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Abstract— Given a discounted cost, we study deterministic
discrete-time systems whose inputs are generated by policy
iteration (PI). We provide novel near-optimality and stability
properties, while allowing for non-stabilizing initial policies.
That is, we first give novel bounds on the mismatch between the
value function generated by PI and the optimal value function,
which are less conservative in general than those encountered
in the dynamic programming literature for the considered class
of systems. Then, we show that the systems in closed-loop with
policies generated by PI are stabilizing under mild conditions,
after a finite (and known) number of iterations.

I. INTRODUCTION

Dynamic programming provides powerful methods to
generate near-optimal inputs for general dynamical systems
and cost functions [2]. To make the best out of dynamic
programming algorithms in a control engineering context,
it is often essential to endow the obtained closed-loop
system with stability guarantees. Various results exist in
the literature ensuring stability properties for systems con-
trolled by dynamic programming, both in continuous-time
and discrete-time, see, e.g., [6,10,11,14,17,19]. The vast
majority of these works focus on undiscounted cost func-
tions. However, discounted costs are ubiquitous in dynamic
programming and reinforcement learning [2,18], because of
the favorable properties the discount endows to Bellman
operators, like contractivity, see, e.g., [2]. We may also
consider discounted costs because the problem at hand calls
for it (e.g., economic inflation); or when a policy leading
to a finite cost is known only in the discounted case. It
is therefore important to provide stability guarantees for
systems controlled by dynamic programming algorithms
with discounted costs.

In [6,7] stability results are provided for discrete-time
systems controlled by value iteration with discounted costs.
Results for discounted policy iteration (PI) are only available
for linear systems with quadratic costs (LQ) [13] where the
discount factor is not fixed but increases with the number
of iterations, as far as we know. In this work, we consider
general deterministic discrete-time systems and costs with
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supported by the ANR under grant OLYMPIA ANR-23-CE48-0006 and the
Australian Research Council under the Discovery Project DP210102600.

1 J. de Brusse and R. Postoyan are with the Université de Lor-
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fixed discount factors. Our main goal is to establish stability
properties when the inputs are generated by PI as well as
novel near-optimality bounds.

We make several assumptions for this purpose. We first
assume that an optimal sequence of inputs exists for any
initial state and is stabilizing, which is very natural in the
context of this work. We also assume that PI is recursively
feasible in the sense that the optimization problem solved
at each iteration is guaranteed to always admit a solution as
customary in the literature [15]; if this is not the case we
can resort to the modification of PI advocated in [8] and our
results apply mutatis mutandis. On the other hand, the initial
policy for PI is required to give a bounded finite cost, which
does not mean that it is necessarily stabilizing because of
the discount factor. This allows to relax the conditions of
the related literature, see, e.g. [8,10,14], which require the
initial policy to be stabilizing. This is one additional possible
reason to consider discounted costs, i.e., to remove the need
for an initial stabilizing policy for PI. Finally, the system
needs to satisfy a detectability property with respect to the
stage cost, which is also very natural as we aim to establish
stability properties.

We use a generic measuring function to define stability
as in e.g., [9,17], which is useful to study the stability of
the origin and of more general attractors in a unified way.
By exploiting the assumed stability property verified by the
system in closed-loop with optimal controllers, novel near-
optimality properties are deduced. Indeed, less conserva-
tive bounds on the mismatch between the value function
generated by PI and the optimal value function compared
to [2,16] are obtained by exploiting the properties of the
considered class of systems. Afterwards, we establish via
a Lyapunov analysis that PI generates stabilizing policies,
provided a sufficient number of iterations. This is so even
in the absence of stability properties of the initial policy as
already mentioned. In particular, we show that the closed-
loop system controlled by PI enjoys a semiglobal practical
stability property where the adjustable parameter is the num-
ber of iterations. We provide an explicit relationship between
the number of iterations required, the set of initial condi-
tions and the guaranteed ultimate bound. By strengthening
the assumptions, a global exponential stability property is
derived and easy-to-compute lower bound on the discount
factor and the number of iteration are given. We illustrate
our results by means of two examples: the LQ problem and
a nonholonomic integrator.

The rest of the paper is organized as follows. Prelim-
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inaries are recalled in Section II. The problem is formally
stated in Section III. The standing assumptions are presented
in Section IV. The main results are given in Section V.
Examples are presented in Section VI before concluding in
Section VII. Long proofs are omitted for space reasons and
can be found in the extended version of this work [4].

