈ X is called a Pareto
optimal solution of Q1, if there is no other solution like
y ∈ X so as to dominates x∗, i.e., fi(y) ≤ fi(x

∗) for all
i ∈ {1, . . . , r} and there is one j so that fj(y) < fj(x

∗).
For MOO Q1, if there exists a vector α ∈ [0, 1]r with∑r
j=1 αj = 1 so that:

r∑
j=1

αj∇fj(x̂) = 0,

then x̂ is a Pareto optimal solution.
We now mention the following Lemma [13], [14]:

Lemma II.1. Assume a vector-valued multivariate function
f = (f1, . . . , fr), fj : Rn → R for j ∈ {1, . . . , r}. Define
q(·) =

∑r
j=1 α

∗
j∇fj(·), then −q(·) is a descent direction

for all functions {fj(·)}r1, where {α∗
j} are the solution of

the following optimization problem:

Q2 : min
{αj}r1

∥∥∥ r∑
j=1

αj∇fj(·)
∥∥∥2

,

s.t.

r∑
j=1

αj = 1, αj ≥ 0 for j ∈ {1, . . . , r}.

Accordingly, we can get:

Corollary II.1. The solution of Q1, for all αj ≥ 0, reads:

α∗ =

(
∇F (·)⊤∇F (·)

)−1
1r

1⊤
r (∇F (·)⊤∇F (·))−1 1r

, (1)

where ∇F (·) is an n × r matrix with ∇F (·) =
[∇f1, . . . ,∇fr](·).

B. Multi-Objective Markov Decision Process

A Multi-Objective Markov Decision Process (MO-MDP)
is expressed according to the tuple

(
S,A, PT (·), {rj(·)}r1

)
,

where S is a set of states or the state space, A is a set of
actions or the action space, PT (·) : S × A × S → [0, 1] is
the transition probability describing the system environment,
and rj(·) : S × A → R, for j ∈ {1, . . . , r}, is the j-th
immediate reward function. The system state and action, at
time t, are denoted by st ∈ S and at ∈ A, respectively. The
transition probability PT (st+1|st,at) shows the probability
that being in state st and performing action at leads to the
next state st+1. Therefore, we have: st+1 ∼ PT (·|st,at).
The reward function rj(st,at) indicates the j-th immediate
reward being obtained by transitioning from state st to state
st+1 by acting at.

In this work, we are interested in a stochastic policy
representation. For this, the action at is determined by
drawing from a conditional policy distribution π(·|st), i.e.,
at ∼ π(·|st). Based on the Markov property, the probability
of a trajectory τ : s1 → a1 → s2 → a2 → . . . → sT+1, is
determined by:

P(τ) :=P(s1,a1, s2,a2, . . . , sT+1)

=P(s1)

T∏
t=1

π(at|st)PT (st+1|at, st). (2)

In MO-MDP problems, the cumulative discounted rewards
{Rj(t)}r1 are defined based on a summation over a finite
horizon T as:

Rj(t) := E

{
T∑

k=t

γk−trj(sk,ak)

}
,

where the expectation is with respect to P(τ) and γ : 0 <
γ ≤ 1 is the discount factor. The aim is to find a single-
agent stochastic policy, such that the cumulative discounted
rewards {Rj(t)}r1 are minimized.

P1 : min
π(·|st)

[
R1(t), . . . , Rr(t)

]
, 0 ≤ t ≤ T (3)

s.t. at ∼ π(·|st)

s.t. st+1 ∼ PT (·|st,at).

Notice that P1 is a MOO problem and as such the minimiza-
tion is regarded from the Pareto optimality perspective.

