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Abstract— We consider a two-component coupled system of
differential equations with operator coefficients. In contrast to
the well-known small-gain approach, we assume the presence
of the exponential stability property of only one subsystem.
We introduce a condition for the dominance of this subsystem,
which allows us to prove new conditions for the exponential
stability of a coupled system. An example of infinite networks
is given. The results are compared with a small-gain approach
based on the Lyapunov vector function.

I. INTRODUCTION

Mathematical models of systems consisting of finite-
dimensional and infinite-dimensional components are used to
describe processes and phenomena in physics, control theory,
chemical kinetics, and mathematical biology.

For example mathematical models of chemical and nuclear
reactors [1], [2] as well as semiconductor lasers [3] are
described by coupled systems of ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs). In
[4], the problem of stabilizing torsional and axial vibrations
that arise in rotary drilling systems modeled by a coupled
system of ODEs and PDEs is considered. We note that
effective methods of stabilization of such systems were
developed in [5]. Also, in recent years, with the development
of various types of networks (social networks, transport and
production networks), the problem of modeling networks of
large size which can be idealized as infinite networks arose.
The mathematical image of such networks can be an infinite
system of ODEs which can be presented in an abstract form
as a differential equation or a coupled system of differential
equations in the Banach space [6].

The study of stability of equilibrium in such models is
an important stage of their qualitative analysis. Equations
linearized around the equilibrium can be presented in the
form of a two-component abstract system with operator co-
efficients. As well as for finite-dimensional dynamic systems,
the main method of stability analysis of infinite-dimensional
systems is the method of Lyapunov functions, based on a
scalar, vector or matrix-valued functions [7]. However, it
is too conservative, since the presence of the exponential
stability of all independent subsystems is not necessary for
the stability of a coupled system.

The method of Lyapunov functions is convenient to use
in a case of finding explicit solutions of the system is a
difficult task. On the one hand, it is important to construct
a Lyapunov function that would allow establishing simple
enough conditions for checking stability. On the other hand,
such conditions should not be too conservative.

The success of the classical and modern theory of coupled
systems are based on mathematical methods that make

it possible to analyze more complex structures based on
the properties of independent subsystems, each of which
has good dynamic properties (for example, exponential or
asymptotic stability) [8]. This general paradigm is the basis
of the Lyapunov vector function (VLF) methods [9], [10] and
small-gain theorems [11], [12], on the basis of which simple
and quite effective sufficient conditions for the stability of
coupled systems are obtained.

This article proposes new methods for constructing the
matrix Lyapunov function (MLF) based on which sufficient
conditions for the stability of coupled two-component linear
systems with operator coefficients are established. Exponen-
tial flow of only one subsystem is assumed, provided that this
subsystem is dominant in the sense of the proposed spectrum
separation condition.

The article consists of sixth sections. In the second sec-
tion, the motivation of research and problem statement are
given. In the third section, an algorithm for constructing the
Lyapunov function is proposed. Based on this algorithm,
theorems about the exponential stability of linear systems are
proved in Section 4. In the fifth section, a countable system
of differential equations are considered as an example of
application of proven theorems. The last section discusses
the results and prospects for further research.

Notations. Let Hi, i = 1,2 be a real Hilbert spaces with
scalar product ⟨·, ·⟩Hi and norm ∥x∥Hi =

√
⟨x,x⟩Hi . The

Banach space of linear bounded operators acting from Hi to
H j, j = 1,2 with the defined norm ∥A∥= sup∥x∥Hi=1 ∥Ax∥H j ,
A∈ L(Hi,H j) is denoted by L(Hi,H j). In the case of Hi =H j,
the notation L(Hi,Hi)≡ L(Hi) is used. The conjugate space
H∗

i is identified with Hi due to Ries’s theorem, i.e. H∗
i =Hi. If

A ∈ L(Hi,H j), then A∗ ∈ L(H j,Hi) denotes a linear operator
conjugate to A , i.e., such that for all x ∈ Hi, y ∈ H j the
identity ⟨y,Ax⟩H j = ⟨A∗y,x⟩Hi holds. If M is a subset of some
topological space, then M is its closure, id M is the identical
mapping M → M. If A : D(A) → Hi is a linear operator,
D(A)⊂ Hi is a linear manifold, i.e., the domain of the linear
operator A, and ρ(A)⊂ C is its spectral set, i.e.,

ρ(A) := {λ ∈ C : RA(λ ) := (λ id Hi −A)−1 ∈ L(Hi)}.

