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Abstract— This paper considers adaptive identification and
prediction problems for stochastic dynamical systems with sat-
urated output observations, which arise from various problems
in science and technology as well as in social and economic
systems. A new adaptive algorithm is introduced, which avoids
the projection operators used in the related existing work.
More importantly, unlike most previous works that require
independent and identically distributed conditions as well as
bounded conditions on system signals, it is shown that the
global convergence of the average regret and strong consistency
of the parameter estimates can be established under possibly
unbounded, correlated, and non-stationary signal conditions. A
numerical example is also given to illustrate the effectiveness
of the proposed adaptive algorithm.

I. INTRODUCTION

The identification of input-output relationships and the
prediction of future behaviors of dynamic systems using
observation data are fundamental problems in science and
technology. Significant advances have been achieved in con-
trol systems, signal processing, statistics, machine learning,
and related fields. In this work, we focus on the identification
and prediction of stochastic dynamical systems with satu-
rated output observation data, which are motivated by wide
applications in engineering ([1][3]), economics ([2]-[5]), and
even judicial systems ([6]). To be specific, we consider the
following nonlinear stochastic system for k ≥ 0:

yk+1 = φ
T
k θ + ek+1, sk+1 = Sk(yk+1), (1)

where θ ∈ Rm is an unknown parameter vector to be
estimated; φk ∈Rm, yk+1 ∈R, sk+1 ∈R, ek+1 ∈R represent
the system stochastic regressor, output, output observation,
and random noise, respectively. Sk(·) : R → R is a time-
varying saturation function defined as follows:

Sk(x) =

 Lk x < lk
x lk ≤ x≤ uk

Uk x > uk

, k = 0,1, · · · . (2)

At each time, the noise-corrupted output can be observed
precisely only if its value lies in a certain range [lk,uk]. How-
ever, if the output value exceeds this range, the observation
becomes saturated, leading to imprecise information denoted
by Lk or Uk.
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Unlike the traditional offline identification method in
statistics and machine learning, where independent and
identically distributed (i.i.d) conditions on regressors are
usually needed for the strong consistency of the algorithms
([7]-[9]), a prominent feature of control-oriented adaptive
identification is that the signals or data used for parameter
estimation are no longer satisfy the i.i.d condition once feed-
back signals are chosen as the system inputs, thus requiring
general data conditions that should include non-independent
and non-stationary conditions in general. For traditional
linear stochastic systems, the convergence of the classical
least squares (LS) and its adaptive prediction performance
under nonstationary and non-independent conditions have
been extensively studied in a vast literature ([17]-[24]), and
successfully applied in the well-known LS-based self-tuning
regulators ([22], [25]).

Recently, several identification algorithms have been intro-
duced for stochastic regression models under both saturated
observations and general data conditions. For example, the
empirical measure approach was applied in [10]-[11], and
strong consistency was established under periodic signals.
Some stochastic approximation-type algorithms were pro-
duced in [12]-[14] under a kind of deterministic persistence
of excitation (PE) conditions. In our recent works [15] and
[16], we established the global convergence of a projected
second-order algorithm under a general and weakest possi-
ble non-PE condition, without requiring independence and
stationary conditions.

Though the above work has made significant progress
in weakening the traditional i.i.d assumptions on the data,
most of the results mentioned above require the boundedness
condition on the system signals. While the boundedness
assumption greatly simplifies the performance analysis of the
nonlinear adaptive algorithms, it also limits the application
of these algorithms to more general stochastic systems since,
for example, the standard Gaussian signals are not bounded
in sample paths. In this paper, we introduce a new adaptive
algorithm and prove its global convergence for possibly
unbounded, nonstationary, and non-independent data. We
also prove the global convergence of the averaged adaptive
prediction regret without any excitation conditions. This
work is a generalization of the recent work [16], where the
system signals were required to be bounded in sample paths
and the adaptive algorithms are designed by resorting to
projection. Hence, this work is a significant extension to the
previous works in at least three aspects: it has expanded the
applicability condition on the system signals, has weakened
the parameter set from convex compact to only boundedness,
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and has simplified the computational complexity of the
algorithm.

The rest of the paper is organized as follows: We will
first introduce some preliminary notations and assumptions
in Section II. The new adaptive algorithm and the global
convergence results will be presented in Subsection III. A
and Subsection III.B, respectively. The proofs of the main
results will be given in Section IV. A numerical example will
be provided in Section V. Some concluding remarks will be
given in Section VI.

