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Abstract— The aim of this paper is to assess the effect of the
presence of an opponent in a class of finite-horizon differential
games described by scalar linear differential equations and
quadratic cost functionals in which the state is penalized only
at the terminal time. The contribution of the other player is
quantitatively characterized by comparing the solutions of the
underlying Riccati differential equations for the optimal control
(in the absence of the opponent) and of the differential game.
In the case of open-loop Nash equilibria, this effect can be
characterized in closed form, since an analytic expression for
the solutions of the coupled asymmetric differential Riccati
equations can be computed. For feedback Nash equilibria a
closed-form solution to the related coupled symmetric differ-
ential Riccati equations cannot be determined. Therefore an
estimate of the solution is provided by relying on a functional
approximation approach, allowing to characterize the effect of
the presence of an opponent also in this setting.

Index Terms— Optimal control, Optimization, Nonlinear sys-
tems

I. INTRODUCTION

The paramount importance of the Differential Riccati
Equations (DRE) in multiple fields of application, spanning
from mathematics, physics, engineering, and economics has
led to an extensive and vibrant reasearch activity in the
past decades, which is still currently active. In particular,
in the field of optimal control theory, the application of
Dynamic Programming (DP) (see [1], [2]) leads to an op-
timal solution of the finite-horizon linear quadratic regulator
(LQR) problem, which is described by a state feedback
characterized by the solution of a DRE (see [3], [4], [5], [6]).
Such a solution can be equivalently obtained by applying
Pontryagin’s Minimum Principle (PMP) (see [7]), which
yields instead an open-loop optimal solution. Nonetheless,
the application of invariance arguments (see [4]) leads to
a feedback synthesis of the underlying control law: it may
then be immediately recognized that the invariance equation
coincides with the DRE that arises via the application of
DP. In the case of linear quadratic (LQ) differential games,
(see [5], [6], [8], [9], [10]), when seeking for so-called
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Nash equilibrium strategies, a similar reasoning does not
lead to the same conclusions, i.e., application of the PMP
together with invariance arguments yields a set of coupled
DRE which is different from that provided by DP arguments.
In the former case, the resulting set of coupled asymmetric
DRE leads to the characterization of the so-called open-
loop Nash equilibrium strategies (see [6]), while in the
latter case the resulting set of coupled symmetric DRE
allows describing the class of feedback (or closed-loop) Nash
equilibrium strategies. Methods that provide both analytical
(see [11], [12], [13], [14], [15]) as well as iterative (see, for
example, [16]) solutions to asymmetric DRE have gained an
interest in the past decades. Analytical methods try to directly
solve the underlying equations, possibly by exploiting some
structural properties exhibited by the (matrix) coefficients of
the considered equations. For example in [11], a proportional
relation between the matrices constituting the running cost is
exploited to derive the closed-form solution to the coupled
asymmetric DREs. In [13], [14] a local closed-form solu-
tion to the asymmetric DRE is provided by assuming the
invertibility of the coefficient of the quadratic term, together
with a similarity assumption on a suitable block matrix. On
the other hand, iterative methods rely on the construction
of a sequence of approximate solutions which iteratively
converges to the solution of the DRE. Unfortunately in
the case of symmetric DRE it is not possible to compute
an analytical solution, in general, by exploiting structural
properties similar to those exhibited by the asymmetric
counterpart. Thus, approximation methods, like those based
on series expansion (see, e.g., [17], [18]) to provide estimates
of such solutions, have emerged.

The main contribution of this work is to provide quantita-
tive expressions that characterize the effect of the presence
of an opponent for the class of scalar LQ differential games.
In the case of open-loop Nash equilibria, a closed-form
expression of such an effect can be computed, since it
is possible to obtain closed-form solutions to the coupled
asymmetric DRE. In this case, the presence of the opponent
can be characterized in terms of a "translating" factor acting
on the behavior of the optimal costate of the underlying
optimal control problem of the considered player. In the case
of feedback Nash equilibria, it is possible to show that the
presence of an opponent always results into an improvement
on the cost incurred by the considered player. An estimate of
the expression, characterizing such an improvement, can be
provided by relying on functional approximation arguments.