R(A) := {Ax : x ∈ D(A)} is the set of values of the linear
operator A. If A ∈ L(Hi), A∗ = A, then A is called a self-
adjoint operator. It satisfies

λmin(A) := inf
∥x∥Hi=1

⟨x,Ax⟩Hi , λmax(A) := sup
∥x∥Hi=1

⟨x,Ax⟩Hi .

In the case when λmin(A)> 0, the linear operator A will be
called positive definite.
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We introduce Hilbert space ℓ2 := {(x1, . . . ,xk, . . .) : xk ∈
R, k ∈ N,

∞

∑
k=1

x2
k < +∞} with a scalar product ⟨x,y⟩ℓ2 :=

∞

∑
k=1

xkyk, x, y ∈ ℓ2.

II. MOTIVATION

Consider a linear coupled system of differential equations

ẋ(t) = Ax(t)+By(t), x(0) = x0 ∈ H1,

ẏ(t) =Cx(t)+Dy(t), y(0) = y0 ∈ D(D),
(1)

where x ∈ H1, y ∈ H2, A ∈ L(H1), B ∈ L(H2,H1), C ∈
L(H1,H2), D is a linear operator densely defined in H2 (i.e.,
D(D) = H2) and D(D) is its domain.

Remark 1: Systems of linear differential equations
written in the abstract form (1) include a sufficiently wide
class of linear infinite-dimensional systems. For exam-
ple, these can be coupled systems of ordinary differential
equations and differential equations with partial derivatives
of various types (parabolic, hyperbolic), coupled systems
of integro-differential equations and equations with partial
derivatives, etc.

For an independent subsystem

ẏ(t) = Dy(t), y(0) = y0 ∈ D(D), (2)

we make the following assumptions.
Assumption 1: The linear operator D is densely defined

in the Hilbert space H2, 0 ∈ ρ(D) and there is a (coercive)
Lyapunov function V2(y) = ⟨y,P22y⟩H2 , where P22 ∈ L(H2)
is a linear self-adjoint operator such that for some positive
constants α2, β2 and γ2, the inequality

α2∥y∥2
H2

≤V2(y)≤ β2∥y∥2
H2
. (3)

holds. For the complete derivative of function V2(y) along
the trajectory of the linear system (2), the estimate

V̇2(y) = ⟨Dy,P22y⟩H2 + ⟨y,P22Dy⟩H2 ≤−γ2∥y∥2
H2
. (4)

holds.
Remark 2: It follows from Assumption 1 and the

Loomer—Phillips Theorem ([13], p. 14, Theorem 4.3) that
the linear operator D is closed and generates an exponentially
stable C0-semigroup (etD)t≥0 in the Hilbert space H2, i.e., for
some positive constants M > 0, ω > 0 the inequality

∥etD∥ ≤ Me−ωt , t ≥ 0. (5)

holds.
Indeed, we introduce a new scalar product (x,y)H2 :=
⟨x,P22y⟩H2 in the Hilbert space H2. Taking into account (4)
for all y ∈ D(D)

(y,Dy)H2 = ⟨y,P22Dy⟩H2 =
1
2
(⟨y,P22Dy⟩H2

+⟨P22y,Dy⟩H2)< 0,

we come to the conclusion that the linear operator D is
dissipative with respect to the scalar product (., .)H2 . The
norm generated by this scalar product and the norm ∥ · ∥H2
are equivalent by (3). From Assumption 1, 0 ∈ ρ(D) and

the openness of the set ρ(D), it follows that for some
λ0 > 0 R(λ0 id H2 −D) = H2. Thus, all the assumptions
of the Loomer-Phillips Theorem are fulfilled. Using the
Loomer-Phillips and Hille-Yosida theorems, one can prove
that Assumption 1 guarantees well-posedness of (2).

