
Event-triggered control for Hamiltonian-based flexible-joints robots

Qi Zhang, Weiwei Sun, Lusong Ding and Yongshu Li

Abstract— This paper focuses on the event-triggered tracking
control problem for Hamiltonian-based flexible-joints robots.
Based on Hamiltonian theory and the delay system approach,
an event-triggered modular control strategy is proposed to
guarantee that the link and motor generalized position can
track the target signal asymptotically while reducing the waste
of transmission resources. The modular controller designed in
this paper takes fully into account the structural characteristics
of the flexible-joints robots. Moreover, the difficulties of tracking
control and event-triggered control caused by the high coupling
of Hamiltonian systems are overcome in the design process.
This extends the existing theoretical results for flexible-joints
robots and effectively improves energy efficiency. The validity
of the proposed strategy is verified by a simulation example of
a flexible joint robot.

Index Terms— Flexible-joints robots, event-triggered control,
Hamiltonian systems, tracking control.

I. INTRODUCTION
With rapidly developing computers and automation, more

and more concerns have been given to robotic systems,
which have been widely used in the military, medicine,
industry and other areas [1]–[3]. Compared with rigid robots,
flexible-joints robots have the advantages of high speed, high
precision and lightweight. In recent years, many meaningful
results on flexible-joints robots have been presented and
successfully applied, such as fuzzy control [4], sliding mode
control [5], and passivity-based control [6], just to name a
few. Currently, flexible-joints robots are mainly studied using
the Euler-Lagrange system, which often requires finding a
suitable Lyapunov function. As an alternative, Hamiltonian
systems can avoid this problem since its energy function is
considered to be available as a Lyapunov function represent-
ing dissipativity [7]. Based on this idea, [8] and [9] provided
two Hamiltonian realization methods for converting Euler-
Lagrange systems into Hamiltonian systems. [10] studied
the tracking control problem of a rigid robot based on
the Hamiltonian framework. [11] provided a contraction
control method for Hamiltonian-based flexible-joints robots.
Although Hamiltonian systems have unique advantages in
stability analysis due to their dissipative property, their
nonlinear coupling increases some obstacles to the treatment
of tracking control problems.

Besides, in practical applications, communication re-
sources are limited, so it is necessary to design control
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strategies that reduce redundancy and useless transmissions.
Event-triggered (ET) control can guarantee the system de-
sired performance while reducing data transmission, which
shows a unique advantage in saving resources. ET control
has received plenty of attention since it was proposed [12]–
[15]. Based on a wavelet neural network, a distributed ET
control strategy for networked manipulators was proposed
in [12]. [13] proposed an ET control scheme by adopting
a sliding-mode-based time-delay control strategy to realize
angle adjustment and vibration suppression while achieving
network channel burden reduction. [14] considered multiple
manipulators with external disturbance and studied their ET
cooperative control problem. However, so far, there has been
little research on the ET control problem of Hamiltonian
systems because the high coupling of Hamiltonian systems
also plagues the ET control.

We investigate the ET control problem for flexible-joints
robots in this paper. Based on the Hamiltonian frame-
work and delay system approach, a Hamiltonian-based ET
controller is proposed. Compared with the existing related
results, the main contributions of this paper are reflected in
the following aspects:

(1) To achieve accurate position tracking, the flexibility of
the joints is often not negligible. Compared with the result
of [10], this paper extends the Hamiltonian framework to
flexible-joints robots. The flexible-joints robot is modeled
and synthesized based on Hamiltonian theory to meet the
requirements of high accuracy and lightweight in practical
applications of robots.

(2) A new control strategy is designed for Hamiltonian-
based flexible-joints robots, which overcomes the difficulties
of tracking control and ET control caused by the high
coupling of the Hamiltonian system. Compared with [11],
[16], the dissipative property of Hamiltonian systems is more
fully utilized in the design process, and the proposed strategy
improves the utilization rate of valuable communication
resources.

(3) The modeling methodology and control strategy de-
veloped in the Hamiltonian framework take into account
the structural characteristics of the flexible-joints robots and
preserve the modularity of Hamiltonian systems. Moreover,
the Lyapunov-Krasovskii functional is constructed based on
the Hamiltonian function, which makes the stability analysis
simpler compared with [12]–[14].