The rest of the paper is organized as follows. The class
of considered problems, together with some preliminaries,
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are introduced in Section II. The main results, namely the
characterization of the effect of the presence of an opponent
in a class of LQ games, are provided in Sections III and
IV. The former characterizes this effect, in closed-form, in
the case of open-loop Nash equilibria, whereas the latter
provides an estimate of this characterization in the case
of feedback Nash equilibria. A discussion on the aspects
concerning the construction of the estimates of the solutions
to the coupled symmetric DRE, together with a numerical
example are provided in Section V. Finally, some concluding
remarks and a perspective on future work are given in Section
VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a nonzero-sum scalar differential game involv-
ing two, non-cooperating, players seeking to minimize the
quadratic cost functionals defined as

Ji(u1, u2) =
qif
2
x(tf )

2
+

1

2

∫ tf

t0

riui(t)
2
dt, (1)

subject to the linear dynamics

ẋ = ax+ b1u1 + b2u2, x(t0) = x0. (2)

The variable x : R → R represents the state of the system,
while ui : R → R, for i = 1, 2, denotes the control input
of the i-th player which acts on the system, a ∈ R, bi ∈ R,
i = 1, 2, and tf > t0 is the prescribed final time. The class
of scalar games has been extensively studied (see e.g., [5],
[6]). Moreover, the scalar quantities qif and ri are assumed
to belong to R>0, for i = 1, 2. Such a game is referred to
as a terminal differential game and this nomenclature can
be intuitively interpreted by noting that only the terminal
value of the state is penalized, in addition to the control
effort over the entire time interval. While the objective of
each player is to minimize its individual cost functional
Ji, the outcome of the cost functional depends, due to the
dynamic interconnection induced by the state of (2), also on
the strategy adopted by the other player. According to the
following notion of solution, a pair (u⋆

1, u
⋆
2) with the property

that neither player has incentive to unilaterally deviate from
the strategy u⋆

i , i = 1, 2, is sought for.

Definition 1. Consider the differential game described by
(1), (2). Fix x0 ∈ R. A pair (u⋆

1, u
⋆
2) of strategies is a Nash

equilibrium for the game if the inequalities

J1(u
⋆
1, u

⋆
2) ≤ J1(u1, u

⋆
2), (3a)

J2(u
⋆
1, u

⋆
2) ≤ J2(u

⋆
1, u2), (3b)

hold for any pair (u1, u
⋆
2) for (3a), and for any pair (u⋆

1, u2)
for (3b), with ui(t) = γi(t, ηi(t)), where γi ∈ Γi is an
admissible strategy and the set Γi constitutes the strategy
space for the i-th player, being ηi the information available
to the i-th player at time t ∈ [t0, tf ], for i = 1, 2. △

It is worth noting that, depending on the available in-
formation ηi, different types of equilibria arise (see, e.g.,
[5]). In fact, if ηi(t) = x0 for all t ∈ [t0, tf ], then it is
possible to define the strategy space as Γi = {γi(t, x0), i =

1, 2, t ∈ [t0, tf ]}, and the equilibrium thus obtained is the
so-called open-loop Nash equilibrium. In the case in which
the information available is given by ηi(t) = x(t) for all
t ∈ [t0, tf ], for i = 1, 2, i.e., the value of the state at time
t is available for all the players, then the strategy space is
given by Γi = {γi(t, x(t)), i = 1, 2, t ∈ [t0, tf ]}, and the
equilibrium obtained in this case is called a feedback Nash
equilibrium. It is well known (see, e.g., [6]) that the game
described by (1), (2) admits an open-loop Nash equilibrium
for all x0, if and only if the two-point boundary value
problem

