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Abstract— A new finite dimensional adaptive observer is
proposed for a class of linear parabolic systems. The observer
is based on the modal decomposition approach and uses a
classical persistent excitation condition to ensure exponential
convergence of both states and parameter estimation errors to
zero.
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I. INTRODUCTION

Adaptive state observers are used to deal with online state
and parameter estimation. For finite-dimensional systems,
various adaptive observers for several classes of systems
have been proposed in the literature. The most important
works in this area can be founded in [1], [2], [3] and
references therein. These results were extended to sampled-
data and delayed cases in [4], [5] ,[6] and [7]. The prob-
lem of adaptive observers design for. distributed parameter
systems (DPSs) becomes a hot topic especially since the
last decade. Several adaptive observers design techniques
have been developed including the infinite-dimensional Lu-
enberger observer for linear DPSs, the boundary observer,
backstepping-based boundary observers for both parabolic
and hyperbolic DPSs, (e.g. [8] [9] [10] and [11]) . The
common feature of observers developed for DPSs is that
they are governed by partially differential equations (PDEs).
This fact implies that their implementation employs space
discretization methods which may become computationally
very hard. The aim of this contribution, is to propose more
simpler adaptive observers for heat equation than those
existing in the literature. More precisely, we will use the
modal decomposition approach proposed in [12] and [13] to
construct a new finite-dimensional adaptive observer which
is described only by a finite number of ordinary differential
equations (ODEs). The fact that an observer is based only
on ODEs, simplifies greatly the implementation since we
don’t need to use the finite element method (FEM) technique
which is employed for simulation of observers governed by
PDEs. We also show that this result can be easily extended
to delayed measurements case.
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II. SYSTEM DESCRIPTION AND ASSUMPTIONS

Consider the class of reaction –diffusion systems :

ut = uxx + qu for t > 0, x ∈ (0, 1) (1)

with

ux(0) = u(1) = 0 (2)

under the measurement

y(t) = u(0, t) + ϕ(t)θ (3)

where ϕ is a known uniformly bounded function and θ is
a vector of unknown parameters. The term ϕ(t)θ models
either sensors uncertainties or faults to be detected and
isolated. This uncertain term induces a difference between
u(0, t) and the available measure y(t). The role of the
adaptive observer is to provide an accurate estimation of
both unmeasurable state u(x, t) and the unknown vector
of parameters θ. The well-known regular Sturm-Liouville

eigenvalue problem ψ
′′
(x) + λψ(x) = 0, x ∈ [0, 1] with

ψ(1) = ψ′(0) = 0, generates an increasing sequence of
eigenvalues λn = π2

4 (2n − 1)2 n ≥ 1 with corresponding
eigenfunctions ψn(x) =

√
2cos(

√
λnx) for n ≥ 1. The

eigenfunctions ψn form an orthonormal basis of L2(0, 1).
Consequently the solutions of the heat equation (1) can be
presented as

u(x, t) =

∞∑
n=1

znψn (4)

where zn are solutions of the following ODEs

żn = −λnzn + qzn n = 1, 2, . . . . (5)

The output y can also be expressed as follows

y(t) =
√
2

∞∑
n=1

zn(t) + ϕ(t)θ (6)

Since λn is increasing sequence then we can define an
integer N as the smallest integer n for which the following
holds: λn + q < 0,∀n > N . We assume additionally that
q ̸= λN . These assumptions imply that the modes zn ∀n >
N are exponentially stable.
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III. ADAPTIVE OBSERVER FOR REACTION-DIFFUSION
SYSTEM

A. Adaptive observer structure

Following [13], we propose the following finite-
dimensional adaptive observer structure where :

û(x, t) =
∑N

n=1 ẑn(t)ψn(x)

˙̂zn(t) = −µnẑn − ln(ŷ − y) + v1 n = 1, . . . , N

ŷ =
√
2
∑N

n=1 ẑn(t) + ϕ(t)θ̂.