C. A2C Algorithm

Here, we address the structure of A2C [12] as the basis
of the multi-objective reinforcement algorithm we intend to
devise. For the standard A2C algorithm, a single-objective
MDP with a single immediate reward function r(·) : S ×
A → R is taken into account, so r = 1. The aim is to
design an optimal policy distribution being parameterized
by a parameter θ ∈ Θ, where Θ is a parameterization set
of interest. Here, we use the notation πθ(·, ·) to show this
parametric policy distribution. Consequently, the probability
of trajectory (2) depends on θ, and can be expressed as:

Pθ(τ) = P(s1)

T∏
t=1

πθ(at|st)PT (st+1|at, st). (4)
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Now, the objective can be expressed by J(θ) :=
EPθ(τ)

{∑T
k=1 r(sk,ak)

}
that needs to be minimized with

respect to policy distribution πθ(·|·). Computing the gradient
of J(θ) gives [12]:

∇θJ(θ) = E

{
T∑

k=1

∇θ log πθ(ak|sk)A(sk,ak)

}
, (5)

where V (sk) = E
{∑T

k′=k r(sk′ ,ak′)
∣∣sk} : S → R,

Q(sk,ak) = E
{∑T

k′=k r(sk′ ,ak′)
∣∣sk,ak

}
: S × A → R

and A(sk,ak) = r(sk,ak)+γV (sk+1)−V (sk) : S ×A →
R, are the state-value, action-value, and advantage functions,
respectively. Note that the policy distribution πθ(·|·) with
random parameter θ is managed by an actor agent which
can employ a neural network to generate action based on a
given state.

Here, it is of benefit to remark on two practical points
of the A2C algorithm. First, a Stochastic Gradient Descent
(SGD) is applied in A2C, where the parameter θ is updated
by the actor agent based on the following rule:

θ ← θ − µa∇θĴ(θ),

where µa is the actor learning rate and ∇θĴ(θ) =∑T
k=1 ∇θ log πθ(ak|sk)A(sk,ak). Additionally, it is con-

ventional to represent the state-value function V (sk) by a
ϕ-parametric approximation Vϕ(sk) with ϕ ∈ Φ, where
Φ is a parameterization set of interest. A neural network
with random parameter ϕ can be employed by a critic
agent for this representation. Accordingly, the advantage
function can be represented by Aϕ(sk,ak) := r(sk,ak) +
γVϕ(sk+1) − Vϕ(sk). Then, based on the Bellman’s equa-
tion V (sk) = Esk+1,ak|sk

{r(sk,ak) + γV (sk+1)}, with
Esk+1,ak|sk

{·} =
∫∫

(·)πθ(ak|sk)PT (sk+1|ak, sk)dakdsk+1,
the following objective, called critic loss, is regarded to
update parameter ϕ:

T∑
k=1

(
Esk+1,ak|sk

{
r(sk,ak) + γV (sk+1)− Vϕ(sk)

})2

.

However, in practice, the following SGD approach is used:

ϕ← ϕ− µc

T∑
k=1

Aϕ(sk,ak)∇ϕVϕ(sk),

where µc is the critic learning rate. It is noteworthy that the
update process of the actor agent can also be expressed based
on the advantage function as:

θ ← θ − µa

T∑
k=1

∇θ log πθ(ak|sk)Aϕ(sk,ak). (6)

Here, we need to emphasize that environment stochasticity
affects the values of θ and ϕ, so we treat them as random
variables.

III. MULTI-OBJECTIVE A2C ALGORITHM

In the sequels, we develop a single-agent multi-objective
A2C algorithm based on the result of Lemma II.1. We call the
proposed algorithm MO-A2C. For this, we formulate multi-
objective actor (MO-actor) and multi-objective critic (MO-
critic) agents as follows:

A. MO-Critic Agent
Consider a MO-MDP with immediate reward functions

{rj(·)}r1. We formulate a MO-critic agent applying a shared
ϕ-parametric neural network in order to learn multiple
state-value functions {Vϕ,j(·)}r1 corresponding to rewards
{rj(·)}r1. We thus introduce the j-th advantage function:

Aϕ,j(st,at) = rj(st,at) + γVϕ,j(st+1)− Vϕ,j(st).