Notations: Rn refers to the n-dimensional Euclidean
space. N refers to the set of natural numbers. In×n denotes
the n × n dimensioned identity matrix. col{x1, · · · , xn}
marks the column vector [xT

1, · · · , xT
n]

T, row{x1, · · · , xn}
marks the row vector [x1, · · · , xn], diag{x1, · · · , xn} marks
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the diagonal matrix with diagonal elements of x1, · · · , xn.
In the symmetric matrix, “∗” indicates the entries that
symmetry implies. For vector x ∈ Rn, ∇xf(x) =

[∂f(x)∂x1
, · · · , ∂f(x)

∂xn
]T denotes the gradient and Hess(f(x)) =

∂2f(x)
∂x2

1
· · · ∂2f(x)

∂x1∂xn

...
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2

n

 denotes the Hessian matrix of

f(x). λmax (·) represents the maximum eigenvalue of a
symmetric matrix. ∥ · ∥ represents the Euclidean norm.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following n degree-of-freedom (dof) flexible-
joints robot as a Hamiltonian system [11]:
q̇l
q̇m
ṗl
ṗm

 =


0l×l 0l×m Il 0l×m

0m×l 0m×m 0m×l Im
−Il 0l×m −Dl(ql, pl) 0l×m

0m×l −Im 0m×l −Dm(qm, pm)


·


∇qlH(q, p)
∇qmH(q, p)
∇pl

H(q, p)
∇qmH(q, p)

+


0l×m

0m×m

0l×m

Bm(qm)

u,

y = BT
m(qm)∇pmH(q, p), (1)

where ql ∈ Rnl is link position, qm ∈ Rnm is motor shaft
position, q = [qT

l , q
T
m]T ∈ Rn with n = nl + nm. H(q, p) =

1
2pM

−1(q)p+P(q) is a Hamiltonian function, inertia matrix
M(q) = diag{Ml(ql),Mm(qm)} is symmetric and positive
definitive, Ml(ql) is the link inertia matrix and Mm(qm)
is the motor inertia matrix. p = [pT

l , p
T
m]T, pl = Ml(ql)q̇l,

pm = Mm(qm)q̇m. P(q) = Pl(ql)+Pm(qm)+Pρ(ρ) is the
potential energy where Pl(ql) is the link potential energy,
Pm(qm) is the motor potential energy, and Pρ(ρ) =

1
2ρ

TKρ
is the coupling potential energy with ρ := qm − ql and the
symmetric and positive definitive matrix K ∈ Rn×n. Damp-
ing matrix D(q, p) = DT(q, p) ⪰ 0n×n is partitioned into
diag{Dl(ql, pl), Dm(qm, pm)} with the link damping matrix
Dl(ql, pl) and the motor damping matrix Dm(qm, pm). Il
and Im are the nl × nl and nm × nm identity matrices,
respectively. Similarly 0l×m and 0l×l are the nl × nm and
nl × nm zero matrices, Bm(qm) ∈ Rnm×nm .

We follow the standard modeling assumptions of flexible-
joints robot [17]:

• Each spring has a small enough deflection/extension ρ
that a linear model can represent.

• The i-link is driven by the i-th motor installed on the
(i− 1)-link.

• The center of mass of each motor is located on the axis
of rotation.

The control aim of this paper is to construct an ET control
strategy for the system (1) such that the link and motor
position q can precisely track the target signal qd. For this
purpose, the following system modification is required.

Let x := [qT, pT]T ∈ R2n, the system (1) can be rewritten
as the following alternative model:

ẋ = [J(x)−R(x)]∇xH(x) +G(x)u,

y = GT(x)∇xH(x), (2)

where

J(x) =

[
0n In
−In 0n

]
, R(x) =

[
0n 0n
0n D(x)

]
,

G(x) = col{0l×m, 0m×m, 0l×m, Bm(qm)}.

III. MAIN RESULTS

In this section, we design an ET Hamiltonian-based con-
troller that takes full advantage of the modular nature of
the Hamiltonian-based flexible-joints robot and constructs
asymptotic tracking conditions.