It follows from Assumption 1 that the linear operator D
is closed and the fact D−1 ∈ L(H2) is important for the
upcoming, since 0 ∈ ρ(D). Further, we will use the notation
D−k := (D−1)k ∈ L(H2), k ∈ N.

We consider the problem of stability of the coupled system
(1), having previously recalled the definition of exponential
stability.

Definition 1: A linear system (1) is called exponentially
stable if there are constants M0 > 0, ω0 > 0 such that the
inequality

∥x(t)∥H1 +∥y(t)∥H2 ≤ (∥x0∥H1 +∥y0∥H2)M0e−ω0t , t ≥ 0.
(6)

holds.
Various variants of the Lyapunov function method can be

used to study the exponential stability of the system (1).
The classical method of studying coupled systems, which

arose in the 60s of the last century, is the method of VLF.
This method is based on the assumption of asymptotic or
even exponential stability of independent subsystems. Thus,
to apply the VLF method to the system (1), we assume that
the independent subsystem

ẋ(t) = Ax(t), x(0) = x0 ∈ H1 (7)

is exponentially stable. In this case, it is well known [14]
that for any linear self-adjoint positive definite operator
Q1 ∈ L(H1), Q∗

1 =Q1 there exists a linear self-adjoint positive
definite operator P11 ∈ L(H1), P∗

11 = P11, which is a solution
of the operator Lyapunov equation

A∗P11 +P11A =−Q1. (8)

For an independent subsystem (7), one can construct a Lya-
punov function V1(x) = ⟨x,P11x⟩H1 , which has the following
properties

α1∥x∥2
H1

≤V1(x)≤ β1∥x∥2
H1
,

⟨x,(A∗P11 +P11A)x⟩H1 ≤−γ1∥x∥2
H1
,

(9)

where α1 = λmin(P11), β1 = λmax(P11) and γ1 = λmin(Q1).
For the system (1) based on the VLF V (x,y) =

(V1(x),V2(y))T , sufficient conditions for the exponential sta-
bility of the linear system (1) are standardly established in
the form of inequality

∥B∗P11∥∥C∗P22∥<
γ1γ2

4

√
α1α2

β1β2
. (10)

Remark 3: A significant advantage of the conditions
(10) is their simplicity which makes it easy to check them.
However, the disadvantage of these conditions is their con-
siderable conservatism since these conditions a priori require
the exponential stability of both independent subsystems.
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The question arises how to investigate exponential stability
in the case when an independent subsystem (7) is not
exponentially stable. In this case, is it possible to obtain
the same simple sufficient conditions for the stability of
the coupled system (1) as the conditions (10)? To solve
this problem, it is necessary to develop fundamentally new
approaches, different from the classical paradigm of VLF.
For the case dimH1 = 1 in [15], the Crain—Rutman theory
of linear operators in semi-ordered Banach spaces is used.
Another approach for various types of finite-dimensional
systems are presented in [16], [17].