Then, based on the Lemma II.1, we establish the following
reward-specific MO-critic loss:

Ĵcr,j(ϕ) =

T∑
k=1

A2
ϕ,j(sk,ak), (7)

with the MO-critic agent updating ϕ by the rule:

ϕ← ϕ− µc

r∑
j=1

αcr,j∇ϕĴcr,j(ϕ), (8)

where ∇ϕĴcr,j(ϕ) = −
∑T

k=1 Aϕ,j(sk,ak)∇ϕVϕ,j(sk) and
{αcr,j}r1 are obtained by:

αcr = argmin
{αj ≥ 0}r1∑r
j=1 αj = 1

∥∥∥∥ r∑
j=1

αj ∇ϕĴcr,j(ϕ)

∥∥∥∥2

. (9)

B. MO-Actor Agent
For the MO-actor agent, we consider a θ-parametric

neural network, which receives sk and outputs the policy
distribution πθ(·|sk), from which the action vector ak is
drawn. Accordingly, the following approach, which slightly
differs from the MO-critic updating procedure, is devised for
the MO-actor agent. Inspired by Eqs. (5) and (6), for the j-th
reward-specific loss we have:

∇θĴac,j(θ,ϕ) = −
T∑

k=1

∇θ log πθ(ak|sk)Aϕ,j(sk,ak), (10)

and the MO-actor agent updates θ by the rule:

θ ← θ − µa

r∑
j=1

αac,j∇θĴac,j(θ,ϕ), (11)

where {αac,j}r1 are found by:

αac = argmin
{αj ≥ 0}r1∑r
j=1 αj = 1

∥∥∥∥ r∑
j=1

αj ∇θJ
ϕ
ac,j(θ)

∥∥∥∥2

, (12)

with

∇θJ
ϕ
ac,j(θ):=−Eϕ E

{
T∑

k=1

∇θ log πθ(ak|sk)Aϕ,j(sk,ak)

}
. (13)

Note that, in contrast to MO-critic loss (see Eq. (9)), we
exploit the expected loss ∇θJ

ϕ
ac,j(θ) to optimize αac in

Eq. (12). To estimate it, we use a moving average of
∇θĴac,j(θ,ϕ) over different episodes and name it as episodic
average.

Figure 1 illustrates the diagram of devised multi-objective
A2C algorithm. A pseudo-code of this algorithm is also
shown in Algorithm 1 with i being the iteration or episode
index, Emax being the total number of episodic realizations
the algorithm is learned for, and I = {1, . . . , Emax} is the
set of episodes.
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Fig. 1: The diagram of proposed MO-A2C algorithm. A thick line
shows reward-specific information flows while a thin line indicates
a single information flow.

Algorithm 1: Pseudo-Code of MO-A2C.
for i ∈ I := {1, . . . , Emax} do

Input: Initial state vector s0, MO-actor and MO-critic
agents parameterized by θ and ϕ.

for t = 1 to T do
Select an action at following πθ(·|st), interact

with the environment.
Observe new state st+1 and immediate rewards
{rj(st,at)}r1.

Computes {Aϕ,j(st,at)}r1 using estimated
Value-functions {Vϕ,j(st)}r1 and based on Eq.
(7).

Buffer {Vϕ,j(st)}r1, {Aϕ,j(st,at)}r1,
{rj(st,at)}r1 and log

(
πθ(at|st)

)
.

Compute episodic average of MO-actor losses
{∇Ĵac,j}r1 to estimate expected losses {∇Jac,j}r1.

if update is needed, then

MO-critic update process:
Obtain αcr based on Eq. (9).
Compute MO-critic losses {Ĵcr,j(ϕ)}r1 and

apply the rule:

ϕ← ϕ− µc

r∑
j=1

αcr,j∇ϕĴac,j(ϕ).

MO-actor update process:
Obtain αac based on Eq. (12).
Eestimate {∇Jac,j}r1 by episodic averaging.
Compute the gradient of MO-actor losses
{∇θĴac,j(θ,ϕ)}r1 and apply the rule:

θ ← θ − µa

r∑
j=1

αac,j∇θĴac,j(θ,ϕ).

end
end

end

IV. CONVERGENCE ANALYSIS OF MO-A2C ALGORITHM

Here, we intend to analyze the convergence of the pro-
posed MO-A2C algorithm. For this, we first make some
assumptions:

Assumption 1: The ϕ-parametric state-value functions are
unbiased, i.e.,

Eϕ{Vϕ,j(sk)} = Vj(sk), j ∈ {1, . . . , r}.