A. Hamiltonian-based ET controller design

Define ξ = x − xd, where xd ∈ R2n is a desired
equilibrium. Given a desired energy function Hd(ξ) > 0
satisfying Hd(0) = 0 and the following assumption:

Assumption 1: ( [18]) The desired Hamiltonian Hd(ξ),
its gradient ∇ξHd(ξ) and its Hessian matrix Hess (Hd(ξ))
satisfy

1) ς1(∥ξ(t)∥) ≤ Hd(ξ) ≤ ς2(∥ξ(t)∥);
2) ς3(∥ξ(t)∥) ≤ ∇T

ξHd(ξ) · ∇ξHd(ξ) ≤ ς4(∥ξ(t)∥);
3) ∥Hess(Hd(ξ)) ·HessT(Hd(ξ))∥ ≤ λ2,

where λ is positive scalar, ς1, ς2, ς3 and ς4 are class-K
functions.

Suppose that there exist an assigned skew-symmetric ma-
trix Ja, an assigned semi-definite matrix Ra and an assigned
Hamiltonian function such that

Hd(ξ) = Ha(x) +H(ξ), (3)

Jd(ξ) = Ja + J(ξ), (4)

J(ξ + xd) = J(ξ) + J(xd), (5)

Rd(ξ) = Ra +R(ξ) ⪰ 0, (6)

then the state error system model is described as follows
[19], [20]:

ξ̇ = [Jd(ξ)−Rd(ξ)− Ja +Ra + J(xd)]∇ξHd(ξ)
+J(ξ)∇xd

H(xd) +G(x)u(t). (7)

Inspired by [7], consider the following equation:

[Jd(ξ)−Rd(ξ)]∇ξHd(ξ) = G(x)u(t) + J(ξ)∇xd
H(xd)

+[Jd(ξ)− Ja −Rd(ξ) +Ra + Fd + J(xd)]∇ξHd(ξ), (8)

where Fd is a positive definite matrix. By solving the equa-
tion (8), we can arrive at the Hamiltonian-based controller

u(t) = G†(x)[(Ja −Ra − Fd − J(xd))∇ξHd(ξ)
−J(ξ)∇xd

H(xd)], (9)

where G†(x) = (GT(x)G(x))−1GT(x).
To reduce the burden of network transmission, an ET

strategy that can overcome the coupling of the Hamiltonian
system and simplify the performance analysis is designed
below. As shown in Fig. 1, the networked system consists
of a controlled system, a sampler, an event trigger, a ZOH
(zero-order holder), an actuator and a data network.
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Assume that the sampling period of the sampler is h,
i.e., sampling at t = jh, where j ∈ N. The state ξ(t) is
monitored periodically and the set of sampled data is denoted
as {ξ(jh)|j ∈ N}. The periodic sampling data ξ(jh) is then
entered into the event trigger for further filtering. The event
trigger relies on the following condition to determine whether
the current sampling state needs to be transmitted:

tr+1h = trh+min
v∈N

{vh|∇̄T
H(ξ(tvrh))Ψ∇̄H(ξ(tvrh))

≥ η∇T
ξHd(ξ(trh))Ψ∇ξHd(ξ(trh))}, (10)

where trh, tr+1h are r-th and r + 1-th triggering instants,
respectively. tvrh := (tr+v)h ∈ [trh, tr+1h) is the sampling
instant, ∇̄H(ξ(tvrh)) = ∇ξHd(ξ(t

v
rh))−∇ξHd(ξ(trh)). η ≥

0 is a triggering threshold and Ψ ≻ 0 is a triggering weight
matrix. r ∈ N and v ∈ N denote the number of triggering
point sequences and sampling point sequences, respectively.

u t

jh

rt h

t

Fig. 1. Diagram of an ET control loop.

Remark 1: Note that Hamiltonian systems are highly cou-
pled. The premise of using traditional ET mechanisms is
that the Hamiltonian system is subject to certain restrictions,
which reduces the scope of the application of the control
strategy. In addition, this will destroy the modularity of
the original system, leading to a very complex performance
analysis. We introduce the Hamiltonian function in the ET
mechanism (10) to make it modular like a Hamiltonian
system, thus avoiding the need to deal with complex coupling
problems.