II. PRELIMINARIES

A. Notation

Let R be the set of real numbers, R≥0 := [0,+∞),
Z≥0 := {0, 1, 2, ...} and Z>0 := {1, 2, ...}. We consider
K, K∞ and KL functions as defined in [5, Section 3.5].
The identity map from R≥0 to R≥0 is denoted by I. Let f :
R≥0 → R≥0, we use f (k) for the composition of function f
to itself k times, where k ∈ Z≥0 and f (0) := I. We use ⌈·⌉ to
denote the ceil function. The Euclidean norm of a vector x ∈
Rn with n ∈ Z>0 is denoted by |x| and the distance of x to
a non-empty set A ⊆ Rn by |x|A := inf{|x− y| : y ∈ A}.
For any M ∈ Rn×m with n,m ∈ Z>0, ∥M∥ is the spectral
norm of the matrix M , i.e., ∥M∥ =

√
ρ(M⊤M), where

ρ(M⊤M) is the spectral radius of the matrix M⊤M . If M
is a symmetric matrix let λmin(M) and λmax(M) denote
its minimal and maximal eigenvalues, respectively. Given a
set-valued map S : Rn ⇒ Rm, a selection of S is a single-
valued mapping s : domS → Rm such that s(x) ∈ S(x)
for any x ∈ domS, we write s ∈ S to denote a selection
s of S for the sake of convenience. Finally, for an infinite
sequence u = (u(0), u(1), ...) where u(0), u(1), ... ∈ Rm

with m ∈ Z>0, u|k stands for the truncation of u to its first
k ∈ Z>0 steps, i.e., u|k =

(
u(0), ..., u(k − 1)

)
and we use

the convention u|0 = ∅.

B. Plant Model and Cost Function

We consider nonlinear deterministic discrete-time systems
given by

x(k + 1) = f(x(k), u(k)), ∀k ∈ Z≥0, (1)

where x(k) ∈ Rnx is the state, u(k) ∈ U(x(k)) ⊆ Rnu

is the control input at time step k ∈ Z≥0, U(x) is the
non-empty set of admissible inputs at state x ∈ Rnx , and
nx, nu ∈ Z>0. Ideally, we wish to find, for any given
x ∈ Rnx , an infinite-length sequence of admissible inputs
u =

(
u(0), u(1), ...

)
that minimizes the discounted infinite-

horizon cost

Jγ(x,u) :=

∞∑
k=0

γkℓ
(
ϕ(k, x,u|k), u(k)

)
, (2)

where γ ∈ (0, 1) is a discount factor, ℓ : Rnx × Rnu →
R≥0 is a non-negative stage cost and ϕ(k, x,u|k) is the
solution to (1) at time k ∈ Z≥0, initialized at x(0) = x ∈
Rnx , with inputs given by u|k and we use the convention
ϕ(0, x,u|0) = x. We assume that for any x ∈ Rnx , there
exists a sequence of admissible inputs minimizing Jγ(x, ·),
i.e.,

V ⋆
γ (x) := min

u
Jγ(x,u) < +∞, ∀x ∈ Rnx , (3)

as formalized in Section III-A. As a consequence, Bellman
equation becomes

V ⋆
γ (x) = min

u∈U(x)

{
ℓ(x, u) + γV ⋆

γ

(
f(x, u)

)}
∀x ∈ Rnx .

(4)
We can therefore define the non-empty set of optimal inputs
for any state x ∈ Rnx as

H⋆
γ (x) := argmin

u∈U(x)

{ℓ(x, u) + γV ⋆
γ

(
f(x, u)

)
}. (5)

Given (5), the closed-loop system (1) with optimal controller
is given by

x(k + 1) ∈ f
(
x(k), H⋆

γ (x(k))
)
=: F ⋆

γ

(
x(k)

)
∀k ∈ Z≥0.