II. NOTATIONS AND ASSUMPTIONS
Notations. We use ‖·‖ to represent the Euclidean norm for

vectors or matrices. The maximum and minimum eigenvalues
of a matrix M is denoted by λmax {M} and λmin {M}, respec-
tively. Additionally, we use a.s. to signify ”almost surely.”

To carry out our theoretical analyses, we need the follow-
ing basic assumptions:

Assumption 1: The stochastic regressor φk is
Fk−measurable for all k ≥ 0, where {Fk,k ≥ 0} is a
non-decreasing sequence of σ−algebras. Besides, the true
parameter θ belongs to a known bounded set D⊆ Rm.

Assumption 2: The thresholds {Lk,Fk}, {Uk,Fk},
{lk,Fk}, {uk,Fk} are known adapted stochastic sequences,
satisfying

lk− c≤ Lk ≤ lk ≤ uk ≤Uk ≤ uk + c, a.s., (3)

where c is a random variable.
Assumption 3: The noise {ek,Fk} is a martingale differ-

ence sequence, and there exists a constant η > 2, such that

sup
k≥0

E [|ek+1|η |Fk]< ∞, a.s. (4)

Besides, the function Gk(x), defined by Gk(x) =
E [Sk(x+ ek+1) |Fk] is twice differentiable and its derivative
G′k(·) satisfies

0 < inf
|x|≤M,k≥0

G′k(x)≤ sup
|x|≤M,k≥0

G′k(x)< ∞, (5)

for any M ≥ 0.
Remark 1: It is evident that if the noise ek is independent

with the σ−algebra Fk−1 and follows an identical normal
distribution as previously assumed (see, e.g., [13]), then the
condition (5) in Assumption 3 will be satisfied.

III. MAIN RESULTS
A. Algorithm

Motivated by the analysis of the classical LS recursive
algorithm, a second-order algorithm was introduced in [16]
for parameter estimation in stochastic regression models with
binary-valued observations. However, due to the inherent
challenge of ensuring boundedness in the classical LS,
the algorithm presented in [16] incorporates a projection
operator to guarantee the boundedness of the estimates. This
approach increases the algorithm’s complexity and makes the
computation speed unsatisfactory in practical calculations. To
overcome this limitation, we drew inspiration from the self-
convergence property of the weighted least squares algorithm

for linear stochastic systems (see, [26]) and designed a new
adaptive algorithm without using the projection operator. For
simplicity of notation, denote

gk = inf
|x|≤‖φk‖(B(D)+‖θ̂k‖)

G′k(x),

gk = sup
|x|≤‖φk‖(B(D)+‖θ̂k‖)

G′k(x),
(6)

where B(D) = sup
x∈D
{‖x‖}, D is defined in Assumption 1. Our

new adaptive identification algorithm is defined as follows:
Algorithm 1:

θ̂k+1 = θ̂k +akβkPkφk[sk+1−Gk(φ
T
k θ̂k)], (7)

Pk+1 = Pk−β
2
k akPkφkφ

T
k Pk, (8)

ak =
1

µk +β 2
k φ T

k Pkφk
, (9)

βk = min{gk,
µk

2gkφ T
k Pkφk +1

}, (10)

where θ̂k is the estimate of θ at time k; Gk is defined in
Assumption 3; the initial value θ̂0 can be chosen arbitrarily
in D; P0 > 0 can also be chosen arbitrarily; {µk} is the
weighting sequence defined by

µk = (log(rk +1))1+δ , rk = ‖P−1
0 ‖+

k

∑
i=0
‖φi‖2, (11)

where δ > 0 can be chosen arbitrarily.
Furthermore, we have

E(yk+1 |Fk) = θ
T

φk, (12)

which represents the best prediction for yk+1 given Fk in the
mean square sense. By substituting the unknown parameter θ

in (12) with its estimate θ̂k, we can derive a natural adaptive
predictor for yk+1 as follows:

ŷk+1 = θ̂
T
k φk. (13)

Typically, the discrepancy between the best prediction and
the adaptive prediction can be considered as regret, denoted
as Rk, which is given by:

Rk =[E(yk+1 |Fk)− ŷk+1]
2 . (14)

In this paper, we will prove that the average regret 1
n ∑

n
k=1 Rk

converges to 0, which will be useful in adaptive control.

