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Abstract— We study the large-scale stochastic gradient de-
scent algorithm over a graphon with a continuum of nodes,
which is regarded as the limit of the distributed networked
optimization as the number of nodes goes to infinity. Each node
has a private local cost function. The global cost function, which
all nodes cooperatively minimize, is the integral of the local
cost functions on the node set. We propose a stochastic gradient
descent algorithm evolving as a graphon particle system, where
each node heterogeneously interacts with others through a
coupled mean field term. It is proved that if the graphon
is connected, then by properly choosing the algorithm gains,
all nodes’ states achieve consensus uniformly in mean square.
Furthermore, if the local cost functions are strongly convex,
then all nodes’ states converge uniformly to the minimizer of
the global cost function in mean square.

I. INTRODUCTION

In a distributed optimization problem over a network, all
nodes cooperatively optimize a global cost function which is
the sum of all local cost functions, and each node only knows
its own local cost function. The distributed optimization
algorithms involving information exchanging among nodes
over a large-scale network can be found applications in
distributed machine learning ([1]), multi-agent target tracking
([2]), distributed resource allocation ([3]-[4]), and so on.
The dimensions of these algorithms explode as the number
of nodes increases, and it is of interest to investigate the
limiting case as the number of nodes tends to infinity. In
fact, games and optimal control problems with a continuum
of individuals have been studied intensively in the field called
mean field games, which was pioneered independently by
Huang, Malhamé and Caines ([5]) and Lasry and Lions
([6]), repectively. They attempt to understand the behaviors
of the limiting systems of the dynamic games with a large
number of individuals. In the past decades, there has been
an increasing intention in mean field games and their appli-
cations ([7]-[11]). Motivated by the distributed optimization
over large-scale networks and the developing theory of mean-
field control and games, we investigate the limiting model of
the distributed optimization problem as the number of nodes
tends to infinity, that is, the distributed optimization problem
over a graphon with a continuum of nodes.
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Let [0, 1] be the set of a continuum of nodes, each
element of which corresponds to a node. The connecting
structure among nodes is given by the graphon A, which is
a symmetric measurable function from [0, 1]× [0, 1] to [0, 1]
([12]). Any node p ∈ [0, 1] has a private local cost function
V (p, x) : [0, 1] × Rn → R, which is strongly convex and
continuously differentiable with respect to x ∈ Rn and is
integrable with respect to p ∈ [0, 1]. The objective of all
nodes is to cooperatively solve the optimization problem

min
x∈Rn

V (x) ,
∫
[0,1]

V (p, x)dp. (1)

Denote the unique minimizer of V (x) by x∗.
In the distributed optimization over a network with finite

nodes, all nodes interact through the underlying network. The
interactions among nodes depend on their labels and so are
heterogenous. In the graphon mean field theory, the concept
of graph limit is introduced into the mean field theory, which
provides a powerful tool for modeling the heterogeneous
interactions among a large number of individuals ([13]-
[16]). Representing the heterogeneous interactions among
nodes in terms of the coupled mean field terms based on
the graphon, we propose the following distributed stochastic
gradient descent algorithm for the problem (1): given the
initial states {xp(0), p ∈ [0, 1]}, for any node p ∈ [0, 1],

dxp(t) =β(t)

∫
Rn×[0,1]

A(p, q)(x− xp(t))µt(dx, dq)dt

− α(t)∇xV (p, xp(t)) dt− α(t)Σdwp(t), (2)

where xp(t) ∈ Rn is the state of node p at time t,
representing its local estimate of x∗; ∇xV (p, xp(t)) ∈ Rn
is the gradient value of the local cost function at the state
xp(t);