(6)
As (5) is a set-valued map, there may be non-unique optimal
inputs at some state and, as a consequence, system (6) is a
difference inclusion in general. For the sake of convenience,
solutions to system (6) at time k ∈ Z≥0 are denoted as
ϕ⋆
γ(k, x) when initialized at x ∈ Rnx .
Computing H⋆

γ in (5) for the general dynamics in (1)
and cost function (2) is notoriously hard. Dynamic pro-
gramming provides algorithms to iteratively obtain feedback
law, whose cost converges to the optimal one. We focus
on PI in this work, which we recall in the next section.
Before that, we introduce some notation. Given a policy
h : Rnx → Rnu that is admissible, i.e., h ∈ U , we denote the
solution to system (1) in closed-loop with feedback law h at
time k ∈ Z≥0 with initial condition x(0) = x as ϕ(k, x, h).
Likewise Jγ(x, h) is the cost induced by h at initial state x,

i.e., Jγ(x, h) :=
∞∑
k=0

γkℓ
(
ϕ(k, x, h), h

(
ϕ(k, x, h)

))
.

III. PROBLEM STATEMENT

We recall PI in this section and we state the objectives of
this work.

A. Policy Iteration

PI is given in Algorithm 1. Given γ ∈ (0, 1) and an initial
admissible policy h0, PI generates at each iteration i ∈ Z≥0

a policy hi+1
γ via the so-called improvement step in (PI.2).

Policy hi+1
γ is an arbitrary selection of Hi+1

γ in (PI.2) where
Hi+1

γ may be set-valued. We then evaluate the cost induced
by hi+1

γ , namely V i+1
γ (x) = Jγ(x, h

i+1
γ ) for any x ∈ Rnx ,

at the evaluation step in (PI.3). By doing so repeatedly, V i
γ

converges to the optimal value function V ∞
γ = V ⋆

γ under
mild conditions, see, e.g., [2].

It is implicitly assumed here that the optimization problem
defined in (PI.2) always admits a solution, i.e., Hi

γ(x) is
non-empty for any x ∈ Rnx at any iteration i ∈ Z>0. We
say in this case that Algorithm 1 is recursively feasible. We
will go back to this point in Section IV-B.

B. Objectives

As we cannot iterate Algorithm 1 infinitely many times,
our objective is to give conditions under which PI generates
stabilizing policies after a finite number of iterations. We
also aim at providing near-optimality guarantees for PI. In
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Algorithm 1: Policy Iteration
Input: f in (1), ℓ in (2), γ ∈ (0, 1), initial policy

h0 ∈ U
Output: Policy h∞

γ , cost V ∞
γ

1 Initial evaluation step: for all x ∈ Rnx

V 0
γ (x) := Jγ(x, h

0). (PI.1)

2 for i ∈ Z≥0 do
3 Policy improvement step: for all x ∈ Rnx

Hi+1
γ (x) := argmin

u∈U(x)

{ℓ(x, u) + γV i
γ (f(x, u))}.

(PI.2)
4 Select hi+1

γ ∈ Hi+1
γ .

5 Policy evaluation step: for all x ∈ Rnx ,

V i+1
γ (x) := Jγ(x, h

i+1
γ ). (PI.3)

6 end for
7 return h∞

γ ∈ H∞
γ and V ∞

γ .

particular, we will see that the bound on V i
γ−V ⋆

γ we provide
significantly differ and improve those encountered in the
dynamic programming literature [2,16] for the considered
class of systems.

We need to make several assumptions to meet these
objectives, which are presented in the next section.

IV. STANDING ASSUMPTIONS

A. Existence of an Optimal Sequence

As mentioned in Section II-B, we assume that for any
x ∈ Rnx , there exists (at least) one infinite-length sequence
of admissible inputs minimizing (2).

Standing Assumption 1 (SA1): For any x ∈ Rnx and any
γ ∈ (0, 1), there exists an optimal sequence of admissible
inputs u⋆

γ(x) such that V ⋆
γ (x) = Jγ

(
x,u⋆

γ(x)
)

< +∞
and for any infinite-length sequence of admissible inputs
u, V ⋆

γ (x) ≤ Jγ(x,u). □
Condition on system (1) and cost function (2) ensuring

SA1 are available in [12] for instance. SA1 ensures the
existence of the optimal value function V ⋆

γ given in (3) as
well as the non-emptiness of H⋆

γ (x) in (5) for any x ∈ Rnx

and γ ∈ (0, 1). SA1 is very reasonable in the context of this
work as we aim to use PI to generate policies, whose costs
converge to the optimal one.