Remark 2: In ET control, an inevitable question is
whether there is a minimum triggering interval. If it does
not exist, it will be sampled an infinite number of times over
a finite period of time, which is called the Zeno phenomenon.
This behavior cannot be realized by physical devices, so
the ET mechanism must be designed to avoid this situation.
Since the states are first discretely sampled using a sampler,
there must be a minimum trigger interval h, i.e., a sampling
period, for the states entering the trigger. This naturally
avoids the occurrence of the Zeno phenomenon and requires
no additional theoretical proof.

Remark 3: The ET condition clearly needs to ensure
that there is a uniform minimum time between two trans-
missions to meet inherent hardware constraints. There-
fore, according to [21], it may be assumed that the
jumps in the ET mechanism (10) are spaced at least

by T > 0, i.e. T := inf{t|∇̄T
H(ξ(t))Ψ∇̄H(ξ(t)) ≥

η∇T
ξHd(ξ(trh))Ψ∇ξHd(ξ(trh))}. Therefore, it is reason-

able to select the sampling period that is smaller than the
minimum inter-transmission time of the ET mechanism to
avoid reducing the system to a traditional discrete time
implementation.

Remark 4: The ZOH in Fig.1 ensures that the input signal
to the actuator is continuous. During the signaling process,
the ZOH keeps the control signal of the r-th triggering until
the moment before the r + 1-th triggering. As soon as the
event trigger releases a new triggering signal, ZOH will
immediately update the transmission signal and transmit the
new control signal to the actuator until the next transmission
signal is received.

Remark 5: The triggering threshold η can regulate the
intensity of resource saving by changing the amount of data
transmitted by the network. The threshold η and the amount
of data transmitted by the network are negatively correlated,
i.e., the amount of data transmitted increases as the threshold
decreases. When η = 0, the ET mechanism is converted into
a time-triggered mechanism.

For all t ∈ [trh, tr+1h), the Hamiltonian-based controller
(9) can be designed as

u(t) = G†(x)[(Ja −Ra − Fd − J(xd))∇ξHd(ξ(trh))
−J(ξ)∇xd

H(xd)], (11)

Divide the interval [trh, tr+1h) into the following subin-
tervals:

[trh, tr+1h) = ∪δr
v=0[t

v
rh, t

v+1
r h) := ∪δr

v=0Λ, (12)

where δr = tr+1 − tr − 1. Define

τ(t) = t− tvrh, t ∈ [tvrh, t
v+1
r h) (13)

satisfying 0 ≤ τ(t) ≤ h. For t ∈ [tvrh, t
v+1
r h), the ET control

input (11) is described as

u(t) = G†(x)[(Ja −Ra − Fd − J(xd))
·(∇ξHd(ξ(t− τ(t)))− ∇̄H(ξ(t− τ(t))))
−J(ξ)∇xd

H(xd)]. (14)

The corresponding closed-loop error system obtained based
on the system (7) is

ξ̇ = [Jd(ξ)− Ja −Rd(ξ) +Ra + J(xd)]∇ξHd(ξ)
+(Ja −Ra − Fd − J(xd))(∇ξHd(ξ(t− τ(t)))
−∇̄H(ξ(t− τ(t)))),

ξ(θ) = ϕ(θ), θ ∈ [−h, 0] (15)

with the initial function ϕ(θ).

B. Performance analysis

In the following, sufficient conditions are established for
the system (1) to implement ET asymptotic tracking.

Theorem 1: For the system (1), given positive constants
η, λ, a scale κ and matrices W , Ja, Ra with appropriate
dimensions. If there exist positive definite matrices Q,Z,Ψ,
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Fd and a desired energy function Hd(ξ) satisfying Assump-
tion 1, such that the following matching equality and matrix
inequality hold:

G⊥(ξ)J(ξ)∇xd
H(xd)

= G⊥(ξ)[(Ja −Ra − J(xd))∇ξHd(ξ)], (16)Π hW T hλST

−Z 0
∗ −2κI + κ2Z

 ≺ 0, (17)

where G⊥(ξ) satisfying G⊥(ξ)G(ξ) = 0 is left annihilator
of G(ξ),

Π =

Q 0 0
∗ ηΨ−Q 0
∗ ∗ −Ψ

+ IT
1S − 2hW TI1 + 2hW TI2,

S = row{Jd(ξ) − Ja − Rd(ξ) + Ra + J(xd), Ja − Ra −
J(xd)−Fd,−Ja+Ra+J(xd)+Fd}, I1 =

[
I 0 0

]
, I2 =[

0 I 0
]
, Jd(ξ) = J(ξ) + Ja, Rd(ξ) = R(ξ) + Ra ⪰ 0,

then the position q can asymptotically track the target signal
qd under the ET mechanism (10) and the Hamiltonian-based
controller (11).