According to this assumption and Eqs. (10) and (13) we can

get:

∇θJ
ϕ
ac,j(θ) = Eϕ E

{
∇θĴac,j(θ,ϕ)

∣∣ θ,ϕ}
= −

T∑
k=1

Eϕ E {∇θ log πθ(ak|sk)Aϕ,j(sk,ak)}

= −E

{
T∑

k=1

∇θ log πθ(ak|sk)Aj(sk,ak)

}
:= ∇θJac,j(θ).

Inspired by this result, we define the MO-actor expected
losses as follows:

Jac,j(θ) :=−E

{
T∑

k=1

log πθ(ak|sk)Aj(sk,ak)

}
, j = {1, . . . , r}.

Note that Jac,j(θ) differs from the original loss
−EPθ(τ)

{∑T
k=1 rj(sk,ak)

}
merely due to the terms

not depending on θ. Furthermore, this distinction does not
impose any restrictions on the upcoming analysis.

We now take into account two conventional assumptions
based on the literature [15].

Assumption 2: The MO-actor expected losses {Jac,j(θ)}r1
are Γ-strongly convex w.r.t θ. As such we get:

Jac,j(θ
′)− Jac,j(θ) ≥ ∇θJac,j(θ)

⊤(θ′ − θ) +
Γ

2
∥θ′ − θ∥2.

Furthermore, they are Lipschitz continuous functions with
constant L w.r.t θ, so we have:

Jac,j(θ
′)− Jac,j(θ) ≤ ∇θJac,j(θ)

⊤(θ′ − θ) +
L

2
∥θ′ − θ∥2.

Notice that Assumptions 2 is made for the expected losses
{Jac,j(θ)}r1 and not for the stochastic losses {Ĵac,j(θ,ϕ)}r1.

Assumption 3: Consider the Jacobian matrix
∇Ĵ(θ,ϕ) = [∇θĴac,1, . . . ,∇θĴac,r](θ,ϕ) where
∇J(θ) = Eϕ E

{
∇Ĵ(θ,ϕ)

∣∣ θ,ϕ}. Then, its conditional
covariance is bounded by a positive semi-definite matrix B:

Eϕ E
{
∇Ĵ(θ,ϕ)⊤∇Ĵ(θ,ϕ)

∣∣ θ,ϕ}−∇J(θ)⊤∇J(θ) ≤ B.

This assumption indicates that the covariance matrix of
Jacobian of the stochastic losses is upper-bounded by B.

Now, we have the following theorems for the MO-A2C
algorithm:

Theorem IV.1. Consider expected losses {Jac,j(·)}r1 and
stochastic losses {Ĵac,j(·, ·)}r1 complying with Assumptions
2 and 3, and αac being the solution of Eq. (12). Moreover,
consider SGDes (8) and (11) characterized by iteration
number i and MO-actor learning rate {µi}i∈I with

µi ≤ min

{
1

L
,

1

L∥B∥E
{ 1

1⊤
r

(
∇J(θi)⊤∇J(θi)

)−1
1r

}}
,

which generate sequences {ϕi}i∈I and {θi}i∈I , we have:

E Jac,j(θ
i+1) ≤ E Jac,j(θ

i).

Proof. Please refer to Appendix A.

Notice that Theorem IV.1 guarantees all the MO-actor
expected losses

{
E Jac,j(θ

i)
}r

j=1
continually reduce as the
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algorithm iteration increases. It thus empowers us to simul-
taneously improve all of the cumulative rewards with each
iteration, on average.

Theorem IV.2. Consider the framework of Theorem IV.1,
and assume MOO P1 with a θ-parametric policy distribution
πθ(·|·) being optimized by SGDes (8) and (11) with gener-
ated sequences {ϕi}i∈I and {θi}i∈I and MO-actor learning
rates {µi}i∈I complying with assumptions of Theorem IV.1.
Furthermore, assume there exists a Pareto optimal solution
θ∗ of P1 dominating θi for the objectives {Jac,j(·)}rj=1 with
i ∈ I, we then have:

E∥θi+1 − θ∗∥ ≤ (1− Γµi) E∥θi − θ∗∥+ (1 + L)µ2
i ∥B∥.

(14)

Proof. Please refer to Appendix B.

Accordingly, we can get:

Corollary IV.1. Consider the SGD approach (11) with
generated sequence {θn}n∈I and MO-actor learning rate
{µn}n∈I complying with assumptions of Theorem IV.1. Set
µn so that limn→∞ µn = 0, then limn→∞ E∥θn−θ∗∥2 = 0.