∫
Rn×[0,1]A(p, q)(x− xp(t))µt(dx, dq) is the coupled

mean field term based on the graphon A. Let (Ω,F ,P) be a
complete probability space with a family of non-decreasing
σ-algebras {Ft, t > 0} ⊆ F . For any t > 0, µt(dx, dq) is
a distribution on Rn × [0, 1] and satisfies: (i) the marginal
distribution µt(dq) is always the uniform distribution on
[0, 1], that is, µt(dq) = dq, ∀ t > 0; (ii) given q ∈ [0, 1],
the conditional distribution µt(dx|q) is the distribution of
xq(t). Here, {wp(t), t > 0, p ∈ [0, 1]} is a family
of independent n-dimensional standard Brownian motions,
xp(0) is independent of {wp(t), t > 0} and adapted to F0,
wp(t) is adapted to Ft, ∀ t > 0, p ∈ [0, 1], α(t) and β(t)
are time-varying algorithm gains and Σ ∈ Rn×n.

Denote the conditional distribution µt(dx|q) by µt,q(dx).
Then we have µt(dx, dq) = µt,q(dx)dq. Therefore, (2) can
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be written as

dxp(t) =β(t)

∫
[0,1]

(∫
Rn

A(p, q)(x− xp(t))µt,q(dx)

)
dqdt

− α(t)∇xV (p, xp(t)) dt− α(t)Σdwp(t). (3)

By using spatial and temporal discretion, we can show
how (1) and (2) are related to the distributed optimization
over the network with finite nodes. For any given pos-
itive integer N , we define V N (p, x) = V ( iN , x), p ∈(
i−1
N , iN

]
, i = 1, · · · , N . Then,

∫
[0,1]

V N (p, x)dp ap-
proximates

∫
[0,1]

V (p, x)dp if N tends to infinity. Define
vN,i(x) = V N ( iN , x), i = 1, · · · , N . Then one obtains a
distributed optimization problem over the network with N
nodes:

min
x∈Rn

∫
[0,1]

V N (p, x)dp = min
x∈Rn

1

N

N∑
i=1

vN,i(x).

Define a step graphon as AN (p, q) = A
(
i
N ,

j
N

)
, p ∈(

i−1
N , iN

]
, q ∈

(
j−1
N , jN

]
, i, j = 1, · · · , N , and then AN

approximates A if N tends to infinity ([13]). Define xNp (t) =
x i

N
(t) and wNp (t) = w i

N
(t), p ∈

(
i−1
N , iN

]
, i = 1, · · · , N .

Let µNt (dx, dq) be a distribution on Rn × [0, 1] satisfying:
(i) the marginal distribution µNt (dq) is always the uniform
distribution over [0, 1], that is, µNt (dq) = dq, ∀ t > 0; (ii)
for any j = 1, · · · , N , given q ∈

(
j−1
N , jN

]
, the conditional

distribution µNt
(
dx|q

)
= δxN

j
N

(t)(dx), where δxN
j
N

(t)(dx) is

the Dirac measure at xNj
N

(t). Therefore, µNt (dx, dp) approx-
imates µt(dx, dp) if N tends to infinity, which together with
(2) yields the following system: for any p ∈ (0, 1],

dxNp (t) =β(t)

∫
Rn×[0,1]

AN (p, q)(x− xNp (t))µNt (dx, dq)dt

− α(t)∇xV N
(
p, xNp (t)

)
dt− α(t)ΣdwNp (t).

(4)

By the graph limit theory and the mean field theory, the above
system approximates (3) if N tends to infinity. In particular,
take p = i

N in (4) respectively and denote xN,i(t) = xNi
N

(t),

wN,i(t) = wNi
N

(t), i = 1, · · · , N , and aN,ij = AN
(
i
N ,

j
N

)
,

i, j = 1, · · · , N . Then we have the N particle systems:

dxN,i(t)

=β(t)

N∑
j=1

∫
Rn×( j−1

N , j
N ]
aN,ij(x− xN,i(t))µNt (dx, dq)dt

− α(t)∇xvN,i(xN,i(t))dt− α(t)ΣdwN,i(t)

=β(t)

N∑
j=1

∫
( j−1

N , j
N ]

(∫
Rn

aN,ij(x− xN,i(t))

µNt (dx|q)
)
dqdt− α(t)∇xvN,i(xN,i(t))dt

− α(t)ΣdwN,i(t)