ẏ = My, Py(t0) +Qy(tf ) = [x0 0 0]⊤, (4)

where

M =

a −s1 −s2
0 −a 0
0 0 −a

 , P =

1 0 0
0 0 0
0 0 0

 ,

Q =

 0 0 0
−q1f 1 0
−q2f 0 1

 ,

y(t) := [x(t) λ1(t) λ2(t)]
⊤, si defined as si := 1

ri
b2i and

λi : R → R representing the so-called costate variables,
for i = 1, 2, has a solution for all x0. The open-loop Nash
equilibrium strategy is then provided by the pair (u⋆

1, u
⋆
2),

with
u⋆
i (t) = −

1

ri
biλi(t), (5)

for i = 1, 2. The existence of a solution to the previous two-
point boundary value problem is equivalent to the existence
of solutions p1 : R→ R, p2 : R→ R, for all t ∈ [t0, tf ], to
the coupled asymmetric1 DRE

−ṗ1 = 2ap1 − s1p
2
1 − s2p1p2, (6a)

−ṗ2 = 2ap2 − s2p
2
2 − s1p2p1, (6b)

together with the terminal conditions p1(tf ) = q1f and
p2(tf ) = q2f . Moreover, the pair of strategies (u⋆

1, u
⋆
2) with

u⋆
i (t) = −

1

ri
bipi(t)e

∫ t
t0

(a−s1p1(τ)−s2p2(τ))dτx0, (7)

for i = 1, 2, constitutes an equilibrium strategy. Since the
strategy (7) can be expressed as u⋆

i (t) = − 1
ri
bipi(t)x(t),

where x is the trajectory of the system (2) in closed loop
with u⋆

i , for i = 1, 2, this is also referred to as the feedback
synthesis of (5).

Similarly to open-loop equilibria, also feedback Nash
equilibria admit a characterization in terms of a set of
coupled symmetric DRE, inspired by DP arguments and
given by

−ṗ1 =2ap1 − s1p
2
1 − 2s2p1p2, (8a)

−ṗ2 =2ap2 − s2p
2
2 − 2s1p2p1, (8b)

1The property of asymmetry becomes apparent in the non-scalar case,
it is employed here to distinguish the equations from those arising in the
subsequent feedback Nash equilibria.
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together with the final conditions p1(tf ) = q1f and
p2(tf ) = q2f , with s1 and s2 defined in (4). It is worth
mentioning that once the solutions to the equations (8) are
known, it is possible to construct the value functions of both
players, that is

Vi(t, x) =
1

2
pi(t)x

2, (9)

for i = 1, 2, from which it is possible to evaluate the cost
incurred by each player.

Finally, consider the single-player version of the problem
described by the cost functional (1) and by the linear
system (2), i.e., the optimal control problem in which a single
decision-maker seeks to minimize the cost functional

J(u) =
qf
2
x(tf )

2
+

1

2

∫ tf

t0

ru(t)
2
dt, (10)

subject to the linear dynamics

ẋ = ax+ bu, x(t0) = x0. (11)

The following result, reported here without proof (see [19])
provides a closed-form solution to the underlying DRE,
namely

−ṗoc = 2apoc − r−1b2p2oc, poc(tf ) = qf . (12)

Proposition 1. Let

poc(t) =

(
q−1
f +

∫ tf

t

ḡ(τ)dτ

)−1

e2a(tf−t)

=: koc(t)
−1e2a(tf−t),

(13)

with ḡ(t) = r−1b2e2a(tf−t) =: se2a(tf−t), for all t ∈ [t0, tf ].
Then poc in (13) is a closed-form solution of the DRE (12).

△

The result provided in Proposition 1 characterizes, in
closed form, the expression of the optimal control law and of
the value function associated to the optimal control problem
described by (10) and (11). In fact it follows immediately
that

u⋆
oc(t) = −

1

r
bpoc(t)x(t), Voc(t, x) =

1

2
poc(t)x

2, (14)

with poc given by (13). To characterize the effect of the
presence of an opponent in (1), (2) an expression similar
to the one provided by (13) is sought for. More precisely the
objective can be reformulated as the task of computing, if it
exists, a function Ψi with the property that

pi(t) =

(
q−1
if +

∫ tf

t

ḡi(τ)dτ +Ψi(t)