Proof. We use the result of [16]. As such, based on Theorem
IV.2 we have:

∆n+1 − ϵ ≤ (1− Γµn)(∆n − ϵ)− µn(Γϵ− (1 + L)µn∥B∥)
a
≤ (1− Γµn)(∆n − ϵ).

where ∆n = E∥θn−θ∗∥2 and ϵ > 0. For (a), we considered
that Γϵ−(1+L)µn∥B∥ ≥ 0 for large n. Hence, for Γµn ≤ 1
it reads:

[∆n+1 − ϵ]+ ≤ (1− Γµn)[∆n − ϵ]+,

where [x]+ = x+ |x|. By iterating, we get:

[∆n+k − ϵ]+ ≤
k−1∏
i=0

(1− Γµn+i) [∆n − ϵ]+.

Considering that limk→∞
∏k−1

i=0 (1 − Γµn+i) = 0, we have:
limm→∞[∆m − ϵ]+. Since it holds for any value ϵ > 0, the
statement follows.

Note that the result of Corollary IV.1 guarantees that a
convergence-in-mean can be achieved by choosing a suitable
MO-actor learning rate.

In the sequels, we study how the learning rate can be
chosen to achieve a convergence-in-mean. For the learning
rate µi being sufficiently small, the evolution of SGD (11)
can be regarded in a continuous time perspective with pa-
rameter t. As such, based on 14, the dynamics of quantity
∆i = E∥θi − θ∗∥ can be expressed by the following
differential inequality:

d∆t ≤ −Γµt∆tdt+ (1 + L)µ2
t∥B∥dt,

which gives the following solution:

∆τ ≤ ∆0 e
−Γ

∫ τ
0

µsds + (1 + L)∥B∥
∫ τ

0

µ2
t e

−Γ
∫ τ
t

µsdsdt.

Then it can be simply verified that for the selection µt =
c0
t ,

we can get limτ→∞ ∆τ → 0, which thus yields:

lim
i→∞

E∥θi − θ∗∥ → 0.

This complies with the result of Corollary IV.1 and shows a
strategy to choose a dynamics for {µi}i∈I .

V. EXPERIMENTS

A. Evaluation over a Multi-Task Problem
To empirically evaluate the devised MO-A2C algorithm,

we consider a practical multi-task problem from the context
of edge caching for cellular networks. For this, we take into
account the system model presented in [17]. The environment
of this task is a mobile cellular network which serves
requesting mobile users by employing base-stations. The
cellular network operates in a time-slotted fashion with time
index t ∈ {1, . . . , T}, where T is the total duration within
which the network operation is considered.

The network itself constitutes file-requesting users, trans-
mitting base-stations as well as a library containing N files
from which the users request files. The users are spatially
distributed across the network. They are interested in dif-
ferent files based on a file popularity which determines the
probability that a file is preferred by a typical user. As such,
files will be requested with different probabilities. The base-
stations are also spatially distributed and are equipped with
caches. The base-station caches are with a limited capacity of
M files. They proactively store files from the library at their
caches. For this, a probabilistic approach is used to place the
files at base-station caches; file n ∈ {1, . . . , N} is cached at
a typical base-station in time t with probability pt,n.

To model the location of users and base-stations, we
use two Poisson point processes with intensities λu and
λb, respectively. The network employs the base-stations to
multicast the cached files to satisfy users. Moreover, the
base-stations exploit a resource allocation mechanism to
transmit different files. As such, disjoint file-specific radio
resources are allocated so that file n is transmitted at time
t by occupying bandwidth wt,n. The total amount of radio
resources being needed to satisfy users is named bandwidth
consumption cost.

Not all users can be successfully served by the network
due to a reception outage probability. As such, at time t, a
typical user preferring file n is not able to receive the needed
file with a reception outage probability Ot,n. The unsatisfied
users will fetch the file directly from the network using a
reactive transmission and consuming a sufficient amount of
radio resources. However, this causes a network load, namely
as backhaul cost, due to on-demand file transmission from
the core-network to the requesting user.