(7)

Here µn = −λn−q, ln are observer gains, θ̂ is estimate of θ ,
v1 is an additional signal that we will choose later on. Denote
AN = diag(−µ1, . . . ,−µN ), for n = 1, . . . , N , CN =
(
√
2, . . . ,

√
2), LN = (l1, . . . , ln)

T Since (AN , CN ) is
observable, we choose LN such that AN−LNCN is Hurwitz.
Consider the state estimation error Z̃N = (z̃1, . . . , z̃N )T

where z̃i = ẑi − zi, and the estimation parameter error
θ̃ = θ̂− θ. Then the observation error system is expresses as
follows :

˙̃ZN (t) = (AN −LNCN )Z̃N −LNϕ(t)θ̃(t)+LN

√
2ζ(t)+v1

(8)
where

ζ(t) =

∞∑
i=N+1

zi(t). (9)

Using [13], we can claim that

|ζ(t)|2 ≤ e−µN+1t||ũx(x, 0)||2 (10)

with

ũx(x, 0) =

N∑
n=1

ẑn(0)ψ
′
n(x)− ux(x, 0) (11)

Consider next the decoupling transformation [2]

ϵN (t) = Z̃N (t)− α(t)θ̃(t) (12)

where α is the solution of an auxiliary filter which is defined
as follows :{

α̇(t) = (AN − LNCN )α(t)− LNϕ(t)

v1 = α(t)
˙̂
θ

(13)

From this, we deduce the ODE of ϵN which doesn’t depend
on θ̃.

ϵ̇N (t) = (AN − LNCN )ϵN (t) +
√
2 LNζ(t) (14)

We choose LN such that AN − LNCN is Hurwitz.
Since (14) is input to state stable (ISS) with respect to ζ and ζ
is exponentially decaying according to [13], we conclude that
(14) is exponentially stable. System (13) is ISS with respect
to ϕ, whereas ϕ is uniformly bounded, implying boundedness
of |α(t)|.

1) Estimation law design: From the decoupling transfor-
mation, we can propose

˙̂
θ = −R(t)(αT (t)CT

N + ϕT (t))(ŷ(t)− y(t)) (15)

with
dR(t)
dt

= R(t)−R(t)(αT (t)CT
N+ϕT (t))(CNα

T (t)+ϕ(t))R(t)

(16)
and
dR−1(t)

dt
= −R−1(t)+(αT (t)CT

N+ϕT (t))(CNα
T (t)+ϕ(t))

(17)
It was already proven in [1] that if |α| and |ϕ| are bounded
and if the persistent excitation condition∫ t+T

t

KT (s)K(s)ds ≥ β0I (18)

with
KT (t) = (αT (t)CT

N + ϕT (t)) (19)

holds for some positive constant β0 , then both R(t)
and R−1(t) are positive definite matrices and there exist
two positive constants β1 and β2 such that the following
inequalities hold :

β1Im ≤ R(t) ≤ β2Im (20)

and
β1Im ≤ R−1(t) ≤ β2Im (21)

2) Convergence analysis: The parameter estimation error
is governed by the following ODEs :
˙̃
θ = −R(t)KT (t)K(t)θ̃(t)−R(t)KT (t)(CN ϵN (t)−

√
2ζ(t)).

(22)
To prove exponential convergence of θ̃, let us consider the
following Lyapunov function for (23):

V = θ̃TR−1(t)θ̃. (23)

Then after simple computations, we deduce that the time-
derivative of V satisfies the following inequality

V̇ (t) = −V (t) + |CN ϵN (t)−
√
2ζ(t)|2 (24)

Since both ϵN and ζ converge exponentially to zero , then the
comparison Lemma, allows us to conclude that θ̃ will also
converge exponentially to zero. On the other hand, form (15),
we can deduce that |ZN (t)|2 ≤ 2|ϵN (t)|2 + 2|α(t)|2|θ̃(t)|2.
Since α is bounded and |ϵN | converges exponentially to
zero, then ZN is also exponentially convergent. Using the
Parseval’s equality, we have

||û(·, t)− u(·, t)||2 = |ZN (t)|2 +
∑

n≥N+1

z2n(t). (25)

Since
∑

n≥N+1 z
2
n(t) ≤ e−µN+1t||u(·, 0)||2, then we can

also conclude that ||û(., t)−u(., t)|| converges exponentially
to zero. We are now in position to state the following result.