)−1

e2a(tf−t)

=: ki(t)
−1e2a(tf−t),

(15)

with Ψi : [t0, tf ] → R, ḡi defined as in (13), for i = 1, 2,
solves (6) or (8). The structure exhibited by the right-hand
side of (15) emphasizes the contribution of the opponent,
which is encoded into Ψi (compare (15) with (13)), on
the behavior of the cost incurred by the considered player.
Knowledge of Ψi, once such an expression is known, would
permit a quantitative analysis of the effect of the presence

of an opponent by considering, in the case of feedback Nash
equilibria, the ratio

Vioc(t, x)

Vi(t, x)
=

pioc(t)

pi(t)
=

ki(t)

kioc(t)
. (16)

This allows then to deduce the measure in which the oppo-
nent concurs to improve, or to worsen, the cost incurred by
the considered player.

Remark 1. Once ki on the second line of (15) is known, Ψi

is given by

Ψi(t) = ki(t)− q−1
if −

∫ tf

t

ḡi(τ)dτ, (17)

for i = 1, 2, and for any t ∈ [t0, tf ]. ▲

Even in the open loop case, namely for equations (6),
the knowledge of Ψi allows determining the effect of the
presence of an opponent on the costate variable of the
considered player.

III. CLOSED-FORM SOLUTIONS TO THE OL-NE COUPLED
SCALAR DRE

The main results are introduced by first considering the
characterization in closed form of open-loop Nash equilib-
rium strategies while the analysis of feeback Nash equilibria
is postponed to section IV. Such a closed-form solution, in
fact, allows for a direct comparison with (13) arising in the
corresponding optimal control setting.

Proposition 2. Suppose that there exist unique solutions p1
and p2 to the DRE (6a) and (6b), together with the prescribed
terminal conditions. Let pi be given by (15), for i = 1, 2.
Then pi satisfies the coupled DRE (6) if and only if ki, for
i = 1, 2, satisfies the system

k̇1 = −ḡ1(t)− ḡ2(t)
k1(t)

k2(t)
, k1(tf ) = q−1

1f , (18a)

k̇2 = −ḡ2(t)− ḡ1(t)
k2(t)

k1(t)
, k2(tf ) = q−1

2f . (18b)

△

In order to improve clarity of the forthcoming statements,
the following definition recalls the notion of first integral of
an ordinary differential equation (see [20] and [21]).

Definition 2. Let f be a vector field defined in a domain
[t0, tf ] × U , U ⊂ Rn and let ξ : [t0, tf ] × U → R be such
that ξ ∈ C1([t0, tf ] × U). Then ξ is called a first integral
of the equation σ̇ = f(t, σ) if its Lie derivative along the
vector field f vanishes for all (t, σ) ∈ [t0, tf ]× U , namely

Lfξ =
∂ξ

∂t
+

∂ξ

∂σ
f(t, σ(t)) ≡ 0.

△

The equations (18) constitute a system of differential equa-
tions with rational vector field. The following statement
shows that (18) admits a simple first integral, which is subse-
quently instrumental for computing a closed-form expression
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of the solution to (18) (hence to the asymmetric DRE (6) via
(15)).

Proposition 3. Consider the system (18) and define
ξi : R2 → R as

ξi(k1, k2) :=
ki
kj

, (19)

for i = 1, 2, j = 1, 2 with j ̸= i. Then ξi is a
first integral of the system (18), for i = 1, 2. Moreover,
ξi(k1(t), k2(t)) = qjfq

−1
if for all t ∈ [t0, tf ], for i = 1, 2,

j = 1, 2, with j ̸= i. △

The following statement discusses how the knowledge of
the first integral ξi, for either i = 1 or i = 2, is instrumental
for providing a closed-form solution to (18)

Proposition 4. Consider the system (18) and let

ki(t) = q−1
if +

∫ tf

t

ḡi(τ)dτ +
qjf
qif

∫ tf

t

ḡj(τ)dτ, (20)

with ḡi(t) = sie
2a(tf−t), for i = 1, 2, j = 1, 2, j ̸= i and

for all t ∈ [t0, tf ]. Then ki is a closed-form solution of the
system (18), for i = 1, 2. △