The aim of this problem is to design a cache policy
in order to satisfy as many users as possible with the
minimum level of resource consumption and backhaul cost.
More specifically, the cache policy should consider three
competing objectives. (a) quality-of-service (QoS) metric
that measures the percentage of users that can successfully
receive their needed files. This metric shows the probability
that a requesting user is properly satisfied by downloading its
needed file, and it can be expressed at time t based on the file-
specific reception outage probability Ot,n. (b) bandwidth
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(BW) consumption metric indicates the total radio resources
being allocated to respond users. (c) backhaul (BH) cost
measures the network load needed to fetch files directly
from the network than the cache of base-stations. Note that
we express QoS metric, BW consumption, and BH load
objectives at time t based on negative immediate rewards that
are denoted by rQoS(t), rBW(t) and rBH(t), respectively.
Note that these immediate rewards depend on the file-
specific cache probabilities {pt,n}N1 and file-specific resource
allocation {wt,n}N1 [17]. As such, a multi-task problem with
three competing objectives can be formulated.

For this problem, we define the system state st as a vector
containing file-specific request probabilities of users from
the network. We denote this vector by rt,n which shows
the probability that file n is requested from the network by
a typical user at time t. The system action at is a vector
comprising of the file-specific cache probabilities pt,n and
file-specific resource allocation wt,n. Hence, the state and
action vectors are expressed by:

st =
[
{rt,n}N1

]⊤
, at =

[
{pt,n}N1 , {wt,n}N1

]⊤
, t ∈ {1, . . . , T}.

This cache policy problem can be formulated based on a MO-
MDP with a continuous state-action space [17], and as such
it can be designed based on a multi-objective RL algorithm.
Therefore, we apply the algorithm 1 for this problem whose
solution is denoted by MO-A2C. We also construct a scalar
reward based on a linear combination and then use a single-
objective A2C algorithm whose solution is denoted by SO-
A2C.

B. Experiment Setup and Hyper-parameters

We consider the following settings for the considered
system environment. The number of files is N = 100, the
capacity of base-stations M = 10, and the spatial intensity
of base-stations and users are λb = 10 and λu = 105,
respectively, with the units of points/km2. The desired rate
of transmission is 1 Mbits/second. This quantity affects the
reception outage probability. The total number of time-slots
is T = 256 and the discount factor is set γ = 0.96.

For the MO-A2C algorithm, the actor and critic learning
rates are set to 1 × 10−3. Two separate neural networks,
each with one hidden layer, represent the MO-actor and MO-
critic agents. The MO-critic network outputs three values
representing the reward-specific state-value functions Vϕ,j(·).
The number of neurons in the hidden layer for the critic is
64 and the rectified linear unit (ReLU) activation function is
used for its neuron. The MO-actor network represents the RL
single-policy distribution πθ(·, ·). The number of neurons in
the hidden layer for the actor network is 128.

For the SO-A2C algorithm, the actor and critic learning
rates are the same as MO-A2C. Moreover, the same archi-
tecture is considered for the actor and critic neural networks,
except that the number of neurons in the hidden layer of
the actor is 64, which is set to give the best performance.
The critic network outputs only a single state-value function
related to the scalar reward. Notice that the scalar reward is
obtained based on a linear combination of the aforementioned
rewards rQos(t), rBW(t) and rBH(t), defined as follows:

rsc = λQoS rQoS(t) + λBW rBW(t) + λBH rBH(t),

Fig. 2: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by MO-A2C.

Fig. 3: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by SO-A2C.

where λQoS, λBW and λBH are the scalarization scales. We
evaluate the following combinations for these scales:

[λQoS, λBW, λBH] ∈
{
[1, 1, 1], [0.1, 1, 1], [1, 10, 0.1]

}
.

C. Experiment Results

We apply the multi-task problem explained in Section V-A.
Additionally, it is noteworthy that the considered rewards,
i.e., rQos(t), rBW(t) and rBH(t), are re-scaled to lie in the
range [0, 1] and then are used by MO-A2C and SO-A2C
algorithms.