=β(t)

N∑
j=1

∫
( j−1

N , j
N ]

(∫
Rn

aN,ij(x− xN,i(t))

δxN,j(t)(dx)

)
dqdt− α(t)∇xvN,i(xN,i(t))dt

− α(t)ΣdwN,i(t)

=β(t)

N∑
j=1

∫
( j−1

N , j
N ]
aN,ij(xN,j(t)− xN,i(t))dqdt

− α(t)∇xvN,i(xN,i(t))dt− α(t)ΣdwN,i(t)

=β(t)
1

N

N∑
j=1

aN,ij(xN,j(t)− xN,i(t))dt

− α(t)∇xvN,i(xN,i(t))dt− α(t)ΣdwN,i(t), i = 1, · · · , N.

For a given sequence 0 6 t0 < t1 < · · · < tk < · · · in the
time interval [0,∞), where tk > 0 and k = 0, 1, 2 · · · ,
by [17], the Euler approximation of the above stochastic
differential equation is given by

xN,i(tk+1) =xN,i(tk) + β(tk)(tk+1 − tk)
1

N

N∑
j=1

aN,ij

× (xN,j(tk)− xN,i(tk))− α(tk)(tk+1 − tk)

× (∇xvN,i(xN,i(tk)) + ξN,i(tk)) , (5)

where ξN,i(tk) = Σ(wN,i(tk+1) − wN,i(tk)) is an n-
dimensional martingale difference sequence with zero mean
and covariance matrix (tk+1 − tk)ΣΣT . It can be verified
that (5) is just the distributed optimization algorithm over
the network with finite nodes in [18]-[21].

If α(t) = 0 in (3), then xq(t) degenerates to a deterministic
progress and µt,q(dx) degenerates to δxq(t)(dx). Then, one
obtains a special case of (3) given by

dxp(t)

=β(t)

∫
[0,1]

(∫
Rn

A(p, q)(x− xp(t))δxq(t)(dx)

)
dqdt

=β(t)

∫
[0,1]

A(p, q)(xq(t)− xp(t))dqdt, (6)

which is called the first-order consensus system ([22]-[24]).
If the distribution of xp(0), V (p, x), wp(t), A(p, q) and

µt,p(dx) do not depend on the label p in (3), and are denoted
by µ0, V (x), w(t), Aq , µt(dx), respectively, then the system
(3) degenerates to

dx(t) =β(t)

(∫
[0,1]

Aqdq

)(∫
Rn

(x− x(t))µt(dx)

)
dt

− α(t)∇xV (x(t))dt− α(t)Σdw(t),

in the sense of weak solution, which is the classical Mckean-
Vlasov equation ([25]-[26]).

In fact, the algorithm (3) belongs to a class of particle
systems with heterogeneous interactions: graphon particle
systems, for which fruitful results have been achieved. Works
([13]-[14]) have focused on the existence and uniqueness of
the solution for different graphon particle systems and the
convergence of finite particle systems to graphon particle
systems. Only few works ([15]-[16]) are concerned with the
asymptotic properties of graphon particle systems. Bayraktar
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and Wu ([16]) showed that the distribution of each node’s
state and the integral of the distributions on the node set
converge to the limiting distribution and the integral of the
limiting distributions on the node set respectively.

Note that all aforementioned works on graphon particle
systems do not reveal the relation between the limiting
distribution and system dynamics. However, for many prac-
tical applications, people are more interested in how the
limiting distribution is associated with the system dynamics.
In particular, for the problem (1) and the algorithm (3),
people expect to figure out whether the states {xp(t), p ∈
[0, 1], t > 0} of the system (3) converge to the minimizer
of the global cost function under some proper assumptions.
However, all existing works are unable to address the issue.

