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Abstract— A concept of backward observability is introduced
for nonlinear discrete-time control systems. According to the
new definition the state variables can be expressed as functions
of inputs, outputs and their backward shifts. It is shown that the
new observability definition is more general for non-reversible
systems than the one used typically in the literature. In case of
reversible systems it is proved that backward observability is
equivalent to the standard definition of observability. The new
definition allows to enlarge the class of systems for which state
variables can be estimated and the observers constructed.

I. INTRODUCTION

Observability is a fundamental concept in control theory.
For an observable system one can, in principle, construct a
state observer to estimate the state variables. The latter is im-
portant, since the state feedback is widely used tool in control
engineering, but all state components are rarely measurable.
For discrete-time systems many notions of observability are
defined, see for instance [17].

In this paper we are interested in single-experiment generic
observability as defined in [9], [10]. The word ’generic’
means that we are not studying observability in a neighbor-
hood of a point, but in an open and dense subset of the state
space. Nor are we interested in uniform observability [5].
Single-experiment observability refers to the case when the
state variables can be expressed as functions of the system
output, input and a finite number of their forward shifts. From
now on the word ’observability’ refers to single-experiment
observability. Interestingly, almost all the papers (see, for
example, [9], [10], [14]) that study observability of discrete-
time systems define observability using only forward shifts
of the input and output variables. This is probably due to
similarity to the continuous-time case. The only exception
is [1] where also the backward shifts are considered in
the definition of observability. In [1] it is proved that for
reversible systems, when considering both backward and
forward shifts of outputs and inputs in the definition of
observability, then such notion of observability is equivalent
to the standard observability notion, where only forward
shifts are used. However, nothing is said about non-reversible
case. Non-reversible systems, however, form an important
class of systems. For example, the state equations in famous
Brunovsky canonical form are non-reversible.

To show that backward shifts are necessary to characterize
observability for non-reversible state equations, consider the
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following motivating example:

x1(t+ 1) = u(t)
x2(t+ 1) = x3(t)
x3(t+ 1) = x1(t) + x2(t)u(t)

y(t) = x3(t).

(1)

It is shown in [10] that system (1) is not observable.
This means that not all state variables can be expressed as
functions of the output y(t), the input u(t) and their forward
shifts. However, they can be expressed as functions of y(t),
u(t) and their backward shifts. From the first two equations
one gets x1(t) = u(t−1), x2(t) = x3(t−1) = y(t−1) and
from the last equation x3(t) = y(t).

Motivated by above example, in this paper a concept of
backward observability is defined for discrete-time systems.
We say that a discrete-time system is backward observable
if its state variables are equal to functions of the system
output, input and a finite number of their backward shifts.
It will be described how to check the property of backward
observability and how the concept is related to the standard
observability definition. More precisely, it will be proved that
the concept of backward observability is more general than
the standard observability notion, meaning that observabil-
ity yields backward observability. However, for reversible
systems the two concepts of observability coincide, that is,
like in [1], backward observability does not add anything
compared to the standard definition. It is also shown that
backward observability allows to estimate the state variables
of a larger class of systems than standard observability notion
and that there is more freedom in selecting an output to
guarantee observability of a system.

It should be noted that backward observability has sim-
ilarities with the concept of constructibility defined for
linear discrete-time systems, see, for example, [11]. Just
as backward observability, constructibility is related to past
measurements, but the latter is focused to the recovery of
the final state. The concept of constructability has been
generalized to the nonlinear case, see [15], [16]. In [15]
constructibility analysis was done for an observable model
of a robot. In [16], however, it was proved that observability
yields constructibility for nonlinear discrete-time systems.
Moreover, an assumption similar to backward observability,
called backward distinguishability is made in [3] to design
observers for discrete-time systems.

Finally, note that like in case of the observability property,
backward shifts play a critical role in characterizing the
flatness property for discrete-time systems though at first
flatness was defined for discrete-time systems through simply
replacing time-derivatives by forward shifts. However, re-
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cently (see [4], [7]) it was shown that allowing also backward
shifts of system variables leads to a more general definition.