We recall that the matrix-valued Lyapunov function is
defined as a two-index system of functions

U(x,y) =
(

v11(x) v12(x,y)
v21(x,y) v22(y)

)
, (11)

where vii : Hi → R, vi j : H1 ×H2 → R, vi j = v ji, i, j = 1,2.
Based on the MLF, it is possible to construct the scalar
Lyapunov function v(x,y,η) = ηTU(x,y)η , η ∈ R2

+, η > 0.
We note that if v21 = v12 ≡ 0, then the MLF coincides
with the VLF. In this sense, the MLF method is a certain
generalization of the VLF method. The question arises about
the selection of MLF elements. In the case when the inde-
pendent subsystem is exponentially stable, it is advisable to
choose the corresponding element of the MLF as a Lyapunov
function for the corresponding independent subsystem. For
example, in our case v22(y) = V2(y) = ⟨y,P22y⟩H2 . Thus, in
this case, it is necessary to select the off-diagonal element
v12 of the MLF and the diagonal element v11 of the MLF
(11). This work is dedicated to solve these problems. To
solve them, we will introduce an important assumption re-
garding independent subsystems, which we call the spectrum
separation condition.

Assumption 2: For the linear system (1), the following
inequality is satisfied (condition of separation of spectrum)

q := ∥A∥∥D−1∥< 1. (12)
Remark 4: Intuitively, the condition of separation of

spectra can be interpreted so that the second subsystem,
which is exponentially stable, is dominant and has a sig-
nificant margin of stability. It is subsystem that provides
stabilization of the coupled system under certain conditions
on the coupling function between subsystems.

III. CONSTRUCTION OF MLF

Without loss of the generality, we choose the vector η in
the form η = (1,η0)

T , η0 > 0. We choose the elements of
the MLF U(x,y) in the following form

v11(x) = ⟨x,P11x⟩H1 , v12(x,y) = v21(x,y) = ⟨x,P12y⟩H1 ,

v22(y) = ⟨y,P22y⟩H2 ,
(13)

where Pii ∈ L(Hi), i = 1,2 are linear self-adjoint operators,
P12 ∈ L(H2,H1).

We choose the linear operator P12 in the form

P12 =
∞

∑
m=0

(−1)m+1(A∗)m(η−1
0 P11B+η0C∗P22)D−(m+1)

∈ L(H2,H1).
(14)

The right-hand part in (14) is well-defined due to the spec-
trum separation condition (12) and the following estimate of
the norm holds

∥P12∥ ≤
∥D−1∥
1−q

∥η
−1
0 P11B+η0C∗P22∥. (15)

The formula (14) allows to simplify the expression for
v̇(x,y,η) if

η0(A∗P12y+P12Dy)+P11By+η
2
0C∗P22y = 0 (16)

is taken into account for all y ∈ D(D). Taking into account
(16), for the derivative of the scalar function v(x,y,η) =
ηTU(x,y)η , the following map is true

v̇(x,y,η) = ⟨x,(A∗P11 +P11A+η0(P12C+C∗P∗
12))x)⟩H1

+η
2
0 (⟨Dy,P22y⟩H2 + ⟨y,P22Dy⟩H2)

+η0⟨y,(B∗P12 +P∗
12B)y)⟩H2 .

(17)
The following lemma establishes an estimate for the scalar
function v(x,y,η).

Lemma 1: For all (x,y) ∈ H1 ×H2, the inequalities

λmin(S)(∥x∥2
H1

+∥y∥2
H2
)≤ v(x,y,η)

≤ λmax(S)(∥x∥2
H1

+∥y∥2
H2
),

(18)

hold, where

S =

 α1 − ∥D−1∥
1−q ∥P11B+η2

0C∗P22∥
− ∥D−1∥

1−q ∥P11B+η2
0C∗P22∥ η2

0 α2

 ,

S =

 β1
∥D−1∥
1−q ∥P11B+η2

0C∗P22∥
∥D−1∥
1−q ∥P11B+η2

0C∗P22∥ η2
0 β2


(19)

and αi = λmin(Pii), βi = λmax(Pii), i = 1,2.
The Proof of Lemma 1 is carried out similarly to the
technique of obtaining an estimate of the Lyapunov function
for a two-component system (see, for example, [16]).

We consider the problem of choosing the diagonal ele-
ments of the MLF. Since the independent subsystem (2) is
exponentially stable by Assumption 1, it is appropriate to
choose v22(y) = ⟨y,P22y⟩H2 (see [16]), where the linear oper-
ator P22 satisfies the conditions of Assumption 1. Since the
independent subsystem (7) is not necessarily exponentially
stable. Two ways of choosing the linear operator P11 are
proposed below.