The previous results allow characterizing the presence of
an opponent for the considered class of differential games
as follows. In particular, note that, in the case of the open-
loop game, the costate is given, for all t ∈ [t0, tf ], by
λi(t) = pi(t)x(t) = ki(t)

−1e2a(tf−t)x(t), with ki given by
(20), whereas for, the case of the optimal control, it is given
by λioc(t) = pioc(t)x(t) = kioc(t)

−1e2a(tf−t)x(t), with kioc
given by (13), for i = 1, 2. This allows concluding that the
presence of an opponent has the effect of translating the
optimal costate, and this translation depends, for i = 1, 2,
on the factor Ψi in (20), namely

Ψi(t) =
qjf
qif

∫ tf

t

ḡj(τ)dτ =
si
2a

qjf
qif

(e2a(tf−t) − 1).

IV. ESTIMATION OF THE SOLUTIONS TO THE FB-NE
COUPLED SCALAR DRE

To put the equations (6) and (8), arising in open-loop Nash
and feedback Nash equilibria, respectively, into the correct
perspective, it is worth observing that in the scalar case
the key difference is the presence of the factor 2 on the
right-hand side. As shown below, such a factor has signifi-
cant consequences on the analysis. By pursuing a different
strategy with respect to that yielding a closed-form solution
to the coupled DRE (6), the following results provide an
estimate of the solution to the coupled symmetric DRE (8).
The construction is achieved by relying on a functional
approximation approach. Thus, once the estimate has been
computed, it is possible to quantitatively characterize (via
(16)), the effect of the presence of an opponent on the cost
incurred by the considered player. The following result is the
analogous of Proposition 2 in the previous section.

Proposition 5. Suppose that there exist unique solutions p1
and p2 to the coupled symmetric DRE (8a), (8b) together
with the prescribed terminal conditions. Let pi be given by

(15), for i = 1, 2. Then pi satisfies the coupled DRE (8) if
and only if ki, for i = 1, 2, satisfies the system

k̇1 = −ḡ1(t)− 2ḡ2(t)
k1(t)

k2(t)
, k1(tf ) = q−1

1f , (21a)

k̇2 = −ḡ2(t)− 2ḡ1(t)
k2(t)

k1(t)
, k2(tf ) = q−1

2f . (21b)

△

Since the sign of Ψi given by (17), with ki solutions to
(21), over the time interval [t0, tf ], plays a crucial role in
the subsequent analysis, the following statement establishes
that Ψ1 and Ψ2 are always positive over the considered time
interval.

Proposition 6. The functions Ψi given by (17) are such that
Ψi(t) ≥ 0, for i = 1, 2, and for all t ∈ [t0, tf ], provided
that ki(t)kj(t)−1 ∈ C1([t0, tf ]), for i = 1, 2, j = 1, 2, and
j ̸= i. △

The result provided by Proposition 6 allows characterizing,
as stated below, the effect of the presence of an opponent on
the cost incurred by the considered player.

Proposition 7. Consider the ratio given by (16), in which
kioc and ki are provided by (13) and (15), respectively. Then

Vi(t, x) ≤ Vioc(t, x), (22)

for i = 1, 2, and for all (t, x) ∈ [t0, tf ]× R. △

From (22) it is then possible to conclude that the presence
of an opponent in a scalar differential game is beneficial to
both players in improving their incurred cost with respect
to the one incurred in the case in which the opponent is
absent. As anticipated at the beginning of this section, since
it is not possible to provide an explicit first integral for
the system (21) as carried out in the previous section, the
following result provides instead an estimate of ki(t)kj(t)−1,
for all t ∈ [t0, tf ]. The latter in turn can be used to provide
an estimate of the solutions k1 and k2 of the system (21).
From these estimates it is finally possible to quantitatively
characterize the effect of an opponent on the cost incurred
by the considered player (via (16)).