Proof: A Lyapunov-Krasovskii functional is selected
as

V (t) = V1(t) + V2(t) + V3(t), (18)

where

V1(t) = Hd(ξ),

V2(t) =

∫ t

t−τ(t)

∇T
ξHd(ξ(ϑ))Q∇ξHd(ξ(ϑ))dϑ,

V3(t) = h

∫ 0

−h

∫ t

t+σ

(
∇T

ξHd(ξ(ϑ))
)′
Z

· (∇ξHd(ξ(ϑ)))
′
dϑdσ.

According to Assumption 1, we have

ς1(∥ξ∥) ≤ V (t) ≤ ς(∥ξ∥), (19)

where ς(∥ξ∥) = ς2(∥ξ∥) + hλmax(Q)ς4(∥ξ∥) +

hλ2λmax(Z)
∫ 0

−h

∫ t

t+σ
ξ̇T(ϑ)ξ̇(ϑ)dϑdσ. Taking the derivative

of V (t) along the trajectory of the system (15) yields

V̇ (t) ≤ ∇T
ξHd(ξ)ξ̇ +∇T

ξHd(ξ)Q∇ξHd(ξ)

+h2ξ̇T(t) ·Hess (Hd(ξ)) · Z ·HessT (Hd(ξ)) · ξ̇(t)

−h

∫ t

t−τ(t)

(
∇T

ξHd(ξ(ϑ))
)′
Z (∇ξHd(ξ(ϑ)))

′
dϑ

−∇T
ξHd(ξ(t− τ(t)))Q∇ξHd(ξ(t− τ(t))). (20)

Based on Jensen’s inequality and Newton-Leibniz formula,
the following inequality is obtained:

−h

∫ t

t−τ(t)

(
∇T

ξHd(ξ(ϑ))
)′
Z (∇ξHd(ξ(ϑ)))

′
dϑ

≤ −2hϖTW T (∇ξHd(ξ)−∇ξHd(ξ(t− τ(t))))
+τ(t)hϖTW TZ−1Wϖ, (21)

where ϖ = col{∇ξHd(ξ),∇ξHd(ξ(t − τ(t))), ∇̄H(ξ(t −
τ(t)))}. It can be learned from the ET transmission condition
(10) that

∇̄T
H(ξ(t− τ(t)))Ψ∇̄H(ξ(t− τ(t)))

< η∇T
ξHd(ξ(t− τ(t))Ψ∇ξHd(ξ(t− τ(t))). (22)

Then substituting (21)–(22) into (20), one gets

V̇ (t) ≤ ∇T
ξHd(ξ)ξ̇ +∇T

ξHd(ξ)Q∇ξHd(ξ)

+h2ξ̇T(t) ·Hess (Hd(ξ)) · Z ·HessT (Hd(ξ)) · ξ̇(t)
−2hϖTW T (∇ξHd(ξ)−∇ξHd(ξ(t− τ(t))))
−∇T

ξHd(ξ(t− τ(t)))Q∇ξHd(ξ(t− τ(t)))
−∇̄T

H(ξ(t− τ(t)))Ψ∇̄H(ξ(t− τ(t)))
+η∇T

ξHd(ξ(t− τ(t))Ψ∇ξHd(ξ(t− τ(t)))
+τ(t)hϖTW TZ−1Wϖ. (23)

By (15) and Assumption 1, we further have

V̇ (t) ≤ ∇T
ξHd(ξ)[(Jd(ξ)− Ja −Rd(ξ) +Ra + J(xd))

·∇ξHd(ξ) +∇T
ξHd(ξ)Q∇ξHd(ξ) + (Ja −Ra

−J(xd)− Fd)(∇ξHd(ξ(t− τ(t)))
−∇̄H(ξ(t− τ(t))))] + h2λ2[(Jd(ξ)−Rd(ξ)
−Ja +Ra + J(xd))∇ξHd(ξ) + (Ja −Ra