First method. Let Q1 be a self-adjoint positive definite
linear operator, r ∈ Z+ ∪ {∞}. We consider the following
operator equation for the linear operator P11

A∗P11 +P11A+
r

∑
m=0

(−1)m+1(C∗(D−(m+1))∗B∗P11Am

+(A∗)mP11BD−(m+1)C) =−Q1.

(20)
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Second method. Let Q1 be a self-adjoint positive definite
linear operator, r ∈Z+∪{∞}. For the linear operator P11, we
consider the linear operator equation

A∗P11 +P11A+
r

∑
m=0

(−1)m+1(C∗(D−(m+1))∗B∗P11Am

+(A∗)mP11BD−(m+1)C+(A∗)mC∗P22D−(m+1)C

+C∗(D−(m+1))∗P22CAm) =−Q1.

(21)

Formulas (16) and operator equation (20) (or (21)) are
introduced in such a way as to provide the simplest form for
analysis of the complete derivative v̇(x,y,η) of the function
v(x,y,η) for the linear system (1).

IV. SUFFICIENT CONDITIONS FOR THE EXPONENTIAL
STABILITY

Lemma 1 and formula (17) make it possible to formulate
sufficient conditions for the exponential stability of the linear
system (1).

Theorem 1: Assume that the conditions of Assumption
1 and the condition of separation of spectrum (12) are
fulfilled for the linear system (1) and for some r ∈Z+∪{∞},
there exist a positive definite self-conjugate linear operator
P11, which satisfies the generalized Lyapunov operator equa-
tion (20), and a positive constant η0 such that the inequalities

∥η
−1
0 P11B+η0C∗P22∥<

(1−q)
√

α1α2

∥D−1∥
, (22)

η
2
0 λmax(Gr)+

2qr+1∥D−1∥∥C∥
1−q

∥P11B+η
2
0C∗P22∥

< λmin(Q1),

(23)

λmax(Fr(η0))+
2qr+1∥D−1∥∥B∥

1−q
∥P11B+η

2
0C∗P22∥

< γ2η
2
0 ,

(24)

are satisfied with the notation

Fr(η0) =
r

∑
m=0

(−1)m+1(η2
0 (B

∗(A∗)mC∗P22D−(m+1)

+(D−(m+1))∗P22CAmB)+B∗(A∗)mP11BD−(m+1)

+(D−(m+1))∗B∗P11AmB),

Gr =
r

∑
m=0

(−1)m+1((A∗)mC∗P22D−(m+1)C

+C∗(D−(m+1))∗P22CAm).

Then, the linear system (1) is exponentially stable.
Remark 5: Theorem 1 reduces the study of the stability

of linear system (1) to solving the operator equation (20)
which greatly simplifies the problem. For example, in the
case where dimH1 <+∞, the equation (20) is a linear matrix
equation that generalizes the Lyapunov equation and can be
solved by standard methods of linear algebra, for example,
based on the theory of direct matrix products.

Remark 6: The estimate

λmax(Fr(η0))≤
2(1−qr+1)∥D−1∥∥B∥

1−q
∥P11B+η

2
0C∗P22∥.

can be established by direct calculations based on the spec-
trum separation condition (12).
This inequality allows us to replace the last inequality of
the system (22) with a rougher inequality, the advantage of
which is in easier verification

2∥D−1∥∥B∥
1−q

∥P11B+η
2
0C∗P22∥< γ2η

2
0 . (25)

Proof. First of all, we consider the case where (x0,y0) ∈
H1 ×D(D). Then, (x(t),y(t)) ∈ H1 ×D(D) for t ≥ 0.