B. Global convergence results

To give the main theorems, we first establish the following
lemma:

Lemma 1: Let Assumptions 1-3 be satisfied. Then the
parameter estimate given by Algorithm 1 has the following
property as n → ∞:

θ̃
T
n+1P−1

n+1θ̃n+1 +
n

∑
k=0

β 2
k

µk
(θ̃ T

k φk)
2 = O(1) . (15)

Theorem 1: Consider the Algorithm 1 under Assumptions
1-3. If there exists a α > 2 such that

n

∑
k=1
‖φk‖α = O(n), a.s., (16)

5785



then the sample paths of the average regrets will have the
following property as n→ ∞:

n

∑
k=0

Rk = o(n), a.s. (17)

where Rk is defined by Rk = (E[yk+1 |Fk]− ŷk+1)
2.

Remark 2: We remark that from Theorem 1, the sample
paths of the average regrets converge to 0 without any
excitation conditions on system signals and this result does
not require the boundedness of system signals, making it
convenient to apply in feedback control systems.

Theorem 2: Under Assumptions 1-3, the estimator θ̂k
given by the Algorithm 1 has the following upper bound
almost surely as k→ ∞:

‖θ̃k+1‖2 = O

(
1

λmin{P−1
k+1}

)
, a.s. (18)

where θ̃k = θ − θ̂k.
Remark 3: Since µk =(logrk)

1+δ for some δ > 0, we then
have

λmin{P−1
0 +

n

∑
i=1

β 2
i φiφ

T
i

µi
} ≥ 1

µn
λmin{P−1

0 +
n

∑
i=1

β
2
i φiφ

T
i }.

(19)
Hence by Theorem 1, we have∥∥θ̃n+1

∥∥2
= O

(
(logrn)

1+δ

λmin
{

P−1
0 +∑

n
i=1 β 2

i φiφ
τ
i

}) , a.s, δ > 0.

(20)
This error bound is weaker than the result in [16], where (20)
holds with δ = 0. However, by equation (18) and the fact
that λmin{P−1

k+1} is increasing, the current algorithm naturally
guarantees the boundedness of the parameter estimates, a
property that is important for the convergence analysis of
the adaptive regret later. In [16], the boundedness of the
estimation is guaranteed by a projection operator. Thus for
some large-scale systems, the current algorithm avoids the
complex projection operation in [16].

Corollary 1: Let the conditions of Theorem 1 be satisfied.
If the PE condition is satisfied, i.e.

n = O(λmin{P−1
0 +

n

∑
i=0

φiφ
T
i }), a.s.,

then we have

‖θ̃n‖2 = O(
log1+δ n

n
), a.s. (21)

IV. PROOF OF MAIN RESULTS

To prove the main results, we need the following lemma.
Lemma 2: ([24]). Let { fn,Fn} be an adapted sequence

and {wn,Fn} a martingale difference sequence. If

sup
n
E[|wn+1|α |Fn]< ∞ a.s. (22)

for some α ∈ (0,2], then as n→ ∞:
n

∑
i=0

fiwi+1 = O(sn(α) log
1
α
+η(sα

n (α)+e)) a.s.,∀η > 0, (23)

where

sn(α) =

(
n

∑
i=0
| fi|α

) 1
α

. (24)

A. Proof of Lemma 1.

For convenience, let

ψk = Gk(φ
T
k θ)−Gk(φ

T
k θ̂k),

wk+1 = sk+1−Gk(φ
T
k θ).

(25)

By Assumption 3, we have E[wk+1 |Fk] = 0 for any k ≥ 0,
and we will prove that

sup
k≥0

E[|wk+1|2+η |Fk]< ∞. (26)

We note that by Assumption 2,

|Sk(φ
T
k θ + ek+1)−Sk(φ

T
k θ)| ≤ |ek+1|+2c. (27)

From (27), we have

E[|Sk(φ
T
k θ + ek+1)−E[Sk(φ

T
k θ + ek+1) |Fk]|2+η |Fk]

=O(E[|Sk(φ
T
k θ + ek+1)−Sk(φ

T
k θ)|2+η |Fk])

+O(E[|Sk(φ
T
k θ)−E[Sk(φ

T
k θ + ek+1) |Fk]|2+η |Fk])

=O(E[|ek+1|2+η |Fk]).
(28)