We evaluate the sample efficiency of MO-A2C
and compare it to SO-A2C with scalarization scales
[λQoS, λBW, λBH] = 13. The training performance of MO-
A2C and SO-A2C are plotted in Figures 2 and 3, in terms of
the cumulative rewards of mentioned metrics (QoS metric,
BW consumption, and BH load) for different episodes
(Emax). According to Figures 2 and 3, it can be seen
that MO-A2C outperforms SO-A2C from sample-efficiency
perspective, as it can be learned after 2 × 103 episodes
while SO-A2C needs more that 5 × 103 episode samples to
be learned.

To evaluate the scale-dependency of MO-A2C and SO-
A2C, we consider a test scenario. For SO-A2C, we use the
scalarization scales [λQoS, λBW, λBH] = [0.1, 1, 1]. For MO-
A2C, we multiply the QoS reward by 0.1 and keep the other
two rewards unchanged, and then evaluate the algorithms
over the re-scaled rewards. For this scenario, we plot the
training performance of MO-A2C and SO-A2C in Figures
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Fig. 4: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by MO-A2C. QoS reward is
multiplied by 0.1 and other rewards are kept unchanged.

Fig. 5: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by SO-A2C. To constitute a scalar-
ized reward, we use the scales [λQoS, λBW, λBH] = [0.1, 1, 1].

4 and 5, in terms of the cumulative rewards for different
episodes. Based on Figures 4 and 5, it can be inferred that
MO-A2C is more insensitive towards the scaling than SO-
A2C. More specifically, MO-A2C is able to learn the RL
agent after around 3 × 103 episodes despite of QoS reward
being re-scaled. However, SO-A2C agent is not properly
learned even after 5× 103 episodes.

We also consider another test scenario for scale-
invariance evaluation of MO-A2C. For SO-A2C, the scales
[λQoS, λBW, λBH] = [1, 10, 0.1] are used and for MO-A2C,
we multiply the rewards related to BW consumption and BH
load by 10 and 0.1, respectively, and keep the QoS reward
unchanged. We then evaluate MO-A2C over the re-scaled
rewards. The training performance of MO-A2C and SO-A2C
are sketched in Figures 6 and 7, in terms of the cumulative
rewards for different episodes. Comparison of Figures 6 and
7 confirms that MO-A2C is more robust to re-scaling factors
than SO-A2C and that MO-A2C can be considered as a scale-
invariance approach.

VI. CONCLUSION

In this paper, we devised a scale-independent multi-
objective reinforcement learning approach on the grounds
of the advantage actor-critic (A2C) algorithm. By making
some assumptions, we then provided a convergence analysis
based on which a convergence-in-mean can be guaranteed.
We compared our algorithm for a multi-task problem against

Fig. 6: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by MO-A2C. Rewards related
to BW consumption and BH load are multiplied by 10 and 0.1,
respectively.

Fig. 7: Discounted cumulative reward for QoS metric, BW con-
sumption and BH load obtained by SO-A2C. To constitute a scalar-
ized reward, we use the scales [λQoS, λBW, λBH] = [1, 10, 0.1].

a single-objective A2C with a scalarized reward. The simu-
lation results show the capability of the developed algorithm
from the sample-efficiency, optimality and scale-invariance
perspectives.
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APPENDIX

A. Proof of Theorem IV.1
Proof. According to the update rule Eq. (11), we have:

θi+1 = θi − µi∇Ĵ(θi,ϕi)αi
ac,

where ∇Ĵ(θi,ϕi) = [∇θĴac,1, . . . ,∇θĴac,r](θ
i,ϕi), based

on which and Assumption 2, we thus obtain:

Jac,j(θ
i+1)−Jac,j(θ

i) ≤ −µi∇Jac,j(θ
i)

⊤∇Ĵ(θi,ϕi)αi
ac

+
µ2
iL

2
αi

ac
⊤∇Ĵ(θi,ϕi)

⊤∇Ĵ(θi,ϕi)αi
ac

It then reads:

E
{
Jac,j(θ

i+1)− Jac,j(θ
i)
}

≤ E
{
E
{(µ2

iL

2
∇Ĵ(θi,ϕi)αi

ac

− µi∇J(θi)ej

)⊤
∇Ĵ(θi,ϕi)αi

ac

∣∣∣ θi,ϕi

}}
a
≤ −µiE

{(
ej −

µiL

2
αi

ac

)⊤
∇J(θi)