Taking into account (20), we obtain

v̇(x,y,η)≤ ⟨x,(−Q1

+
∞

∑
m=r+1

(−1)m+1((A∗)mP11BD−(m+1)C

+C∗(D−(m+1))∗B∗P11Am)+η
2
0 Gr

+η
2
0

∞

∑
m=r+1

(−1)m+1((A∗)mC∗P22D−(m+1)C

+C∗(D−(m+1))∗P22CAm))x⟩H1

−γ2η
2
0∥y∥2

H2
+ ⟨y,Fr(η0)y⟩H2

+⟨y,
∞

∑
m=r+1

(−1)m+1(B∗(A∗)m(P11B+η
2
0C∗P22)D−(m+1)

+(D−(m+1))∗(B∗P11 +η
2
0 P22C)AmB)y⟩H2

= ⟨x,(−Q1

+
∞

∑
m=r+1

(−1)m+1((A∗)m(P11B+η
2
0C∗P22)D−(m+1)C

+C∗(D−(m+1))∗(B∗P11 +η
2
0 P22C)Am)

+η
2
0 Gr)x⟩H1

−γ2η
2
0∥y∥2

H2
+ ⟨y,Fr(η0)y⟩H2

+⟨y,
∞

∑
m=r+1

(−1)m+1(B∗(A∗)m(P11B+η
2
0C∗P22)D−(m+1)

+(D−(m+1))∗(B∗P11 +η
2
0 P22C)AmB)y⟩H2

Using the spectrum separation condition (12) and the
Cauchy—Buniakovsky inequality, we obtain the estimate

v̇(x,y,η)≤
(
−λmin(Q1)+η

2
0 λmax(Gr)

+
2qr+1∥C∥∥D−1∥

1−q
∥P11B+η

2
0C∗P22∥

)
∥x∥2

H1

+
(
− γ2η

2
0 +λmax(Fr(η0))

+
2qr+1∥B∥∥D−1∥

1−q
∥P11B+η

2
0C∗P22∥

)
∥y∥2

H2
.

(26)

It follows from (26) and the condition of Theorem 1 that for
some constant µ > 0, we have

v̇(x,y,η)≤−µ(∥x∥2
H1

+∥y∥2
H2
). (27)

Therefore,

∥x(t)∥2
H1

+∥y(t)∥2
H2

≤ 1
λmin(S)

v(x(t),y(t),η)

≤ λmax(S)
λmin(S)

e
− tµ

λmax(S) (∥x0∥2
H1

+∥y0∥2
H2
), t ≥ 0,

(28)
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For arbitrary initial conditions, the validity of the inequality
(28) follows from the fact that H1 ×D(D) = H1 ×H2. The
theorem is proved.

We note that the practical application of Theorem 1
involves excluding the free parameter η0 from the system of
inequalities (22). In the case when it is difficult to exclude
the parameter η0, explicit conditions of exponential stability
may not be available. Then, it is worth to use the second
method of choosing the linear operator P11.

Theorem 2: Assume that for a linear system (1), the
conditions of Assumption 1, the condition of separation of
spectrum (12) are satisfied, and for some r ∈Z+∪{∞} there
exists a positive definite self-adjoint linear operator P11 that
satisfies the generalized Lyapunov operator equation (21)
such that the inequalities

∥P11B+C∗P22∥<
(1−q)

√
α1α2

∥D−1∥
,

2qr+1∥D−1∥∥C∥
1−q

∥P11B+C∗P22∥< λmin(Q1),

λmax(Fr(1))+
2qr+1∥D−1∥∥B∥

1−q
∥P11B+C∗P22∥< γ2.

(29)

hold. Then the linear system (1) is exponentially stable.
Proof of this theorem is analogue to the proof of the

previous one. We do not provide details.

V. EXAMPLES AND COMPARISON OF RESULTS

A. Exponential ℓ2-stability of a countable system

Let b := (b1, . . . ,bk, . . .) ∈ ℓ2, c := (c1, . . . ,ck, . . .) ∈ ℓ2,
(λk)

∞
k=1 ⊂ R,

0 < λ1 < · · ·< λk < .. . , λk →+∞, k → ∞.