B. Recursive Feasibility of PI

We proceed as is often done in the literature, see, e.g.,
[10,14,15], and assume Algorithm 1 is recursively feasible,
in the sense that the set Hi

γ(x) is non-empty at any iteration
i ∈ Z>0 and for any x ∈ Rnx , which is equivalent to say
that the optimization problem in (PI.2) admits a solution for
any x ∈ Rnx at any iteration i ∈ Z>0.

Standing Assumption 2 (SA2): For any i ∈ Z>0 and x ∈
Rnx , the set-valued map Hi

γ(x) is non-empty. □
SA2 ensures the recursive feasibility of Algorithm 1 by

allowing the selection at each iteration of a new policy. As

explained in the introduction, if SA2 does not hold, we can
use the modified version of PI presented in [8, Section IV]
and the forthcoming results apply mutatis mutandis.

C. Detectability

To define stability, we use a continuous and radially
unbounded function1 σ : Rnx → R≥0 that serves as a state
measure relating the distance of the state to a given attractor
where σ vanishes. As explained in [9,17], σ can be defined
as |·|p when studying the stability of the origin, or as |·|pA,
with p ∈ Z>0 when studying the stability of non-empty set
A ⊆ Rnx . We make the next detectability assumption on
system (1) and stage cost ℓ, which is inspired by [9].

Standing Assumption 3 (SA3): There exist a continuous
function W : Rnx → R≥0, αW ∈ K∞ and αW : R≥0 →
R≥0 continuous, nondecreasing and zero at zero, such that,
for any x ∈ Rnx and u ∈ U(x),

W (x) ≤ αW

(
σ(x)

)
W

(
f(x, u)

)
−W (x) ≤ −αW

(
σ(x)

)
+ ℓ(x, u).

(7)

□
SA3 is a detectability property of system (1) with respect

to σ when considering ℓ as an output. This is very natural as
this captures the fact, that by minimizing ℓ along the solu-
tions to (1), desirable stability properties should follow. SA3
is consistent with the literature on LQ [1]; the link between
(7) and detectability of linear time-invariant systems being
established in [17, Lemma 4]. When ℓ(x, u) = q(x) + r(u)
for any x ∈ Rnx and any u ∈ U(x), with q : Rnx → R≥0

and r : Rnu → R≥0 such that there exists α ∈ K∞ verifying
q(x) ≥ α(σ(x)) for any x ∈ Rnx , then SA3 is verified with
W = 0, αW = α and αW = 0.

Remark 1: A more general detectability property is con-
sidered in [9,17] where the second line of (7) is given by
W (f(x, u)) − W (x) ≤ −αW (σ(x)) + χ(ℓ(x, u)) for any
x ∈ Rnx , u ∈ Rnu and with χ ∈ K∞. We plan to investigate
this generalization in future work. □

D. Initial Policy

We also make the next assumption on the cost given by
the initial policy.

Standing Assumption 4 (SA4): Let h0 ∈ U be known and
such that there exist γ0 ∈ (0, 1] and αV : R≥0 × (0, γ0) →
R≥0 of class K∞ in its first argument verifying for any
x ∈ Rnx and any γ ∈ (0, γ0),

V 0
γ (x) = Jγ(x, h

0) ≤ αV

(
σ(x), γ

)
. (8)

□
SA4 requires the knowledge of an initial policy h0 such

that there exists a range of values for γ, namely (0, γ0),
such that the initial cost V 0

γ (x) is finite for every x ∈ Rnx

and is upper-bounded by function αV , which is K∞ in its
first argument and depends on γ. It is important to note that
SA4 may hold even if h0 is not stabilizing as illustrated in

1In the sense that for any ∆ > 0, {x ∈ Rnx : σ(x) ≤ ∆} is compact.
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Section VI and exemplified below. The next lemma gives a
sufficient condition to ensure SA4.

Lemma 1: Consider system (1) and suppose there
exist M,a > 0, χ ∈ K∞ and an admissible policy
h ∈ U such that for any x ∈ Rnx and any k ∈ Z≥0,
ℓ
(
ϕ(k, x, h), h(ϕ(k, x, h))

)
≤ Makχ(σ(x)). Then

SA4 is verified with h0 = h, γ0 = min
{
1, 1

a

}
and

αV (s, γ) = M
1−aγχ(s) for any s ∈ R≥0 and any

γ ∈ (0, γ0). □

Proof. Let h0 = h and γ ∈ (0, γ0) with h and γ0 as in
Lemma 1. For any x ∈ Rnx ,

V 0
γ (x) =

∞∑
k=0

γkℓ
(
ϕ(k, x, h0), h(ϕ(k, x, h0))