II. PRELIMINARIES

Recall the basic concepts of the algebraic approach based
on the difference field and differential 1-forms, see [2]. For
simplicity we limit ourselves to single-input single-output
discrete-time nonlinear systems given by their state and
output equations

x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t)),

(2)

where x(t) ∈ X ⊆ Rn is the state, u(t) ∈ U ⊆ R is the
input, y(t) ∈ Y ⊆ R is the output, f = (f1, . . . , fn)

T and h
are analytic in their arguments and X , U , Y are open subsets.
Assume that there exists an analytic function χ(x(t), u(t)),
such that

x(t+ 1) = f(x(t), u(t))
z(t) := χ(x(t), u(t))

(3)

can be globally solved for x(t) and u(t), i.e., x(t) =
F (x(t+1), z(t)), u(t) = G(x(t+1), z(t)) for some analytic
functions F and G. This is a typical assumption in discrete-
time case that allows to define uniquely a backward shift
operator, see below. A stronger assumption often made in
discrete-time case is system reversibility.

Definition 1: System (2) is said to be reversible if the
function χ can be chosen as χ(x(t), u(t)) = u(t).
Typically, reversibility is defined by the rank condition

rank
∂f(x(t), u(t))

∂x(t)
= n

that is assumed to hold on an open and dense subset of
X×U . However, the rank condition does not guarantee that
globally there exist analytic functions F and G as a solution
of (3).

Let K be the field of meromorphic functions in a
finite number of variables from the set {xi, u[k], z[−l]; i =
1, . . . , n; k ≥ 0; l > 0}. The variable u[k] corresponds to
u(t + k), but is seen as an independent variable of the
field K, not as a function of time t. Similar interpretation
is used for xi and z[−l]. Define on K the forward shift
operator δ : K → K as δ(x) = f(x, u), δ(u[k]) = u[k+1],
δ(z[−l]) = z[−l+1] for l ≥ 2, δ(z[−1]) = χ(x, u)
and δ(ψ(x, u, . . . , u[k], z[−1], z[−2], . . . , z[−l])) =
ψ(f(x, u), u[1], . . . , u[k+1], χ(x, u), z[−1], . . . , z[−l+1]).
The operator δ has an inverse (backward shift) operator δ−1

defined by δ−1(x) = F (x, z[−1]), δ−1(u) = G(x, z[−1]),
δ−1(z[−k]) = z[−k−1], δ−1(u[k]) = u[k−1] for
k ≥ 1 and δ−1(ψ(x, u, . . . , u[k], z[−1], . . . , z[−l])) =
ψ(F (x, z[−1]), G(x, z[−1]), . . . , u[k−1], z[−2], . . . , z[−l−1]).
The pair (K, δ) is an inversive difference ring corresponding
to the system (2). Note that the assumption that (3) can be
globally solved for x(t) and u(t) guarantees that forward
and backward shifts of functionally independent functions
remain functionally independent.

Based on the field K one defines a vector field of 1-forms
as E = spanK{dψ|ψ ∈ K}, where d is the standard differen-
tial operator. The forward and backward shift operators can
be extended to E naturally as

δ(
∑
i

aidψi) :=
∑
i

δ(ai)dδ(ψi)

δ−1(
∑
i

aidψi) :=
∑
i

δ−1(ai)dδ
−1(ψi).

By abuse of notations, we use the same notation for the shift
operators defined on K and E .

III. OBSERVABILITY DEFINITION

There are many different notions of observability for
discrete-time systems, see [17]. In this section we use two
notions of observability. The first, the forward observability,
corresponds to the single-experiment observability, which
shows whether the state variables can be expressed as func-
tions of the system output, input and a finite number of their
forward shifts. This definition is a direct generalization of the
continuous-time case and is typically used in the textbooks
[12], [13] and when studying discrete-time systems, see for
example [8]. The second definition of observability intro-
duced in this section is called the backward observability.
The latter corresponds to the case when the state variables
can be expressed as functions of the system output, input and
a finite number of their backward shifts. As the past values of
the input and output variables are, in general, known, unlike
their future values, the definition of backward observability
is much more suitable in practical applications.