−J(xd)− Fd)(∇ξHd(ξ(t− τ(t)))
−∇̄H(ξ(t− τ(t))))]TZ[(Jd(ξ)− Ja −Rd(ξ)
+Ra + J(xd))∇ξHd(ξ) + (Ja −Ra − J(xd)
−Fd)(∇ξHd(ξ(t− τ(t)))− ∇̄H(ξ(t− τ(t))))]
−2hϖTW T (∇ξHd(ξ)−∇ξHd(ξ(t− τ(t))))
−∇T

ξHd(ξ(t− τ(t)))Q∇ξHd(ξ(t− τ(t)))
−∇̄T

H(ξ(t− τ(t)))Ψ∇̄H(ξ(t− τ(t)))
+η∇T

ξHd(ξ(t− τ(t))Ψ∇ξHd(ξ(t− τ(t)))
+τ(t)hϖTW TZ−1Wϖ. (24)

For any scale κ, one has

−Z−1 ⪯ −2κI + κ2Z. (25)

Define I3 =
[
0 0 I

]
. From (25), (24) can be rewritten

as

V̇ (t) ≤ ϖT[IT
1S + IT

1QI1 + IT
2(ηΨ−Q)I2 − 2hW TI1

+h2λ2ST(2κI − κ2Z)−1S + τ(t)hW TZ−1W
−IT

3ΨI3 + 2hW TI2]ϖ
:= ϖTΦ(τ(t))ϖ. (26)

Combining Schur complement and (16), we have Φ(0) ≺
0 and Φ(h) ≺ 0, which implies that Φ(τ(t)) ≺ 0, since
Φ(τ(t)) depends linearly on τ(t) ∈ [0, h). Hence, for any
t ∈ [trh, tr+1h), the following inequality holds:

V̇ (t) ≤ 0. (27)

Therefore, according to LaSalle’s invariance principle in
[22], it can be seen that ξ = 0 is the only asymptotically
stable equilibrium point of the system (15). Hence, q(t) →
qd(t) as t → +∞. The proof is completed.

Remark 6: The above analysis shows that the ET mech-
anism (10) can effectively mitigate the unnecessary waste
of resources while maintaining the desired tracking perfor-
mance. The condition (17) in Theorem 1 is not rigorous,
because the appropriate matrices Q,Z,Ψ, Fd can be easily
found by using the linear matrix inequality toolbox in MAT-
LAB. If the traditional time-triggered strategy is used, the
controller does not need to satisfy the inequality (17), but
the system still needs to satisfy the matching equation (16)
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since it is an underdriven system. In this way, although a not
rigorous condition is reduced, the redundancy and waste of
communication resources are inevitable.

Remark 7: Matching equation (16) is a linear partial dif-
ferential equation, for which powerful solution techniques, in
particular the method of characteristics, are available [19].

IV. AN ILLUSTRATIVE EXAMPLE

Consider a flexible-joints robot system which can be mod-
eled as a Hamiltonian-based flexible-joints dynamic model
as (1) with nl = nm = 2. Parameters of the robot are shown
in Table I.

TABLE I
THE PARAMETER VALUES OF THE FLEXIBLE-JOINTS ROBOT.

Parameter Description Value
ml1 Mass of link 1 1.510kg

ml2 Mass of link 2 0.873kg

mm1 Mass of motor 1 0.230kg

mm2 Mass of motor 2 0.010kg

Il1 Inertia of link 1 0.0392kg ·m2

Il2 Inertia of link 2 0.00808kg ·m2

Distance from the
rl1 joint to the center of 0.159m

gravity of the link 1
Distance from the

rl2 joint to the center of 0.055kg ·m
gravity of the link 2

ll1 Length of link 1 0.343m

ll2 Length of link 2 0.267m

The link and motor inertia matrices are

Ml(ql) =

[
β1 + β2 + 2α cos(ql2) β2 + α cos(ql2)

β2 + α cos(ql2) β2

]
,

(28)
and

Mm(qm) =

[
mm1 0
0 mm2

]
, (29)

where β1 = ml1r
2
l1 +ml2l

2
l1 + Il1, β2 = ml2r

2
l2 + Il2, α =

ml2ll1rl2. The link damping matrix, motor damping matrix
and stiffness coefficients matrix are

Dl =

[
0.8 0
0 0.55

]
, Dm =

[
0.2 0
0 90

]
,K =

[
1 0
0 1

]
.