)
≤ Mχ(σ(x))

∞∑
k=0

(aγ)k. (9)

As γ < γ0 ≤ 1
a , we have V 0

γ (x) ≤ M
1−aγχ(σ(x)). Thus

SA4 holds with αV (·, γ) := M
1−aγχ and this concludes the

proof. ■

Lemma 1 shows that, if the stage cost along the solution
to (1) with policy h0 is upper-bounded at any time-step
k ∈ Z≥0 by a term Makσ(x), we can determine explicitly
γ0 and αV (·, γ) verifying SA4. Note that a in Lemma 1
may be strictly bigger than 1, which implies that h0 may
not be stabilizing.

Remark 2: It is sometimes difficult to determine a sta-
bilizing initial policy for general nonlinear systems. Hence
the main idea is to remove this constraint by exploiting the
discount factor. □

E. Stability with Optimal Sequence

As we want to eventually obtain stabilizing policies using
PI, we will assume that optimal policies are stabilizing.
The next assumption together with SA1 and SA3 indeed
guarantee that the closed-loop system (1) with optimal
controller, i.e., system (6), verifies a KL-stability property
with respect to σ as established in Proposition 1 below.

Standing Assumption 5 (SA5): The following holds.
(i) There exists αV ⋆ ∈ K∞ such that for any γ ∈ (0, γ0)

with γ0 in SA4, for any x ∈ Rnx , V ⋆
γ (x) ≤ αV ⋆

(
σ(x)

)
where V ⋆

γ is the optimal value function in (3).
(ii) There exists γ⋆ ∈ (0, γ0) such that

(1− γ⋆)αV ⋆(s) ≤ αW (s), ∀s ∈ R>0, (10)

with αW in SA3. □

Item (i) of SA5 holds for instance when αV in (8) is
independent of γ as V ⋆

γ (x) ≤ V ⋆
γ0
(x) for any x ∈ Rnx

and any γ ∈ (0, γ0). It is important to note that we do
not need to know either V ⋆

γ or V ⋆
γ0

to check whether item
(i) of SA5 holds. Indeed, this condition holds whenever
the cost for a known, not necessarily optimal, policy is
upper-bounded by αV ⋆(σ(x)) for any x ∈ Rnx for some
αV ⋆ ∈ K∞. A condition ensuring item (i) is given in [17,

Lemma 1]. Item (ii) of SA5 is a technical condition useful
to deduce global asymptotic stability properties for system
(6) as formalized next.

Proposition 1: For any γ ∈ (γ⋆, γ0), system (6) is KL-
stable with respect to σ, i.e., there exists β⋆

γ ∈ KL such
that for any x ∈ Rnx , any solution ϕ⋆

γ(·, x) to system (6)
satisfies

σ
(
ϕ⋆
γ(k, x)

)
≤ β⋆

γ

(
σ(x), k

)
∀k ∈ Z≥0. (11)

In particular, β⋆
γ : (s, k) 7→ α−1

Y ⋆(β̃⋆
γ(αY ⋆(s), k)) ∈ KL with

αY ⋆ , β̃⋆
γ and αY ⋆ in Table 1. □

Remark 3: Proposition 1 ensures a global asymptotic
stability property for system (6). We will investigate in
future work the case where a semiglobal practical stability
holds for (6) instead as in [17], which will allow us to relax
item (ii) of SA5. □

Now that all the standing assumptions have been stated,
we are ready to present the main results.

V. MAIN RESULTS

In this section, we consider system (1) whose inputs are
generated by PI at iteration i ∈ Z≥0, that is,

x(k + 1) ∈ f
(
x(k), Hi

γ(x(k))
)
=: F i

γ

(
x(k)

)
, ∀i ∈ Z≥0.

(12)
For convenience, solutions to system (12) are denoted in
the sequel as ϕi

γ(k, x) when initialized at x ∈ Rnx for any
k ∈ Z≥0.

A. Near-optimality

We first recover the classical result presented in, e.g., [3],
on the improvement property of the policies generated by
PI, whose proof is omitted as it follows similar lines as [10,
Lemma 2].

Lemma 2: For any x ∈ Rnx , i ∈ Z≥0 and γ ∈ (0, γ0)
with γ0 in SA4, V i+1

γ (x) ≤ V i
γ (x). □

In the next theorem, we establish a new near-optimality
bound for PI with discounted costs.