Proposition 8. Suppose that there exist unique solutions
p1 and p2 to the coupled symmetric DRE (8a), (8b) to-
gether with the prescribed terminal conditions. Consider the
solutions k1 and k2 to the system (21) and suppose that
ki(t)kj(t)

−1 ∈ C1([t0, tf ]), for i = 1, 2, j = 1, 2, and j ̸= i.
Define 2

ξi(t) :=

N∑
l=0

ωi,lt
l, (23)

where ωi,l ∈ R are scalar coefficients. Then, for any ϵ > 0
and ϵ1 > 0 there exist an integer N and ω⋆

i,l, l = 0, . . . , N ,

2Although the simplest polynomial basis has been employed in the
construction of (23), this may be immediately generalized to alternative
sets.
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such that, for i = 1, 2, j = 1, 2, with j ̸= i,∣∣∣∣ ki(t)kj(t)
− ξ⋆i (t)

∣∣∣∣ < ϵ,

for all t ∈ [t0, tf ]. Moreover, let

k̄i(t) = q−1
if +

∫ tf

t

ḡi(τ)dτ + Ψ̄i(t), (24)

with

Ψ̄i(t) =

∫ tf

t

2ḡj(τ)ξ
⋆
i (τ)dτ =

si
a
(e2a(tf−t) − 1)ω⋆

i,0

+
si
a

( N∑
l=1

l∑
ν=0

(
e2a(tf−t)

(2a)l−ν
· t

ν

ν!
− 1

(2a)l−ν
·
tνf
ν!

)
ω⋆
i,l

)
.

(25)

Then, the solutions ki of the system (14) satisfy

|ki(t)− k̄i(t)| < ϵ1,

for all t ∈ [t0, tf ], for i = 1, 2. △

V. IMPLEMENTATION ASPECTS AND SIMULATION
RESULTS

A few aspects related to the practical construction of the
estimates of the solutions k1 and k2 to the system (21) are
discussed in detail in this section. Note that Proposition 8, en-
sures the existence of N scalar coefficients ωi,l, l = 0, . . . , N
such that, for i = 1, 2 the estimates k̄i are sufficiently close to
the actual solutions ki of the system (21), without providing
a procedure to determine such values. This is precisely the
objective of this section. Since the solutions k1 and k2 are
not known in advance, the backward-construction of the
estimates k̄1 and k̄2 is carried out, locally in time and state,
as reported in Algorithm 1. It is worth noting that k̄i, in
line 9 of Algorithm 1, is obtained by evaluating (24) and
(25), for t ∈ Tµ, namely

k̄i(t) = k̄i(t
µ
f ) +

∫ tµf

t

ḡi(τ)dτ + Ψ̄i(t), (26)

and

Ψ̄i(t) =

∫ tµf

t

2ḡj(τ)ξ
⋆µ
i (τ)dτ =

1

a
(ḡi(t)− ḡi(t

µ
f ))ω

⋆µ
i,0

+
1

a

( N∑
l=1

l∑
ν=0

(
ḡi(t)

(2a)l−ν
· t

ν

ν!
−

ḡi(t
µ
f )

(2a)l−ν
·
(tµf )

ν

ν!

)
ω⋆µ
i,l

)
.

(27)

Once k̄i is known, k̄j can be directly computed as
k̄j = k̄i(ξ

⋆µ
i )−1, for all t ∈ Tµ. Finally note that the

procedure is guaranteed to converge by having assumed that
ki(t)kj(t)

−1 ∈ C1([t0, tf ]), for i = 1, 2, j = 1, 2, and j ̸= i.
The simulations are carried out by selecting, for the first

player, q1f = 1, r1 = 1, b1 = 1, whereas, for the second
player one has that q2f = 2, r2 = 1, and b2 = 0.5.
Finally, the parameters a and tf have been selected as a = 2
and tf = 0.3s, respectively, whereas the approximating
polynomial has been chosen to be ξ2, with N = 5. For the
iterative construction of the estimates, the length of the time

Algorithm 1
Require: Final time tf > 0, time window length δ > 0,

terminal condition (k1(tf ), k2(tf )), degree of the ap-
proximating polynomial N