(30)
The Hamiltonian function is

H(q, p) =
1

2
pTM−1(q)p+

1

2
(q−qd)

T(q−qd)+
1

2
ρTKρ. (31)

In the following, the desired equilibrium configuration is
constructed by Hamiltonian function shaping and desired
damping injection. In this process, the Hamiltonian-based
ET controller is obtained and the condition of asymptotic
tracking is realized.

Let ξ = x − xd = [qT
ξ, p

T
ξ]

T be state error, we specify
expected Hamiltonian function is

Hd(ξ) =
1

2
pT
ξM

−1
d pξ +

1

2
qT
ξqξ +

1

2
ρT
ξKdρξ, (32)

where ρξ = qmξ − qlξ, Kd = diag{1.5, 1.5},

Md =


βd1 + βd2 + 2ᾱ βd2 + ᾱ 0 0

βd2 + ᾱ βd2 0 0
0 0 γ1 0
0 0 0 γ2

 ,

with βd1 = ml1r
2
l1 + 1

4ml1l
2
l1 + ml2l

2
l1, βd2 = ml2r

2
l2 +

1
4ml2l

2
l2, ᾱ = ml2ll1rl2 cos(ql2), γ1 = 1

2mm1, γ2 = 2mm2.
Choose Ja and Ra as

Ja =

[
0 J̄a

−J̄a 0

]
, Ra =

[
0 0
0 R̄a

]
,

where J̄a = 0.53I4×4, R̄a = 0.79I4×4. Then desired
interconnection and damping matrices are

Jd =

[
0 J̄d

−J̄d 0

]
, Rd =

[
0 0
0 R̄d

]
,

where J̄d = 1.53I4×4, R̄d = D + R̄a.
The sampling period h and the triggering threshold η are

set to 0.08 and 0.1, respectively. From Theorem 1 we can
get the following gain matrix and triggering weight matrix:

Fd =

[
6.46I4×4 0

0 5.7I4×4

]
, Φ =

[
Φ1 Φ2

∗ Φ3

]
, (33)

where Φ1 = diag{2.6789, 2.3574, 1.7743, 5.6170},
Φ2 = diag{−0.2527,−0.288,−0.3461,−0.1831},
Φ3 = diag{4.0879, 3.1496, 1.8626, 157.5559}.
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Fig. 2. Triggering instants.

Initial conditions are set as ql(0) = [1.6, 1.1]T,
qm(0) = [1.6, 1.1]T, q̇l = q̇m(0) = [0, 0]T. We re-
quire to track the desired trajectory qd = [qT

dl, q
T
dm]T =

[sin(3t), 2 cos(t), sin(3t), 2 cos(t)]T. Simulation results are
given in Figs. 2-4. Figure 2 illustrates the response during
trigger moments, where a vertical value of 1 indicates the
trigger moment, otherwise, it is -1. In Fig. 3 and 4, the
responses of the manipulator’s actual position and the de-
sired position are presented, comparing the proposed control
strategy with that from [11]. The results clearly demonstrate
the capability of the approach to enable q to closely track
the desired trajectory qd, all while significantly reducing data
transmission requirements.
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Fig. 3. Position trajectory for link 1 and motor 1.
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Fig. 4. Position trajectory for link 2 and motor 2.

V. CONCLUSION

In this paper, a Hamiltonian-based ET control scheme for
flexible-joints robots has been proposed. Using this control
scheme, asymptotic tracking to the desired reference trajec-
tory can be guaranteed. The proposed controller is designed
utilizing desired damping injection and desired energy shap-
ing to ensure that the resulting closed-loop system maintains
the structure of the Hamiltonian system. By introducing the
Hamiltonian function into the ET mechanism, the ET mech-
anism becomes as modular as the Hamiltonian system, thus
avoiding the need to deal with complex coupling problems.
The resulting ET mechanism can easily avoid Zeno behavior
because of the periodic character of the ET condition. Finally,
the simulation result illustrates that the proposed control
strategy can guarantee the asymptotic tracking of the robot
while reducing the waste of transmission resources.
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