Theorem 1: For any i ∈ Z≥0, x ∈ Rnx , γ ∈
(
γ⋆, γ0

)
and

any solution ϕ⋆
γ(·, x) to system (6),(

V i
γ − V ⋆

γ

)
(x) ≤ γi

(
V 0
γ − V ⋆

γ

)
(ϕ⋆

γ(i, x))

≤ γiαV (β
⋆
γ(σ(x), i), γ), (13)

with β⋆
γ ∈ KL from Proposition 1 and αV from SA4.

□
Theorem 1 gives us an explicit upper-bound on the term

V i
γ (x)−V ⋆

γ (x) for any x ∈ Rnx and any iteration i ∈ Z≥0.
Hence, this bound provides an estimation on how close cost
V i
γ generated at iteration i ∈ Z≥0 by PI is from the “target”

V ⋆
γ . As β⋆

γ ∈ KL for any γ ∈ (γ⋆, γ0), the upper bound
in (13) converges to 0 as the number of iteration i goes to
infinity. Typical near-optimal bounds for PI in the literature
are of the form M1γ

i

1−γ +M2 with M1,M2 ∈ R>0, see, e.g.,
[2,16]. The latter bound explodes as γ goes to 1 and does
not vanish to 0 as σ(x) goes to 0, contrary to the bound in
Theorem 1. This can be explained by the fact that the bounds
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of the literature do not exploit the stability properties of the
optimal policies established in Proposition 1.

We now focus on the stability guarantees that can be
deduced thanks to this near-optimality property.

B. Stability

We first establish a Lyapunov property for system (12)
for any iteration i ∈ Z≥0.

Theorem 2: There exist αY ∈ K∞, αY , αY : R≥0 ×
(γ⋆, γ0) → R≥0 of class K∞ in their first argument such
that for any i ∈ Z≥0 there exist Y i

γ : Rnx → R≥0 and
Υi : R≥0×(γ⋆, γ0) → R≥0 of class K∞ in its first argument
such that the following holds for any γ ∈ (γ⋆, γ0).

(i) For any x ∈ Rnx , αY

(
σ(x)

)
≤ Y i

γ (x) ≤ αY

(
σ(x), γ

)
.

(ii) For any x ∈ Rnx and v ∈ F i
γ(x),

Y i
γ (v)− Y i

γ (x) ≤ 1
γ

(
− αY

(
σ(x), γ

)
+Υi

(
σ(x), γ

))
,

where αY , αY , αY , Υi and Y i
γ are defined in Table I. □

Item (i) of Theorem 2 means that Y i
γ is positive definite

and radially unbounded with respect to σ for any γ ∈
(γ⋆, γ0). Item (ii) of Theorem 2 is a dissipative inequality
of system (12) for which the supply rate consists of a
negative term, namely − 1

γαY (·, γ), and a non-negative
term 1

γΥ
i(·, γ) which can be made as small as desired

by increasing i. The latter property is key for establishing
stability properties for system (12) with i sufficiently large.

αY ⋆ , αY αW

αY ⋆ (·, γ), αY (·, γ) γ−γ⋆

1−γ⋆ αW

αY ⋆ αV ⋆ + 1
γ⋆ αW

α̃Y ⋆ (·, γ) αY (·, γ) ◦ αY ⋆

β̃⋆
γ(s, k) maxŝ∈[0,s]

(
I− 1

γ
α̃Y ⋆ (·, γ)

)(k)
(ŝ)

Y i
γ V i

γ + 1
γ
W

αY (·, γ) αV (·, γ) + 1
γ
αW

Υi (s1, s2) 7→ (1− s2)si2αV

(
β⋆
γ(s1, i), s2

)
TABLE I: Expressions of functions used in Theorems 1 and
2

Once all the functions in SA3 and SA4 are identified, the
functions appearing in Table I may be derived explicitly, see
Section VI for examples.

Based on Theorem 2, we establish the next stability
property for system (6).