A. Forward observability

We define the forward observability through the observ-
able space of system (2), see [10]. In order to define the
observable space of (2) consider the following vector spaces
of 1-forms

X = spanK{dx}
Uf = spanK{du[k]; k ≥ 0}
Yf = spanK{dy[k]; k ≥ 0}.

Then the vector space Of := X ∩ (Uf + Yf ) is called
the forward observable space of system (2). The space Of

is named forward observable space, because the definition
relies on forward shifts of the output and input.

Definition 2: System (2) is said to be forward observable
if dimK Of = n.
It is obvious that the condition in Definition 2 is equivalent
to Of = X . The forward observable space can be computed
as follows.

Lemma 1: The forward observable space is equal to Of =
spanK{ωi; i = 0, . . . , n− 1}, where

ωi =
∂y[i]

∂x
dx. (4)

Proof: Observe that dy[i] = ωi +∑i−1
j=0

(
∂y[i]/∂u[j]

)
du[j], i = 0, . . . , n − 1. Because

dy[i], i ≥ n, is linearly dependent on dy, . . . , dy[n−1] and
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du, . . . ,du[n−1], then Yf + Uf = spanK{ωi,du
[k]; i =

0, . . . , n − 1; k ≥ 0}. Thus, Of = X ∩ (Yf + Uf ) =
spanK{ωi; i = 0, . . . , n− 1}.
Note that the 1-forms ωi in (4) are not, in general, linearly
independent and thus do not form a basis of Of . Instead, the
1-forms ωi are just the generators of Of . To get a basis of
Of one has to remove the dependent elements of ωi.

From Lemma 1 one gets the well-known observability rank
condition

rankK
∂(y, . . . , y[n−1])T

∂x
= n.

This also means that the input-output equation of a forward
observable system has order n or, in the other words, the
dimension of the forward observable space corresponds to
the order of its input-output equation.

Example 1. Consider the system (1) and compute the
forward observable space. Since y = x3, y[1] = x1 + x2u
and y[2] = u + x3u

[1], then by Lemma 1 the generators of
Of are ω1 = dx3, ω2 = dx1 + udx2 and ω3 = u[1]dx3.
Thus, since ω1 and ω3 are linearly dependent, one has
Of = spanK{dx3,dx1+udx2}. The dimension of Of is 2,
which means that the system is not forward observable.

B. Backward observability

We define the backward observability in a similar manner
as forward observability, except that backward shifts of y
and u are used instead of forward shifts. Define

Ub = spanK{du[−k]; k > 0}
Yb = spanK{dy[−k]; k ≥ 0}.

Note that compared to Uf the space Ub does not contain
du. The reason is that for system (2) output y and its
backward shifts do not depend on u and thus one does not
need to include du into Ub. Of course for systems, where
y = h(x, u), one has to include du into the space Ub. We
say that the vector space Ob := X∩(Yb+Ub) is the backward
observable space of system (2).

Definition 3: System (2) is said to be backward observ-
able if dimK Ob = n.
The backward observable space can be computed as follows.

Lemma 2: The backward observable space is equal to
Ob = spanK{ωy,i, ωu,j ; i = 0, . . . , n− 1; j = 1, . . . , n− 1},
where

ωy,i =
∂y[−i]

∂x
dx ωu,j =

∂u[−j]

∂x
dx. (5)

Proof: The proof consists of two steps. First, we show
that dz[−1] ∈ Yb+Ub. Then the second step is similar to the
proof of Lemma 1.

Since the forward shifts of the input u are all functionally
independent, then so must be the backward shifts of u.
Thus, there exists k ≥ 1, such that ∂u[−k]/∂z[−1] ̸= 0. Let
k be the minimal integer for which the latter is satisfied.
Then clearly (u[−k])[1] = u[−k+1] = ϕ(x, χ(x, u)) for some
function ϕ ∈ K. Since the selection of χ is not unique,
one can choose instead of z = χ(x, u) a function χ̃ as
z̃ = χ̃ := ϕ(x, χ(x, u)). The latter choice guarantees that
dz̃[−1] = du[−k] ∈ Yb + Ub. By definition of spaces Yb and

Ub, all the backward shifts of the elements in Yb+Ub belong
also to Yb + Ub. Therefore, dz̃[−i] ∈ Yb + Ub for i ≥ 1.