In this paper, we prove that if the graphon is connected and
the local cost functions are strongly convex, then by properly
choosing algorithm gains, the states {xp(t), p ∈ [0, 1], t >
0} of the system (3) converge to the minimizer of the global
cost function in mean square. Different from Bayraktar et al.
([16]), we weaken assumptions on local cost functions and
yield stronger results. Bayraktar et al. ([16]) assumed that the
dissipativity of the drift term is strictly twice greater than the
Lipschitz constant of the interaction term. For the system (2),
this assumption is equivalent to the strong convexity constant
of the local cost functions being greater than 2, which
is not reasonable for distributed optimization problems. In
this paper, the local cost functions are only assumed to
be strongly convex and there is no further requirement on
the strong convexity constant. Bayraktar et al. ([16]) proved
that the all nodes’ states converge in distribution, while
we prove the convergence in mean square. Bayraktar et al.
([16]) proved the existence of the limiting distributions of the
nodes’ states. We not only prove the existence of the limiting
distribution but also reveal that the limiting distribution is
the Dirac distribution at the minimizer of the global cost
function.

Compared with the time-invariant graphon particle system
in [16], the system (3) is time-varying due to the time-varying
algorithm gains introduced. The introducing of time-varying
algorithm gains removes the requirement on the strong
convexity constant of the local cost functions, while it poses
difficulties in the uniform boundedness of the second mo-
ments of all nodes’ states. We prove that the second moments
of all nodes’ states are uniformly bounded in two steps.
At first, the uniform boundedness of

∫
[0,1]

E
[
‖xp(t)‖2

]
dp

is proved by using strictly positive algebraic connectivity of
the graphon. Then, by properly choosing the algorithm gains,
we prove that the second moments of all nodes’ states are
uniformly bounded.

We prove that if the graphon is connected, then all nodes’
states in the system (3) achieve consensus in mean square,
that is, limt→∞ supp∈[0,1]E

[
‖xp −

∫
[0,1]

xq(t)dq‖2
]

=

0. To prove this, we obtain that limt→∞
∫
[0,1]

E
[
‖xp −∫

[0,1]
xq(t)dq‖2

]
dp = 0 by the connectivity of the graphon

and the Lyapunov method firstly. We qualify how the conver-
gence rate of limt→∞

∫
[0,1]

E
[
‖xp−

∫
[0,1]

xq(t)dq‖2
]
dp = 0

relates to the system dynamics (3), especially, the algebraic
connectivity of the graphon. Then, by exploiting the uniform
boundness of the second moments of all nodes’ states and
combining limt→∞

∫
[0,1]

E[‖xp −
∫
[0,1]

xq(t)dq‖2]dp = 0
with the Lyapunov method in the consensus error of each
node, we prove that all nodes’ states in the system (3) achieve
consensus uniformly in mean square, which in turn derives
that all nodes’ states converge to the minimizer of the global
cost function uniformly in mean square.

The remainder of this paper is organized as follows. In
Section II, we prove the convergence of the algorithm. In
Section III, conclusions are given. In Appendix, we provide
the definitions of the connectivity and the algebraic connec-
tivity of a graphon. Due to the space limitation, proofs of
some lemmas and theorems are omitted.

The following notations will be used throughout this
paper. Denote the set of all real numbers by R. Denote the
n-dimensional Euclidean space by Rn and the Euclidean
norm by ‖·‖. For a given matrix A ∈ Rn×n, Tr(A)
denotes the trace of A. For a given vector x ∈ Rn,
xT denotes the transpose of x. Denote L2([0, 1],Rn) =
{f : [0, 1] → Rn,

∫
[0,1]
‖f(x)‖2dx < ∞}. Denote the

set of all bounded linear operators from L2 ([0, 1],Rn) to
L2 ([0, 1], Rn) by L

(
L2 ([0, 1], Rn)

)
. Denote the inner

product on L2 ([0, 1], Rn) by 〈·, ·〉L2([0,1],Rn), that is, for
any given f, g ∈ L2 ([0, 1], Rn), 〈f, g〉L2([0,1], Rn) ,∫
[0,1]

fT (x)g(x)dx. For a given function f : F → R,
supp(f) = {x ∈ F : f(x) 6= 0} denotes the support
set of f . For a given random variable X ∈ Rn, denote
the mathematical expectation of X by E[X]. For a given
measurable space (F, G ) and x ∈ F , where G is a σ-
algebra in F , Dirac measure δx at x is the measure defined

by δx(A) :=

{
1 x ∈ A
0 x /∈ A

, ∀ A ∈ G .