Theorem 3: For any γ ∈ (γ⋆, γ0), there exists βγ ∈ KL
such that for any δ,∆ > 0, i ≥ i⋆γ with i⋆γ ∈ Z≥0 verifying

i⋆γ ≥
ln
( αY (α−1

Y (αY (δ),γ),γ)

2(1−γ)αV (β⋆
γ(α

−1
Y (αY (∆,γ)),0),γ)

)
ln (γ) , (14)

any x ∈ {z ∈ Rnx : σ(z) ≤ ∆}, any solution ϕi
γ(·, x) to

system (12) satisfies

σ
(
ϕi
γ(k, x)

)
≤ max{βγ

(
σ(x), k

)
, δ} ∀k ∈ Z≥0. (15)

□
Theorem 3 ensures a semiglobal and pratical stability

property of (12) for any γ ∈ (γ⋆, γ0) where the tuning
parameter is the number of iterations i. In particular, for any

set of initial conditions of the form {x ∈ Rnx : σ(x) ≤ ∆}
where ∆ > 0 can be arbitrarily large, for any (arbitrarily
small) δ > 0, we can always compute i⋆γ ∈ Z≥0 verifying
(14) such that for any iteration i ≥ i⋆γ (15) holds. By
strengthening the conditions of Theorem 3, it is possible
to derive stronger stability guarantees.

Corollary 1: Suppose there exist aW ≥ 0, aW , aV ⋆ > 0
and aV : (γ⋆, γ0) 7→ R>0 such that αV (s, ·) = aV (·)s,
αV ⋆(s) = aV ⋆s, αW (s) = aW s and αW (s) ≤ aW s for any
s ≥ 0 with γ⋆ = aV ⋆−aW

aV ⋆
. Then for any γ ∈

(
γ⋆, γ0

)
there

exists i⋆γ ∈ Z≥0 verifying

i⋆γ ≥
ln
( γ⋆(γ−γ⋆)a2

W

2γ(1−γ)2aV (γ)(γ⋆aV ⋆+aW )

)
ln
(
γ−

γ⋆(γ−γ⋆)aW

(1−γ)(γ⋆aV ⋆+aW )

) , (16)

such that for any i ≥ i⋆γ , x ∈ Rnx any solution ϕi
γ(·, x) to

system (12) satisfies

σ
(
ϕi
γ(k, x)

)
≤ c1(γ)σ(x)e

−c2(γ)k ∀k ∈ Z≥0 (17)

with c1(γ) = γaV (γ)+aW

γaW
and c2(γ) =

− ln
(
1− aW (γ−γ⋆)

2γ(1−γ)(aV (γ)+
1
γ aW )

)
> 0. □

Corollary 1 ensures that after a sufficient number of
iterations i⋆γ , that we can explicitly estimate using (16), a
global exponential stability property of (12) is also verified
for any γ ∈ (γ⋆, γ0).

Remark 4: Corollary 1 also ensures a global exponential
stability property of the system (6) with a lower bound for
γ⋆ less conservative than those presented in [17, Corollary
2] and [6, Lemma 2]. Indeed γ⋆ = aV ⋆−aW

aV ⋆
= 1 − aW

aV ⋆
≤

1 − aW

aV ⋆+aW
=: γ⋆

[6] and as 1 > (aV ⋆−aW )
aV ⋆

(aV ⋆+aW )
aV ⋆

=
a2
V ⋆−a2

W

a2
V ⋆

, we have γ⋆ = aV ⋆−aW

aV ⋆
≤ aV ⋆

aV ⋆+aW
=: γ⋆

[17]. □

VI. EXAMPLES

We consider two examples, namely the linear quadratic
problem and a nonholonomic integrator, for which we show
that the standing assumptions hold thereby implying that the
results of Section V apply.

A. Linear Quadratic Problem

We consider the deterministic linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (18)

where A ∈ Rnx×nx , B ∈ Rnx×nu and (A,B) stabilizable.
Let σ(x) = |x|2 and ℓ(x, u) = x⊤Qx + u⊤Ru for any
x ∈ Rnx and u ∈ Rnu , where Q = C⊤C ∈ Rnx×nx with
(A,C) detectable, and R ∈ Rnu×nu is a symmetric, positive
definite matrix. We set U(x) = Rnu for any x ∈ Rnx .