We denote y := (y1, . . . ,yk, . . .) ∈ ℓ2, and a linear operator
D := diag(−λ1, . . . ,−λk, . . .) with the domain

D(D) = {y ∈ ℓ2 :
∞

∑
k=1

λ
2
k y2

k <+∞}

which acts according to the rule

Dy =−(λ1y1, . . . ,λkyk, . . .).

We present the countable linear system in an abstract form
as a coupled system on the product of spaces R× ℓ2:

ẋ = ax+ ⟨b,y⟩ℓ2 , x(0) = x0 ∈ R,
ẏ = cx+Dy, y(0) = y0 ∈ D(D).

(30)

We verify the conditions of Assumption 1. The linear
operator D is densely defined since its domain D(D) contains
a set of finite sequences that is dense in ℓ2. Let P22 = id ℓ2 .
Then, for all y ∈ D(D),

⟨Dy,P22y⟩ℓ2 + ⟨y,P22Dy⟩ℓ2 =−2
∞

∑
k=1

λky2
k ≤−2λ1∥y∥2

ℓ2 .

(31)
Thus, the conditions of Assumption 1 are fulfilled and γ2 =
2λ1.

Based on the VLF method, from (10), we obtain the
conditions of exponential stability

a < 0, ∥b∥ℓ2∥c∥ℓ2 < |a|λ1. (32)

Theorem 1 is applied to investigate the exponential stabil-
ity of the linear system (30). We define

∆1 := (2⟨b,c⟩ℓ2 − (λ1 −|a|)2)2 −4∥b∥2
ℓ2∥c∥2

ℓ2 ,

∆2 = ⟨b,c⟩2
ℓ2 −∥b∥2

ℓ2∥c∥2
ℓ2 +λ

2
1 (λ1 −|a|)2.

Corollary 1: Let the linear system (30) be such that the
following inequalities hold

|a|< λ1, a+
∞

∑
k=1

ckbk

λk −a
< 0, (33)

⟨b,c⟩ℓ2 +∥b∥ℓ2∥c∥ℓ2 <
1
2
(λ1 −|a|)2, (34)

∥b∥2
ℓ2∥c∥2

ℓ2 −⟨b,c⟩2
ℓ2 < λ

2
1 (λ1 −|a|)2. (35)

We denote

σ
± :=

∥b∥2
ℓ2

−⟨b,c⟩ℓ2 ±
√

∆2
,

ψ
± :=

−2⟨b,c⟩ℓ2 +(λ1 −|a|)2 ±
√

∆1

2∥c∥2
ℓ2

Then, when ∥b∥ℓ2∥c∥ℓ2 ≤ λ1(λ1−|a|), we have the inequality

max
{

σ
+,ψ−

}
< min

{
−

a+
∞

∑
k=1

ckbk
λk−a

∞

∑
k=1

c2
k

λk−a

,ψ+
}

(36)

and in the case when ∥b∥ℓ2∥c∥ℓ2 > λ1(λ1 −|a|), ⟨b,c⟩ℓ2 < 0,
we have the inequality

max
{

σ
+,ψ−

}
< min

{
−

a+
∞

∑
k=1

ckbk
λk−a

∞

∑
k=1

c2
k

λk−a

,ψ+,σ−
}
, (37)

which guarantee the exponential ℓ2-stability of the linear
system (30).

We consider a numerical example choosing a= 0.25, λk =
k2, b := τ b̂, c := τ ĉ, coefficient of amplification of couples
between subsystems τ > 0,

b̂ :=
(
1, . . . ,

1
k
, . . .

)
∈ ℓ2, ĉ :=−

(
1, . . . ,

1
k3/2 , . . .

)
∈ ℓ2.