II. CONVERGENCE OF THE ALGORITHM

We suppose that for any given T > 0, there ex-
ists a unique solution

{
xp(t), µt,p, t ∈ [0, T ], p ∈

[0, 1]
}

for the graphon particle system (3), satisfying
supp∈[0,1] supt∈[0,T ]E[‖xp(t)‖2] < ∞, where µt,p is the
distribution of xp(t). In this section, we prove the conver-
gence of the stochastic gradient descent algorithm (3) by the
asymptotic property of the solution for the graphon particle
system. Firstly, we prove that the variance of each node’s
state converges to zero uniformly by properly choosing al-
gorithm gains in (3). Secondly, combining the connectivity of
the graphon and the uniform boundness of second moments
of the states, we prove that all nodes’ states achieve the
consensus uniformly in mean square. Finally, the uniform
convergence of all nodes’ states to the minimizer of the glob-
al cost function is given. We make the following assumptions
on the graphon particle system (3).

Assumption 2.1: The graphon A is connected.

Assumption 2.2: (i) supp∈[0,1]E
[
‖xp(0)‖2

]
<∞;
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(ii) There exists a constant κ > 0 such that ‖∇xV (p, x)−
∇xV (p, x̃)‖ 6 κ ‖x− x̃‖, ∀ x, x̃ ∈ Rn, p ∈ [0, 1];

(iii) For any p ∈ [0, 1], x ∈ Rn, the local cost function
is continuously differentiable and uniformly strongly
convex with respect to x, that is, there exists κ2 > 0
such that (x−x̃)T (∇xV (p, x)−∇xV (p, x̃)) > κ2‖x−
x̃‖2, ∀ x, x̃ ∈ Rn, p ∈ [0, 1].

Assumption 2.3: The time-varying algorithm gains satisfy
α(t) > 0, β(t) > 0,

∫∞
0
β(s)ds = ∞,

∫∞
0
α2(s)ds < ∞,

limt→∞ β(t) = 0 and limt→∞
α(t)
β(t) = 0.

Denote ζ = supp∈[0,1]E
[
‖xp(0)‖2

]
.

In the following lemma, we present the convergence result
for the variance of each node’s state.

Lemma 2.1: For the problem (1) and the algorithm (3), if
Assumptions 2.1-2.3 hold, then

lim
t→∞

sup
p∈[0,1]

E
[
‖xp(t)− E[xp(t)]‖2

]
= 0.

Proof: Noting that µt,p(dx) is the distribution of xp(t)
in (3), the graphon particle system (3) can be written as

dxp(t) =β(t)

∫
[0,1]

A(p, q) (E[xq(t)]− xp(t)) dqdt

− α(t)∇xV (p, xp(t)) dt− α(t)Σdwp(t). (7)

By
∫∞
0
α2(s)ds <∞ in Assumption 2.3 and [27], we have

E
[ ∫ t

0
α(s)Σdwp(s)

]
= 0,∀ p ∈ [0, 1]. This together with

(7) leads to

E[xp(t)] =E[xp(0)] +

∫ t

0

[
β(s)

∫
[0,1]

A(p, q)
(
E[xq(s)]

− E[xp(s)]
)
dq − α(s)E [∇xV (p, xp(s))]

]
ds.

This can be written as

dE[xp(t)]

dt
=β(t)

∫
[0,1]

A(p, q) (E[xq(t)]− E[xp(t)]) dq

− α(t)E [∇xV (p, xp(t))] .