Thus, by Assumption 3, (26) is obtained.
Now, drawing inspiration from the analysis of classical

least-squares in linear stochastic regression models (see
e.g., [18], [19], [22]), we consider the following stochastic
Lyapunov function: Vk = θ̃ T

k P−1
k θ̃k. By Algorithm 1 , we

know that

Vk+1 =θ̃
T
k P−1

k+1θ̃k−2akβkθ̃
T
k P−1

k+1Pkφkψk

+a2
kβ

2
k ψ

T
k φ

T
k PkP−1

k+1Pkφkψk

+2a2
kβ

2
k ψkφ

T
k PkP−1

k+1Pkφkwk+1

−2akβkφ
T
k PkP−1

k+1θ̃kwk+1

+a2
kβ

2
k wT

k+1φ
T
k PkP−1

k+1Pkφkwk+1.

(29)

Let us now analyze the right-hand-side (RHS) of (29) term
by term. From (8)-(9), we know that

θ̃
T
k P−1

k+1θ̃k = θ̃
T
k P−1

k θ̃k +
β 2

k
µk

θ̃
T
k φkφ

T
k θ̃k. (30)

Moreover, by (8) again, we know that

akP−1
k+1Pkφk

=ak

(
I +

β 2
k

µk
φkφ

T
k Pk

)
φk

=akφk

(
1+

β 2
k

µk
φ

T
k Pkφk

)
=

φk

µk
.

(31)

Hence, we have

akβkθ̃
T
k P−1

k+1Pkφkψk

=
βk

µk
θ̃

T
k φkψk ≥

β 2
k

µk
(θ̃ T

k φk)
2,

(32)
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Similarly, by (31),

a2
kβ

2
k φ

T
k PkP−1

k+1Pkφkψ
2
k

=ak
β 2

k
µk

φ
T
k Pkφkψ

2
k ≤ ak

β 2
k

µk
gkφ

T
k Pkφk(θ̃

T
k φk)ψk

(33)

where gk is defined in (6). Now, substituting (30), (32) and
(33) into (29) we get

Vk+1 ≤θ̃
T
k P−1

k θ̃k− (
βk

µk
−ak

β 2
k

µk
gkφ

T
k Pkφk)θ̃

T
k φkψk

+2ak
β 2

k
µk

ψkφ
T
k Pkφkwk+1−2

βk

µk
φ

T
k θ̃kwk+1

+ak
β 2

k
µk

φ
T
k Pkφkw2

k+1

(34)

Notice that by the definition of βk, we have akβkgkφ T
k Pkφk ≤

1
2 , thus we can obtain

(
βk

µk
−ak

β 2
k

µk
gkφ

T
k Pkφk)θ̃

T
k φkψk

≥ βk

2µk
(θ̃ T

k φk)ψk ≥
β 2

k
2µk

(θ̃ T
k φk)

2.

(35)

By (35) and summing up both sides of (34) from 0 to n, we
have

Vn+1 ≤θ̃
T
0 P−1

0 θ̃0−
n

∑
k=0

β 2
k

2µk
(θ̃ T

k φk)
2

−
n

∑
k=0

2
βk

µk
φ

T
k θ̃kwk+1 +

n

∑
k=0

2ak
β 2

k
µk

ψkφ
T
k Pkφkwk+1

+
n

∑
k=0

ak
β 2

k
µk

φ
T
k Pkφkw2

k+1.

(36)
We now analyze the last three terms in (36) which are related
to the martingale difference sequence {wk,Fk}.

Denote

S̃n =

√√√√ n

∑
k=0

(
ak

β 2
k

µk
φ T

k Pkφk

)2

‖ψk‖2. (37)

By (31) and Lemma 2, we have

‖
n

∑
k=0

2ak
β 2

k
µk

ψkφ
T
k Pkφkwk+1‖

=O
(

S̃n log
1
2+ε
(
S̃2

n + e
))

=o

(
n

∑
k=0

β 2
k

µk
(θ̃ T

k φk)
2

)
+O(1), a.s. ∀ε > 0.

(38)

where we have used the fact that ak
β 2

k
µk

gkφ T
k Pkφk ≤ βk

2µk
.