For these parameters, ∥b̂∥ℓ2 = 1.2825, ∥ĉ∥ℓ2 = 1.0964,

⟨b̂, ĉ⟩ℓ2 = −1.3415, ∑
∞
k=1

ĉk b̂k
k2−a = −1.3912, ∑

∞
k=1

ĉ2
k

k2−a =

1.3725. Corollary 1 (Theorem 1) guarantees exponential ℓ2-
stability of the linear system (30) for the values of the
gain coefficient τ ∈ (0.5728,0.81). Since a > 0, the first
subsystem is unstable, so the VLF method is not applicable
in this case.

For the parameter value a =−0.25 and the same λk, b, c,
we find ∑

∞
k=1

ĉk b̂k
k2−a =−0.8519, ∑

∞
k=1

ĉ2
k

k2−a = 0.835. Corollary
1 (Theorem 1) guarantees the exponential ℓ2-stability of
the linear system (30) for the values of the amplification
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factor τ ∈ (0,0.9572). Since a < 0, the first subsystem is
exponentially stable, so it is possible to use the VLF method
and the conditions of the exponential stability (10). These
conditions lead to gain values in the interval (0,0.4216).

We denote

θ :=−
1+2

∞

∑
k=1

c2
k

λk−a

2
(

a+
∞

∑
k=1

ckbk
λk−a

) .
Application of Theorem 2 leads to the following sufficient

conditions for exponential stability (30).
Corollary 2: Let the linear system (30) be such that the

following inequalities hold

|a|< λ1, a+
∞

∑
k=1

ckbk

λk −a
< 0,

∥θ
1/2b+θ

−1/2c∥ℓ2 < λ1 −|a|,
∥b∥ℓ2∥θb+ c∥ℓ2 < λ1(λ1 −|a|).

(38)

Then, the linear system (30) is exponentially ℓ2-stable.

VI. CONCLUSION

The main result of the report is the explicit formula (16)
for determining the off-diagonal elements of the MLF and
the operator equations (20) (or (21)) that define the diagonal
element corresponding to a possibly unstable subsystem.
These results develop the results of [16] for a wider class
of infinite-dimensional dynamical systems.

The example given in section 5 show that the proposed
method of constructing Lyapunov functions is applicable
in the case when one of the subsystems is unstable, and
therefore the known methods of studying the stability of
coupled systems based on VLF or small-gain theorems
are not applicable. The example also show that for the
case when both subsystems are exponentially stable and
both approaches are applicable, our approach leads to less
conservative stability conditions. A significant advantage of
the proposed approach is its simplicity, because in fact the
problem of the stability of a coupled system is reduced to
solving an operator equation which contains only bounded
operators and is reduced to a matrix equation in the case
dimH1 < ∞. Therefore, our proposed approach significantly
expands the capabilities of the Lyapunov function method
for a wide class of infinite-dimensional systems. A certain
limitation of our approach is the separation of spectrum
condition (12). In further research, it is planned to weaken
this condition or abandon it. A possible alternative to the
condition (12) is the assumption of complete continuity of the
linear operators A and D−1 which is natural in the case when
the second subsystem is parabolic. In this case, it becomes
possible to use the Ries—Schauder theory of completely
continuous operators in Hilbert space. Another direction of
generalization of the obtained results is the consideration of
linear systems in Banach spaces which allows to study Lp-
stability.

REFERENCES

[1] I. Karafyllis and M. Krstic, Input-to-state stability for PDEs. Springer,
2019.

[2] A. Zuyev and P. Benner, “Stabilization of crystallization models gov-
erned by hyperbolic systems,” in Stabilization of distributed parameter
systems: design methods and applications, vol. 2 of ICIAM 2019
SEMA SIMAI Springer Ser., pp. 123–135, Springer, Cham, [2021]
©2021.

[3] F. Jochmann and L. Recke, “Well-posedness of an initial boundary
value problem from laser dynamics,” Mathematical Models and Meth-
ods in Applied Sciences, vol. 12, no. 04, pp. 593–606, 2002.
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