Denote Sp(t) = ‖xp(t)− E[xp(t)]‖2. By the above equa-
tion, (7) and Itô’s formula, we have

Sp(t)− Sp(0)

=

∫ t

0

2 (xp(s)− E[xp(s)])
T

(
β(s)

∫
[0,1]

A(p, q)dq)

× (E [xp(s)]− xp(s))− α(s)
(
∇xV (p, xp(s))

− E [∇xV (p, xp(s))]
))

ds−
∫ t

0

2α(s)
(
xp(s)

− E[xp(s)]
)T

Σdwp(s) +

∫ t

0

α2(s) Tr(ΣTΣ)ds. (8)

By Assumption 2.3, we know that there exists a constant
α1 > 0 such that supt>0 α(t) 6 α1. This together with C2

inequality and Jensen inequality leads to

E

[∫ t

0

∥∥∥2α(s) (xp(s)− E[xp(s)])
T

Σ
∥∥∥2 ds]

64α2
1‖Σ‖2E

[∫ t

0

(
2‖xp(s)‖2 + 2‖E[xp(s)]‖2

)
ds

]
=8α2

1‖Σ‖2E
[∫ t

0

‖xp(s)‖2ds
]

68tα2
1‖Σ‖2 sup

06s6t
E
[
‖xp(s)‖2

]
<∞,

then, by [27], we have E
[ ∫ t

0
2α(s) (xp(s)− E[xp(s)])

T

Σdwp(s)
]

= 0. Noticing that for the given p, the terms
∇xV (p,E[xp(t)])] and E[∇xV (p, xp(t))] are deterministic,
then

E
[

(xp(t)− E[xp(t)])
T
(
∇xV (p,E[xp(t)])

− E[∇xV (p, xp(t))]
)]

= 0.

Then, by (8) and Assumption 2.2, we have

dE[Sp(t)]

dt

=E

[
2 (xp(t)− E[xp(t)])

T

(
β(t)

∫
[0,1]

A(p, q)dq
(
E[xp(t)]

− xp(t)
)
− α(t) (∇xV (p, xp(t))− E[∇xV (p, xp(t))])

)]
+ α2(t) Tr(ΣTΣ)

=2β(t)

∫
[0,1]

A(p, q)dqE

[
(xp(t)− E[xp(t)])

T (
E[xp(t)]

− xp(t)
)]
− 2α(t)E

[
(xp(t)− E[xp(t)])

T

× (∇xV (p, xp(t))− E [∇xV (p, xp(t))])

]
+ α2(t) Tr(ΣTΣ)

=− 2β(t)

∫
[0,1]

A(p, q)dqE[Sp(t)]− 2α(t)E

[(
xp(t)

− E[xp(t)]
)T (∇xV (p, xp(t))−∇xV (p,E[xp(t)])

)]
− 2α(t)E

[(
xp(t)− E[xp(t)]

)T (∇xV (p,E[xp(t)])

− E[∇xV (p, xp(t))]
)]

+ α2(t) Tr(ΣTΣ)

6−

(
2β(t)

∫
[0,1]

A(p, q)dq + 2α(t)κ2

)
E[Sp(t)]

+ α2(t) Tr(ΣTΣ)

6− φ(t)E [Sp(t)] + α2(t) Tr(ΣTΣ),

where φ(t) = 2β(t) infp∈[0,1]
∫
[0,1]

A(p, q)dq + 2α(t)κ2. By
the above inequality and the comparison theorem ([28]), we
have

E [Sp(t)] 6e
−

∫ t
0
φ(s)dsE[Sp(0)]
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+ Tr(ΣTΣ)

∫ t

0

e−
∫ t
s
φ(s′)ds′α2(s)ds.