⊤∇J(θi)αi
ac

}
+

µ2
iL

2
∥B∥,

(15)

where (a) was obtained based on

E
ϕi E

{
αi

ac
⊤∇J(θi)

⊤∇Ĵ(θi,ϕi)αi
ac

∣∣ θi,ϕi
}

= αi
ac

⊤∇J(θi)
⊤∇J(θi)αi

ac,

Assumption 3 and αi
ac

⊤
Bαi

ac ≤ ∥B∥ ∥αi
ac∥2 ≤ ∥B∥. On

the other hand, from Eq. (12), for all αi
ac,j ≥ 0, it reads:

αi
ac =

[
1⊤
r

(
∇J(θi)

⊤∇J(θi)
)−1

1r

]−1(
∇J(θi)

⊤∇J(θi)
)−1

1r.

By substituting this into Eq. (15), we get:

E
{
Jac,j(θ

i+1)− Jac,j(θ
i)

}
≤−

(
µi −

µ2
iL

2

)
E
{

1

1⊤
r

(
∇J(θi)

⊤∇J(θi)
)−1

1r

}
+

µ2
iL

2
∥B∥

a
≤−

µi

2
E
{

1

1⊤
r

(
∇J(θi)

⊤∇J(θi)
)−1

1r

}
+

µ2
iL

2
∥B∥ ≤ 0,

where we used µiL ≤ 1 for (a). Considering that the
denominator of RHS of the recent equation is positive due
to the positive-definiteness of

(
∇J(θi)⊤∇J(θi)

)−1
, the

statement follows for µi <
2
L .

B. Proof of Theorem IV.2
We need the following Corollary to prove Theorem IV.2.

Corollary A.1. Consider the framework of Lemma IV.1, we
then get:

E
{
αi

ac
⊤∇J(θi)

⊤∇J(θi)αi
ac

}
≤ 2

µi
E

{
r∑

j=1

αi
j

(
Jac,j(θ

i)− Jac,j(θ
i+1)

)}
+ µiL∥B∥.

Proof. Based on Eq. (15) and µiL ≤ 1, the statement
follows.

We now prove Theorem IV.2.

Proof. Based on SGD update (11), we obtain:

E∥θi+1 − θ∗∥2 = E∥θi − θ∗ − µi∇Ĵ(θi,ϕi)αi
ac∥2

≤ E∥θi − θ∗∥2

− 2µiE
{
E
{ r∑

j=1

αi
ac,j∇Ĵac,j(θ

i,ϕi)⊤
(
θi − θ∗) ∣∣ θi,ϕi

}}
+ E

{
µ2
iα

i
ac

⊤∇Ĵ(θi,ϕi)
⊤∇Ĵ(θi,ϕi)αi

ac

}
a

≤ E∥θi − θ∗∥2 − 2µiEθi

{ r∑
j=1

αi
ac,j∇Jac,j(θ

i)⊤
(
θi − θ∗)}

+ E
{
µ2
iα

i
ac

⊤∇Ĵ(θi,ϕi)
⊤∇Ĵ(θi,ϕi)αi

ac

}
b

≤ (1− Γµi) E∥θi − θ∗∥2

+ 2µiE
{ r∑

j=1

αi
ac,j

(
Jac,j(θ

∗)− Jac,j(θ
i)
)}

+ µ2
iE

{
E
{
αi

ac
⊤∇Ĵ i⊤∇Ĵ i

αi
ac

∣∣ θi,ϕi
}}

c

≤ (1− Γµi) E∥θi − θ∗∥2 + µ2
i ∥B∥

+ 2µiE
{ r∑

j=1

αi
ac,j

(
Jac,j(θ

∗)−Jac,j(θ
i+1)

)}
d

≤ (1− Γµi) E∥θi − θ∗∥2 + (1 + L)µ2
i ∥B∥,

where (a) was achieved considering
EϕE{∇Ĵac,j(θ,ϕ)|θ,ϕ} = ∇Jac,j(θ) based on Assumption
1, (b) was obtained based on Assumption 2, (c) according to
Assumption 3 and Corollary A.1, and for (d) we exploited
θ∗ being a dominating Pareto optimum.
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