Now, one has dy[−i] = ωy,i +∑i
s=1

(
∂y[−i]/∂z[−s]

)
dz[−s], i = 0, . . . , n − 1.

Similarly, du[−j] = ωu,j +
∑j

s=1

(
∂u[−j]/∂z[−s]

)
dz[−s],

j = 1, . . . , n− 1. Because dy[−i], du[−i], i ≥ n, are linearly
dependent on dy, . . . , dy[−n+1] and du[−1], . . . ,du[−n+1],
then Yb + Ub = spanK{ωy,i, ωu,j ,dz

[−k]; i =
0, . . . , n − 1; j = 1, . . . , n − 1; k ≥ 1}. Thus,
Ob = X ∩ (Yb + Ub) = spanK{ωy,i, ωu,j ; i =
0, . . . , n− 1; j = 1, . . . , n− 1}.
Like in the case of forward observable space, the vectors of
1-forms ωy,i and ωu,j contain, in general, linearly dependent
elements. Thus, they form a set of generators for Ob, but not
a basis.

Note that unlike in case of forward observability, there is
no known link between the dimension of backward observ-
able space and the order of the input-output equation of a
given system. Thus, the order of the input-output equation
of a backward observable system might be less than n.

Example 2. Check whether the equations (1) are backward
observable. Here we take z = x2, which yields

y = x3

y[−1] = x2

y[−2] = z[−1]

u[−1] = x1

u[−2] = x3 − x1z
[−1].

By Lemma 2 one clearly has Ob = spanK{dx1,dx2,dx3}
and thus system (1) is backward observable.

We would like to stress, that the concept of backward
observability is not just something related to nonlinearities.
A linear system can also be backward observable and not
forward observable as shown by the following example.

Example 3. Consider a linear system described by the
state equations

x
[1]
1 = x2 + x3

x
[1]
2 = u

x
[1]
3 = x1
y = x1.

(6)

The forward observable space of (6) is Of =
spanK{dx1,d(x2 + x3)} and thus system (6) is not
forward observable. However, the backward observable
space can be computed as Ob = spanK{dx1,dx2,dx3}
meaning that system (6) is backward observable.

IV. PROPERTIES OF THE OBSERVABILITY
NOTIONS

Next we study how the two observability notions – forward
and backward observability – are related. First, we show
that forward observability is just a special case of backward
observability.

Lemma 3: If system (2) is forward observable then it is
also backward observable.
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Proof: If system (2) is forward observable, then the
forward observable space has dimension n. This means that
the expressions of y, . . . , y[n−1], u, . . . , u[n−2] are function-
ally independent. Compute the (n− 1)-step backward shifts
of the latter expressions to get

y[−i] = hi(x, z
[−1], . . . , z[−i]), i = n− 1, . . . , 0,

u[−j] = gj(x, z
[−1], . . . , z[−j]), j = n− 1, . . . , 1.

(7)
Since shifting functions back does not make them function-
ally dependent, then the functions on the right-hand side
of (7) are functionally independent and one can solve the
equations (7) for x and z[−i], i = 1, . . . , n − 1. Therefore,
the state variable x can be written as function of y[−i], i =
0, . . . , n−1 and u[−j], j = 1, . . . , n−1. This means that the
backward observability space Ob contains dxi, i = 1, . . . , n,
and thus its dimension must be equal to n.
Note that the opposite is not, in general, true, i.e., if system
(2) is backward observable, then it is not always forward
observable. This can also be seen from Examples 1 and 2.
However, when system (2) is reversible, then the concepts
of forward and backward observabilities coincide.

Lemma 4: If system (2) reversible, then backward observ-
ability is equivalent to forward observability.