By Assumption 2.2, we have E[Sp(0)] 6 E[‖xp(0)‖2] 6 ζ.
This together with the above inequality gives

sup
p∈[0,1]

E [Sp(t)]

6e−
∫ t
0
φ(s)dsζ + Tr(ΣTΣ)

∫ t

0

e−
∫ t
s
φ(s′)ds′α2(s)ds. (9)

It follows from Assumptions 2.1-2.3 that

lim
t→∞

e−
∫ t
0
φ(s)dsζ = 0. (10)

For the second term on the right side of (9), by Assumptions
2.1-2.3 and L’Hospital’s rule, we have

lim
t→∞

∫ t

0

e−
∫ t
s
φ(s′)ds′α2(s)ds

= lim
t→∞

∫ t
0
e
∫ s
0
φ(s′)ds′α2(s)ds

e
∫ t
0
φ(s)ds

= lim
t→∞

α2(t)

2β(t) inf
p∈[0,1]

∫
[0,1]

A(p, q)dq + 2α(t)κ2

= lim
t→∞

α(t)α(t)β(t)(
2 inf
p∈[0,1]

∫
[0,1]

A(p, q)dq + 2α(t)β(t)κ2

) = 0.

Combining (9) with (10) and the above equality gives
limt→∞ supp∈[0,1]E

[
‖xp(t)− E[xp(t)]‖2

]
= 0.

Lemma 2.2: For the problem (1) and the algorithm (3), if
Assumptions 2.1-2.3 hold, then there exists K > 0 such that
supp∈[0,1], t>0E

[
‖xp(t)‖2

]
6 K.

The following lemma illustrates that all nodes’ states
achieve consensus uniformly in mean square.

Lemma 2.3: For the problem (1) and the algorithm (3), if
Assumptions 2.1-2.3 hold, then∫

[0,1]

E

∥∥∥∥∥xp(t)−
∫
[0,1]

xq(t)dq

∥∥∥∥∥
2
 dp

66e−
∫ t
0
φ(s)dsζ + 3e−λ2(LA)

∫ t
0
β(s)dsζ + 6 Tr(ΣTΣ)

×
∫ t

0

e−
∫ t
s
φ(s′)ds′α2(s)ds+ 3

∫ t

0

((
8σvK + 8CvK

1
2

)
α(s)e−2λ2(LA)

∫ t
s
β(s′)ds′

)
ds

and

lim
t→∞

sup
p∈[0,1]

E

∥∥∥∥∥xp(t)−
∫
[0,1]

xq(t)dq

∥∥∥∥∥
2
 = 0,

where φ(t) = 2α(t)κ2 + 2β(t) infp∈[0,1]
∫
[0,1]

A(p, q)dq,
K is given by Lemma 2.2, and λ2(LA) is the algebraic
connectivity of the graphon A.

Below we will prove that the integral of the expected states
on the node set converges to the minimizer of the global cost

function. By Assumption 2.2, we know that V (x) is strongly
convex with respect to x. This together with the fact that
for all p ∈ [0, 1], ∇xV (p, x) is continuous with respect to
x ∈ Rn leads to ∇xV (x∗) =

∫
[0,1]
∇xV (p, x∗)dp = 0.

Lemma 2.4: For the problem (1) and the algorithm (3), if
Assumptions 2.1-2.3 hold, then

lim
t→∞

∥∥∥∥∫
[0,1]

E [xp(t)] dp− x∗
∥∥∥∥2 = 0.

Combining the above lemmas, we obtain that all nodes’
states converge to the minimizer of the global cost function
uniformly in mean square.

Theorem 2.1: For the problem (1) and the algorithm (3),
if Assumptions 2.1-2.3 hold, then

lim
t→∞

sup
p∈[0,1]

E
[
‖xp(t)− x∗‖2

]
= 0.

Proof: By Cauchy-Schwarz inequality and Hölder
inequality, we have

sup
p∈[0,1]

∥∥∥∥E[xp(t)]−
∫
[0,1]

E[xq(t)]dq

∥∥∥∥2
63 sup

p∈[0,1]
E
[
‖E[xp(t)]− xp(t)‖2

]
+ 3 sup

p∈[0,1]
E

[∥∥∥∥xp(t)
−
∫
[0,1]

xq(t)dq

∥∥∥∥2
]

+ 3E

[∥∥∥∥∫
[0,1]

xq(t)dq

−
∫
[0,1]

E[xq(t)]dq

∥∥∥∥2
]

66 sup
p∈[0,1]

E
[
‖E[xp(t)]− xp(t)‖2

]
+ 3 sup

p∈[0,1]
E

[∥∥∥∥xp(t)
−
∫
[0,1]

xq(t)dq

∥∥∥∥2
]
.