1: µ← 0, tµf ← tf , tµ0 ← tµf − δ

2: (k̄1(t
µ
f ), k̄2(t

µ
f ))← (k1(tf ), k2(tf ))

3: while tµ0 ≥ 0 and tµf > t0 do
4: Tµ ← [tµf − δ, tµf ]

5: define the compact set Kµ ⊂ R2, centered on
(k̄1(t

µ
f ), k̄2(t

µ
f ))

6: get ω⋆µ
i,l , l = 1, . . . , N , by solving the constrained

optimization problem given by

min
ωµ

i,l

max
(t,k1,k2)∈Tµ×Kµ

(
ḡi(t)kj − ḡj(t)ki

k2j
−

N∑
l=1

lωµ
i,lt

l−1

)2

7: ω⋆µ
i,0 ←

k̄i(t
µ
f )

k̄j(t
µ
f )
−
∑N

l=1 ω
⋆µ
i,l (t

µ
f )

l, for i = 1, 2, j = 1, 2

with j ̸= i
8: for all t ∈ Tµ do
9: evaluate k̄i(t) from (24), for i = 1, 2

10: if k̄i(t) ∈ ∂Kµ then
11: µ← µ+ 1, tµf ← t
12: tµ0 ← tµf − δ and go to line 16
13: end if
14: end for
15: µ← µ+ 1, tµf ← t, tµ0 ← tµf − δ

16: (k̄1(t
µ
f ), k̄2(t

µ
f ))← (k̄1(t), k̄2(t))

17: if tµ0 < 0 then
18: tµ0 ← t0
19: end if
20: end while

window has been selected as δ = 10−2, whereas the compact
sets Kµ have been selected as square boxes with side length
∆k = 5 · 10−2. The time histories of the estimation errors
of the solutions k1 and k2 of the system (21) are reported
in Figure 1, where the portion of trajectory related to an
iteration is enclosed between two black dots. From Figure 1
it is possible to infer that both estimation errors are in
the order of magnitude of 10−2. Figure 2 depicts the time
histories of the ratios Vioc

Vi
, for i = 1, 2, from which it

is possible to appreciate, according to Proposition 7, that
both are greater than 1, then implying that both players gain
advantage, in terms of incurred cost, by the presence of the
respective opponent. In particular, Figure 2 shows that the
second player is the one that gains the most by the presence
of his opponent, namely the player one, which has a more
attenuated improvement of his incurred cost.

VI. CONCLUSIONS AND FURTHER WORK

The effect of the presence of an opponent in a class of
finite-horizon scalar differential games has been character-
ized and studied in detail for open-loop and feedback Nash
equilibria. In the former case it has been shown that this
effect can be characterized in closed-form by relying on
the notion of first integral of an ODE. In this case, the
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Fig. 1: Time histories of the estimation errors of the solutions
k1 and k2 of the system (21), for the considered case.
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Fig. 2: Time histories of the ratios V1oc

V1
(blue) and V2oc

V2

(red), for the considered case. According to Proposition 7,
the interaction between the two players helps both to improve
their incurred cost with respect to the case in which the
respective opponent is absent.

presence of an opponent is translated into a modification
of the optimal costate of the underlying optimal control
problem of the considered player. In the latter one, it has been
proved formally that the presence of an opponent is always
beneficial for the players to improve their incurred cost with

respect to the case in which no opponent is present. Since
a closed-form characterization similar to the one derived for
the open-loop case cannot be determined, a different strategy
has been pursued, by relying on a functional approximation,
leading to the construction of an estimate of the solutions
to a particular system of ODEs, allowing to quantitatively
estimate the effect of the presence of an opponent for this
class of differential games. Further work will involve the
extension of the results to the case of non-scalar and more
general differential LQ games.

REFERENCES

[1] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[2] ——, “On the theory of dynamic programming,” Proceedings of the
national Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[3] D. E. Kirk, Optimal control theory: an introduction. Prentice Hall,
1970.

[4] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2011.
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