Also, by Lemma 2 again, we know that
n

∑
k=0

βk

µk
φ

T
k θ̃kwk+1

=O

(
n

∑
k=0

β 2
k

µ2
k
(θ̃ T

k φk)
2

) 1
2+ε

=o

(
n

∑
k=0

β 2
k

µk
(θ̃ T

k φk)
2

)
+O(1) a.s. ∀ε > 0

(39)

As for the last term of right side of (36), a similar analysis
as Remark 2 in [26] gives

n

∑
k=0

ak
βk

µk
φ

T
k Pkφk = O(1). (40)

Moreover, from Cr−inequality and Lyapunov inequality, we
have for every δ ∈ (2,min(η ,4)],

sup
k
E
[∣∣w2

k+1−E[w2
k+1 |Fk]

∣∣ δ
2 |Fk

]
< ∞, a.s . (41)

Denote Λn = (∑n
k=0

(
ak

βk
µk

φ T
k Pkφk

) δ
2
)

2
δ , by Lemma 2 and

letting α = 2, we get
n

∑
k=0

ak
βk

µk
φ

T
k Pkφk

{
w2

k+1−E[w2
k+1 |Fk]

}
=O

(
Λn log

2
δ
+ε(Λn + e)

)
= O(1), a.s. ∀ε > 0

(42)

where the last equality is from (40). Hence, from (40) and
(42)

n

∑
k=0

ak
βk

µk
φ

T
k Pkφkw2

k+1

≤
n

∑
k=0

ak
βk

µk
φ

T
k Pkφk

(
w2

k+1−E[w2
k+1 |Fk]

)
+

n

∑
k=0

ak
βk

µk
φ

T
k PkφkE[w2

k+1 |Fk] = O(1), a.s.

(43)

Substituting (38), (39) and (43) into (36) we finally obtain
(15).

B. Proof of Theorem 2.

We note that

λmin
{

P−1
n+1
}
‖θ̃n+1‖2 ≤ θ̃

T
n+1P−1

n+1θ̃n+1, (44)

then Theorem 2 follows from Lemma 1 immediately.

C. Proof of Theorem 1.

From Theorem 2, {‖θ̂k‖,k ≥ 0} is bounded almost
surely. Let B̄ be the upper bound of ‖θ̂k‖, i.e., ‖θ̂k‖ ≤ B̄
for every k ≥ 0. For every t ∈ R+, define the function
g(t) = inf

|x|≤t(B̄+B(D)),k≥0
G′k(x), g(t) = sup

|x|≤t(B̄+B(D)),k≥0
G′k(x),

and f (t) = min(g(t) , µ0
2‖P0‖g(t)t2+1 ). From Assumption 3, we

can easily find f (·) is a non-increasing and positive function.
Besides, we have for every k ≥ 0,

f (‖φk‖)≤ βk. (45)
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From (45) and (15), we have
n

∑
k=0

( f (‖φk‖))2(φ T
k θ̃k)

2 = O(µk) = O(log1+δ k), a.s. (46)

If lim
t→∞

f (t)≥ γ > 0, we will have

n

∑
k=0

Rk =
n

∑
k=0

(φ T
k θ̃k)

2 = O(log1+δ n), a.s., (47)

otherwise, we will have

lim
t→∞

f (t) = 0. (48)

In this case, let

h(s) = inf{t ≥ 0 : f (t) = s}, s ∈ { f (t) : t ≥ 0}, (49)

we also have h(·) is a non-increasing function. Besides, by
(48) and the fact that f (·) is positive, we have lim

k→∞
h( f0√

kγ
) =

∞, a.s., where f0 is a positive number such that h( f0) > 0.
Thus, for every 0 < γ < 1, we can obtain

n

∑
k=1

(φ T
k θ̃k)

2I{( f (‖φk‖))2< f 2
0 k−γ}

≤
n

∑
k=1

(φ T
k θ̃k)

2I{‖φk‖≥h( f0√
kγ

)} ≤
n

∑
k=1

(φ T
k θ̃k)

2

 ‖φk‖
h( f0√

kγ
)

ε

=O

[ n

∑
k=1
‖φk‖α

] 2+ε
α

 n

∑
k=1

(
1

h( f0√
kγ
)
)

αε

α−(2+ε)

1− 2+ε
α


=O(n

2+ε
α )o(n

α−2−ε
α ) = o(n), a.s., ∀0 < ε < α−2,

(50)
where I{·} is the indicator function, defined by

IA =

{
1 ω ∈ A
0 ω ∈ Ac . (51)

Moreover,
n

∑
k=0

(φ T
k θ̃k)

2I{( f (‖φk‖))2≥ f 2
0 k−γ}

≤
n

∑
k=0

( f (‖φk‖))2(φ T
k θ̃k)

2 kγ

f 2
0

I{( f (‖φk‖))2≥k−γ}

≤[
n

∑
k=0

( f (‖φk‖))2(φ T
k θ̃k)

2]
nγ

f 2
0
= o(n), a.s.