By the above inequality, Lemma 2.1 and Lemma 2.3, we
have

lim
t→∞

sup
p∈[0,1]

∥∥∥∥E[xp(t)]−
∫
[0,1]

E[xq(t)]dq

∥∥∥∥2 = 0. (11)

By Cauchy-Schwarz inequality, we have

sup
p∈[0,1]

E
[
‖xp(t)− x∗‖2

]
63 sup

p∈[0,1]
E
[
‖xp(t)− E[xp(t)]‖2

]
+ 3 sup

p∈[0,1]

∥∥∥∥E[xp(t)]

−
∫
[0,1]

E[xq(t)]dq

∥∥∥∥2 + 3

∥∥∥∥∥
∫
[0,1]

E[xq(t)]dq − x∗
∥∥∥∥∥
2

.

This together with Assumptions 2.1-2.3, (11), Lemma 2.1
and Lemma 2.4 leads to limt→∞ supp∈[0,1]E

[
‖xp(t) −

x∗‖2
]

= 0.

Remark 2.1: The graphon particle system (3) is equivalent
to the following system in the sense of weak solution: given
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the initial value x(0) = xP (0),

dx(t) =β(t)

∫
Rn×[0,1]

A(P, q)(x− x(t))µt(dx, dq)dt

− α(t)∇xV (P, x(t))dt− α(t)Σdw(t), (12)

where P is a uniform random variable on [0, 1]; for any
t > 0, µt(dx, dq) is a distribution on Rn×[0, 1] and satisfies:
(i) the marginal distribution µt(dq) is always the uniform
distribution on [0, 1], that is, µt(dq) = dq, ∀ t > 0; (ii)
the marginal distribution µt(dx) =

∫
[0,1]

µt(dx|q)dq is the
distribution of x(t); w(t) is an n-dimensional standard Brow-
nian motion. From Theorem 2.1, we know that µt(dx|q) in
(12) converges to δx∗(dx) uniformly. Then, the distribution
µt(dx) converges to δx∗(dx).

III. CONCLUSION

In this paper, the large-scale stochastic gradient descent
algorithm over the graphon has been studied. The evolution
of the algorithm is characterized by a graphon particle
system. By investigating the asymptotic property of the
solution for the graphon particle system, we prove that all
nodes’ states achieve consensus uniformly in mean square
if the graphon is connected and algorithm gains are chosen
properly. Furthermore, we prove that if the local cost func-
tions are strongly convex, then all nodes’ states converge to
the minimizer of the global cost function uniformly in mean
square.

APPENDIX

For a given graphon W , the Graphon-Laplacian LW ∈
L
(
L2 ([0, 1], Rn)

)
generated by W is given by: for any

z ∈ L2([0, 1], Rn), (LW z)(p) =
∫
[0,1]

W (p, q)(z(p) −
z(q))dq, ∀ p ∈ [0, 1].

The algebraic connectivity of a graphon W is defined by
λ2(LW ) = infz∈C

〈LW z,z〉L2([0,1], Rn)

〈z,z〉2
L2([0,1], Rn)

> 0, where C = {z ∈
L2 ([0, 1], Rn) :

∫
[0,1]

z(α)dα = 0}.

Definition A.1 ([23]): For a graphon W , if
(i) for any p ∈ [0, 1] and q ∈ [0, 1]\{p}, there exist

integer m > 1 and a finite sequence (lk)16k6m ⊂ [0, 1]
satisfying p = l1, q = lm and lk+1 ∈ supp (W (lk, ·)),
∀ k ∈ {1, . . . ,m− 1};

(ii) inf
p∈[0,1]

∫
[0,1]

W (p, q)dq > 0,

then the graphon W is said to be connected.
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