First, as (A,B) is stabilizable and (A,C) is detectable
SA1 holds by [2]. In addition, SA3 is verified with W (x) =
x⊤S2x for any x ∈ Rnx , αW (s) = λmin(S1)s and
αW (s) = λmax(S2)s for any s ∈ R≥0, where S1, S2 are
symmetric positive definite matrices satisfying(

A⊤S2A− S2 + S1 −Q A⊤S2B
B⊤S2A B⊤S2B −R

)
≤ 0. (19)
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Note that there always exist such matrices S1 and S2 by
[17, Lemma 4]. Furthermore, the conditions of Lemma 1
are satisfied by taking h(x) = K0x for any x ∈ Rnx ,
with any K0 ∈ Rnu×nx , χ = I, M =

∥∥Q+K⊤
0 RK0

∥∥
and a = ∥A+BK0∥2. Hence SA4 is verified with γ0 =

min
{
1, 1

∥A+BK0∥2

}
and αV

(
s, γ

)
:=

∥Q+K⊤
0 RK0∥

1−γ∥A+BK0∥2 s for
any s ∈ R≥0 and γ ∈ (0, γ0). We note that SA4 is
verified for any K0 ∈ Rnu×nx , thus even when A + BK0

is not Schur, i.e., even when the initial policy is not
stabilizing. Moreover, using the same time-varying change
of coordinates as in [13], we know by [14] that SA2 holds,
as

√
γ(A + BK0) is Schur for any γ < γ0 (which does

not mean A + BK0 is Schur obviously). Given (A,B)
stabilizable, the optimal value function for any γ ∈ [0, 1]
and x ∈ Rnx is V ⋆

γ (x) := x⊤P ⋆
γ x, where P ⋆

γ is a symmetric
matrix. Hence SA5 holds with αV ⋆(s) = λmax(P

⋆
1 )s for

any s ≥ 0 and γ⋆ = 1 − λmin(S1)
λmax(P⋆

1 ) . Provided we take K0

such that γ0 > γ⋆, all the conditions of Corollary 1 are
verified and we conclude that the system (12) verifies a
global exponential stability property for any γ ∈ (γ⋆, γ0)
after a sufficient number of iterations whose estimate is
given by (16).

B. Nonholonomic Integrator

Consider the nonholonomic integrator as in [9, Example
2], that is,

x+
1 = x1 + u1 x+

2 = x2 + u2 x+
3 = x3 + x1u2 − x2u1, (20)

where x = (x1, x2, x3) ∈ R3, u = (u1, u2) ∈ U(x) = R2.
Let σ(x) = x2

1 +x2
2 +10 |x3| and ℓ(x, u) = σ(x)+ |u|2 for

any x ∈ R3 and u ∈ R2.
Thanks to [17], SA1, SA3 and item (i) of SA5 are verified

with W = 0, αW = 0, αW = I and αV ⋆ = 22
5 I. We assume

that SA2 holds. As the conditions of Lemma 1 are satisfied
by taking h(x) = ( 1

15x1,−x2) for any x ∈ Rnx with χ = I,
a = 256

225 , M = 22
3 . As a consequence, SA4 is satisfied

with γ0 = 225
256 and αV (·, γ) = M

1−aγ I for any γ ∈ (0, γ0).
Moreover, using the condition given in Corollary 1, item
(ii) of SA5 is ensured with γ⋆ = 17

22 . As 17
22 ≈ 0.77 <

0.88 ≈ 225
256 , we have γ⋆ < γ0 such that all the conditions

of Corollary 1 are verified. We conclude that the system
(12) verifies a global exponential stability property for any
γ ∈ (γ⋆, γ0) after a sufficient number of iterations whose

estimate is given by i⋆γ =


ln
( (330γ−255)(1− 256

225γ)

21296γ(1−γ)2

)
ln
(
γ− 110γ−85

484(1−γ)

)
.

Thus, when γ = 0.86, i⋆γ = 20, which means that the
systems controlled by the policies generated by PI exhibit
an exponential stability property after 20 iterations.

VII. CONCLUSION

We have analyzed the stability of general nonlinear
discrete-time systems controlled by sequences of inputs gen-
erated by PI for an infinite-horizon discounted cost. Inspired
by [8], novel near-optimal bounds have been established for
the discounted problem. These new bounds do not blow up

when the discount factor tends to 1 contrary to, e.g., [2,16].
The novel near-optimality bounds were then exploited to
also provide general conditions under which PI generates
stabilizing policies after sufficiently many iterations.

In future work, we plan to relax some of the made
assumptions in particular SA3 and item (ii) of SA5, and to
investigate the case where γ is increased with the number
of iterations as done in [13] for the LQ problem.
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