(52)

Consequently, we have
n

∑
k=0

Rk =
n

∑
k=0

(φ T
k θ̃k)

2 = o(n), a.s. (53)

D. Proof of Corollary 1.

For every ‖v‖= 1, M > 0, we have

vT 1
n
(

n

∑
k=0

φkφ
T
k I{‖φk‖>M})v

≤1
n

n

∑
k=0
‖φk‖2I{‖φk‖>M} ≤

1
n

n

∑
k=0

‖φk‖α

Mα−2 .

(54)

By (45) and (54), we can obtain

vT 1
n
(

n

∑
k=1

β
2
k φkφ

T
k I{‖φk‖≤M}+P−1

0 )v

≥vT 1
n
(

n

∑
k=1

f 2(‖φk‖)φkφ
T
k I{‖φk‖≤M}+P−1

0 )v

≥ f 2(M)[vT 1
n
(

n

∑
k=1

φkφ
T
k +

P−1
0

f 2(M)
)v− 1

n

n

∑
k=1

vT
φkφ

T
k vI{‖φk‖>M}]

≥ f 2(M)[
1
n

λmin{
P−1

0
f 2(M)

+
n

∑
k=1

φkφ
T
k }−

1
Mα−2

1
n

n

∑
k=1
‖φk‖α ].

(55)
Let M be sufficiently large, we can easily obtain that

n = O(λmin{
n

∑
k=1

β
2
k φkφ

T
k +P−1

0 }), a.s. (56)

Hence, (21) is obtained from (56) and (20).

V. NUMERICAL SIMULATION

In this section, we give an example to illustrate and
demonstrate the theoretical results obtained in this paper.
Consider the model (1)−(2) with lk = Lk = 0 and uk =Uk =
15 for k ≥ 0. The regressors {φk}(m = 5) and observations
{sk+1} are generated by the following dynamical system
model: {

φk+1 = Aφk +uk
sk+1 = Sk(φ

T
k θ + ek+1)

. (57)

The input uk = (u(1)k , · · · ,u(5)k ), where u( j)
k are independent

with the distribution u(i)k ∼ N(0,1) for any k ≥ 0 and i =
1, · · · ,5. The state matrix A = diag[0.3,0.2,0.1,0.4,0.7],
the parameter θ = [−1.2,0.5,1,−0.5,1.5]T , and the noise
sequence {ek+1} is i.i.d with normal distribution N(0,1). Let
φ0 = 0, it can be verified that the independence of regressors
is not satisfied. Besides, the boundedness of regressor φk is
also not satisfied since uk is unbounded. Moreover, we can
easily verify that n = O(λmin{

n
∑

k=0
β 2

k φkφ T
k }). Fig. 1 shows
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Fig. 1. A trajectory of 1
n ∑

n
k=1 Rk

the trajectory of 1
n

n
∑

k=0
Rk, which converges to 0 by Theorem

1. For the parameter estimation, the estimate error ‖θ̃n‖2

will convergent to 0 with the convergence rate O
(

log2 n
n

)
by Corollary 1,which is verified by the boundedness of the
trajectory of n‖θ̃n‖2

log2 n
in Fig. 2.
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VI. CONCLUSIONS

In this paper, we have introduced a new adaptive algorithm
for stochastic systems with saturated output observations.
The global convergence of the parameter estimates has been
established under possibly unbounded, non-independent, and
nonstationary conditions on regression signals. Moreover, the
averaged regret of adaptive predictors has also been shown
to converge to 0 for possibly unbounded regressors without
requiring any excitation conditions. These results make it
possible for our theory to be applicable to feedback control
systems and lay a foundation for possible generalization to
related identification problems. For further exploration, sev-
eral challenges still need to be addressed, for example, how
to solve adapted control problems with saturated observations
in stochastic dynamical control systems, and how to establish
global convergence for adaptive estimation algorithms in
more complex stochastic nonlinear models such as multi-
layer neural networks, among others.
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