Proof: Since by Lemma 3 forward observability always
yields backward observability, it remains to show that for
reversible systems backward observability yields forward
observability. In the case of reversible systems one can
always take z = u. Since backward shifts of z are inde-
pendent variables in the field K, then ∂u[−k]/∂x ≡ 0 for
all k ≥ 1 and, by Lemma 2, one has Ob = spanK{ωy,i; i =
0, . . . , n−1}. Because system (2) is assumed to be backward
observable, then

rankK
∂(y, . . . , y[−n+1])T

∂x
= n

or in other words, y[−k], k = 0, . . . , n − 1, u[−s], s =
1, . . . , n − 1, must be functionally independent. Therefore,
also y[k], k = 0, . . . , n − 1, u[s], s = 0, . . . , n − 2, must
be functionally independent, because the latter expressions
are obtained by forward shifting everything n− 1 times and
it is known that forward shifts of functionally independent
functions remain functionally independent. Thus,

rankK
∂(y, . . . , y[n−1])T

∂x
= n

must be true, which means that system (2) is forward
observable.

V. APPLICATIONS

In this section we show the usefulness of backward ob-
servability in observer design as well as for selecting sensor
locations for observation of system states.

A. Observer design

Here we demonstrate via example that backward observ-
ability enlarges the class of systems for which an observer
can be constructed. For nonlinear systems, which can be

transformed either into the classical or extended observer
form, observer design is a simple task [6]. In both cases
forward observability is assumed to derive the conditions for
the existence of such transformation and to find the necessary
(parametrized) state transformation itself. In this subsection
we show that a weaker assumption of backward observability
could be used instead.

Consider a non-linear system in the extended observer
form

x
[1]
1 = x2 + φ1(y, . . . , y

[−N ], u, . . . , u[−N ])
...

x
[1]
n−N = xn−N+1 + φn−N (y, . . . , y[−N ], u, . . . , u[−N ])

−ψ(y[−N ], u[−N ])

x
[1]
n−N+1 = xn−N+2

...
x
[1]
n−1 = xn

x
[1]
n = ψ(y, u)
y = x1,

(8)
where 0 ≤ N ≤ n − 1, ψ = y for reversible systems and
ψ = u for non-reversible systems. The use of a function
ψ in the latter form is to guarantee that the equations (8)
satisfy the assumption made in Section II to define uniquely
the backward shift operator.

An observer can be easily constructed for (8) as follows
(see also [6]):

x̂
[1]
1 = x̂2 + φ1(y, . . . , y

[−N ], u, . . . , u[−N ])
+k1(y − x̂1)

...
x̂
[1]
n−N = x̂n−N+1 + φn−N (y, . . . , y[−N ], u, . . . , u[−N ])

−ψ(y[−N ], u[−N ]) + kn−N (y − x̂1)

x̂
[1]
n−N+1 = x̂n−N+2 + kn−N+1(y − x̂1)

...
x̂
[1]
n−1 = x̂n + kn−1(y − x̂1)

x̂
[1]
n = ψ(y, u) + kn(y − x̂1),

(9)
where the matrix K = (k1, . . . , kn)

T is chosen such that
all eigenvalues of A−KC are in the open unit disc, where
C = (1, 0, · · · , 0) and

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .

Based on our motivating non-reversible example (1), we
will show that the assumption of forward observability is
actually unnecessary to take the system into the extended
observer form.

Example 4. Consider the system (1). By simple inspection
one can see that equations (1) can be taken into an extended
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observer form by a state transformation ξ1 = x3, ξ2 = x1
and ξ3 = x2:

ξ
[1]
1 = ξ2 + y[−1]u

ξ
[1]
2 = ξ3 + u− y[−1]

ξ
[1]
3 = y
y = ξ1,

(10)

where y[−1] = x2 = ξ3 Therefore, one is able to construct,
as above, an observer for system (10) to estimate its state
variables. These estimations can then be used to estimate the
state variables of (1), although the system (1) is not forward
observable.

Example 4 shows that backward observability enlarges the
class of discrete-time systems (2) for which an observer can
be constructed.