Proposition 3.1: Consider system (1) and adaptive ob-
server described by (7), (13) and (15). Then under condition
(18) with K defined in (19) , the estimation errors ||ũ(., t)||
and |θ̃(t)| converge exponentially to zero.
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IV. EXTENSION TO THE CASE OF DELAYED OUTPUT

In this section, we extend the above results to the case of
delayed output with known and bounded fast varying delay
τ(t) ≥ 0 (without any constraints on the delay derivative).
In this case

y(t) = u(0, t− τ(t)) + ϕ(t− τ(t)))θ (26)

whereas (7) becomes

û(x, t) =
∑N

n=1 ẑn(t)ψn(x)

˙̂zn(t) = −µnẑn − ln(ŷ − y) + v1 n = 1, . . . , N

ŷ =
√
2
∑N

n=1 ẑn(t− τ(t)) + ϕ(t− τ(t))θ̂(t)

(27)
Using the same decoupling transformations, we obtain :{

α̇(t) = ANα(t)− LNCNα(t− τ(t))− LNϕ(t− τ(t))

v1 = α(t)
˙̂
θ + LnCN (θ̂(t− τ(t))− θ̂(t))

(28)
From this, we deduce the delayed differential equation for
ϵN which doesn’t depend on θ̃.

ϵ̇N (t) = AN ϵN (t)−LNCN ϵN (t−τ(t))+
√
2 LNζ(t−τ(t))

(29)
where ζ(t) is defined in (9). Inspired by [6] we propose the
following adaptive law:

˙̂
θ = −R(t)KT (t− τ(t))(ŷ(t)− y(t))

+ R(t)KT (t− τ(t))CNα(t− τ(t))(θ̂(t− τ(t))− θ̂(t))

(30)

andK(t) given by (19). The parameter estimation error is
governed by the following ODE:

˙̃
θ = −R(t)KT (t− τ(t))K(t− τ(t))θ̃(t)

− R(t)KT (t− τ(t))(CN ϵN (t− τ(t))−
√
2ζ(t− τ(t)))

(31)

Note that, the equation (29) is identical to (22) of [13].
Then LMI (25) of Theorem 1 in [13]) gives a bound of
the delay ensuring that system (29) is exponentially stable.
The term ζ(t − τ(t)) remains exponentially converging as
in [13], which implies the exponential convergence of θ̃(t)
under persistent excitation condition (18).

A. Extension to sampled-data case

We suppose that the output

y(tk) = u(0, tk) + ϕ(tk)θ (32)

is available only at sampling instants tk which constitute an
increasing sequence defined as follows : 0 = t0 < t1 <
..., < tk < ..., limtk→∞ = ∞ with tk+1 − tk ≤ h, is the
maximum allowable sampling period. It is well known [14]
that the sampled-data case can be reformulated as time-delay
one where the delay τ(t) = t−tk for all t ∈ [tk, tk+1). From

(26),(27) and (29) we easily propose the following sampled-
data finite dimensional adaptive observer :
For t ∈ [tk, tk+1)



û(x, t) =
∑N

n=1 ẑn(t)ψn(x)

˙̂zn(t) = −µnẑn − ln(ŷ − y(tk)) + v1 n = 1, . . . , N

ŷ =
√
2
∑N

n=1 ẑn(tk) + ϕ(tk))θ̂(t)

α̇(t) = ANα(t)− LNCNα(tk)− LNϕ(tk)

v1 = α(t)
˙̂
θ + LnCN (θ̂(tk)− θ̂(t))

˙̂
θ = −R(t)KT (t− τ(t))(ŷ(t)− y(t))

+R(t)KT (t− τ(t))CNα(tk)(θ̂(tk)− θ̂(t)))
(33)

V. EXAMPLE

In this section we illustrate our observer on the system
governed by (1) with q = 3 and the output y = u(0, t) +
(2− cos(10t))θ . We choose N = 2 and L = (23.2, 1.1)T

derived from (LMI (25) of Theorem 1 in [13]) with initial
condition u0(x) = 1 and constant delay τ = 0.1. Simulations
of the estimations error and θ̂ are given in Figure 1 for the
constant delay τ = 1 and in Figure 2 for the sampled-data
case with tk+1 − tk ≤ 0.7.

VI. CONCLUSION

In this paper, we presented a new adaptive observer for
reaction diffusion equation. Our algorithm ensures good
performances and is based only on a finite number of ODEs.
Further results concerning other classes of PDEs are under
investigation
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Fig. 1. Simulations with delay τ = 0.1 Fig. 2. Simulations of sampled-data case with h = 0.7
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