B. Sensor location

Besides being able to estimate the states for a larger
class of systems, backward observability also provides more
freedom in selecting which function of state coordinates to
measure (if possible) to guarantee observability.

Here we address the following problem. Given the state
equations

x(t+ 1) = f(x(t), u(t)), (11)

where x(t) ∈ X ⊆ Rn is the state, u(t) ∈ U ⊆ R is the
input, find an output function y(t) = h(x(t)), such that sys-
tem (11) is backward observable with respect to the chosen
output. A general solution to the latter problem is difficult to
find, because the function f may have complicated structure.
This is why we consider here systems of the form (11) which
are static state feedback linearizable. Such systems can be
taken into the form

ξ
[1]
1 = ξ2

...
ξ
[1]
n−1 = ξn

ξ
[1]
n = g(ξ, u)

(12)

by a state transformation ξ = (ξ1, . . . , ξn)
T = Φ(x). The

specific structure of equations (12) allows to compute the
backward shifts of system variables easily. This allows us to
prove the following result.

Lemma 5: Any function h(x) ∈ K will guarantee that a
static state feedback linearizable system (11) is backward
observable with respect to the output y = h(x).

Proof: We show that any function H(ξ) will guarantee
that system (12) is backward observable with respect to
output y = H(ξ). Then the output y = H(Φ(x)) will
guarantee backward observability of system (11).

For system of the form (12) one can always choose z = ξ1.

Then one gets that

ξ
[−1]
1 = z[−1]

ξ
[−1]
2 = ξ1

...
ξ
[−1]
n−1 = ξn−2

ξ
[−1]
n = ξn−1

u[−1] = α1(ξ, z
[−1]),

(13)

where α1 is obtained by shifting ξ[1]n = g(ξ1, . . . , ξn, u) back
once, which gives ξn = g(z[−1], ξ1, . . . , ξn−1, u

[−1]), and
solving the latter for u[−1]. Clearly one has ∂α1/∂ξn ̸= 0.
Using the rules (13) compute the backward shifts of u as

u[−1] = α1(z
[−1], ξ1, . . . , ξn)

u[−2] = α2(z
[−2], z[−1], ξ1, . . . , ξn−1)

...
u[−n+1] = αn−1(z

[−n+1], . . . , z[−1], ξ1, ξ2)
u[−n] = αn(z

[−n], . . . , z[−1], ξ1).

(14)

Since ∂α1/∂ξn ̸= 0 and ξ
[−1]
n = ξn−1, then one must

have ∂α2/∂ξn−1 ̸= 0. Continuing in a similar way one has
∂αk/∂ξn−k+1 ̸= 0 for k = 1, . . . , n. Thus, one can solve
(14) for x, which gives for i = 1, . . . , n

xi = βi(z
[−n], . . . , z[−1], u[−n], . . . , u[−1]). (15)

As in the proof of Lemma 2 one can show that dz[−j] ∈
Yb+Ub, which means that (15) yields dxi ∈ Yb+Ub. Thus,
system (12) is backward observable with respect to the output
function y = H(x).

VI. CONCLUSIONS

A notion of backward observability was defined for
discrete-time control systems and shown to be more general
than the notion of forward observability usually used in the
literature. Backward observability allows to design observers
for a larger class of systems. Also, a larger choice of output
functions will guarantee observability, meaning that there is
more freedom in selecting sensor locations.

The future work will include extension of known results to
the case when backward observability is assumed instead of
the observability defined by the forward shifts of the output.
In particular, when solving the problem of transforming
discrete-time state equations into an extended observer form,
usually forward observability is assumed. However, as shown
in this paper a system in the extended observer form can
be backward observable, but not forward observable. Thus,
the solution to the problem, when weaker assumption of
backward observability is considered, is missing. Also, it has
been shown in [10] that the forward observable space is not
always integrable, meaning that discrete-time equations can-
not be always decomposed into observable and unobservable
subsystems like in the continuous-time case. Our hypothesis
is that backward observability may solve this issue, i.e., the
backward observable space is always integrable and allows
decomposition into observable and unobservable subsystems.
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