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Abstract— A technique to design controllers for nonlinear
systems from data consists of letting the controllers learn the
nonlinearities, cancel them out and stabilize the closed-loop
dynamics. When control and nonlinearities are unmatched,
the technique leads to an approximate cancellation and local
stability results are obtained. In this paper, we show that, if
the system has some structure that the designer can exploit, an
iterative use of the data leads to a globally stabilizing controller
even when control and nonlinearities are unmatched.

I. INTRODUCTION

Controlling nonlinear systems without explicitly knowing
the dynamics is a challenging problem that has motivated
extensive studies on data-driven nonlinear control in recent
years. On one hand, machine learning methods such as the
kernel-based learning approach, e.g., [1] and [2], have been
developed for learning and then control unknown nonlinear
systems. However, the learned models are not always suitable
for control design purposes. On the other hand, differ-
ent approaches have been developed to directly synthesize
controllers from data; for instance, the virtual reference
feedback tuning (VRFT) approach in [3], and the online
direct approach developed in [4]. Willems’ fundamental
lemma [5], which uses input-output data to characterize the
responses of linear time-invariant systems, has been widely
used in developing data-driven control approaches. Nonlinear
dynamics can be approximated via data using Willems’
fundamental lemma if the nonlinear system is linearized at
a known equilibrium, as done in works such as [6] and
[7], or written into a linear-like form. In general, to find
the linear-like form, some prior knowledge on the nonlinear
dynamics is needed. For example, many works assume a
known dictionary of basis functions, such as the polynomial
basis functions having a certain maximum degree used in
[8], and the span of eigenfunctions of a Koopman operator
used in [9]. Known basis functions are also used in [10] for
obtaining a linear-like state-dependent representation, and in
[11] for performing (approximate) nonlinearity cancellation.
In practice, the dictionary of basis functions can be obtained
from the physics of the plant. When the basis functions
are not readily obtainable from prior knowledge, recent
works [12] and [13] approximate the nonlinear dynamics as
polynomial systems via Taylor’s expansion for data-driven
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control and/or analysis. By choosing the kernel based on a
priori knowledge on the system, [2] constructed data-driven
predictor of the nonlinear system.

Depending on the control objectives and requirements,
controllers have been developed using various approaches for
the data-based representation/approximation of the nonlinear
dynamics. In particular, data-based predictive control has
been investigated in works such as [7] and [9], where
rigorously proving the stability of the controlled system can
be difficult. The sum-of-square technique is used in [8],
[12], [14] with the Lyapunov method for stabilization, and
in [15] with control barrier certificates for safety control. A
convex-concave procedure was developed in [16] for optimal
control of bilinear systems. A learning control approach
via nonlinearity cancellation was proposed in [11] where
the control input is designed such that the nonlinearities
in the dynamics are (approximately) cancelled out and the
remaining linear part is stable. When the basis functions
are explicitly known and the control input matches the non-
linearities, the approach in [11] achieves exact cancellation
and renders the equilibrium globally asymptotically stable.
Otherwise, only approximate cancellation can be achieved,
which results in a locally asymptotically stable equilibrium
under some assumptions on the remaining nonlinearity.

Contributions. This work is inspired by the nonlinearity
cancellation based learning control method in [11]. We study
a class of second-order systems whose basis functions are
explicitly known but the control input only directly affects
one of the subsystems. The learning control objective is to
render the known equilibrium globally asymptotically stable,
which cannot be achieved by directly applying the result
of [11] to the second-order system without exploiting its
structure. To deal with the nonlinearity in each subsystem,
we design a virtual input using data for the subsystem
which the control input does not directly affect. Then, the
difference between the virtual input and the actual input is
described explicitly via data as the error dynamics. Finally,
the control input is designed to make the equilibrium globally
asymptotically stable for the overall system. In summary, by
developing a virtual input and applying the idea of nonlin-
earity cancellation to each subsystem, the nonlinearities in
both subsystems are handled. This work demonstrates that
by exploiting the structure of the second-order system, the
nonlinearity cancellation based learning control approach can
be applied to nonlinear systems where the control input and
the nonlinearities are unmatched. We note that this design
can be viewed as the backstepping technique, which indicates
that the proposed approach can be extended to higher order
systems by applying it to each subsystem recursively.
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The rest of the paper is arranged as follows. In Section II,
the learning control problem studied in this work is for-
mulated, and the learning control approach via nonlinearity
cancellation is reviewed. The proposed data-driven controller
and its design procedure are presented in Section III. Sec-
tion IV demonstrate an application of the proposed controller
to the tunnel diode circuit. Finally, some conclusive remarks
are given in Section V.

Notation. Throughout the paper, A ≻ (⪰)0 denotes that
matrix A is positive (semi-)definite, and A ≺ (⪯)0 denotes
that matrix A is negative (semi-)definite. ∥ · ∥ denotes the
Euclidean norm.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate the learning control problem
of a class of second-order nonlinear systems, and review
the data-driven control approach via nonlinearity cancellation
proposed in [11].

A. Problem formulation

Consider the second-order nonlinear system

ẋ1 = f1(x1) + β1x2

ẋ2 = f2(x1, x2) + β2u (1)

where x1, x2 ∈ R are the states, u ∈ R is the input, and
unknown β1, β2 ∈ R are nonzero constants. Suppose that
f1(0) = 0, f2(0, 0) = 0, and f1 and f2 are continuously
differentiable. We also assume that the functions f1 and
f2 can be written as linear combinations of known basis
functions, that is

f1(x1) = α1

[
x1

Q1(x1)

]
, f2(x1, x2) = α2

 x1

x2

Q2(x1, x2)


where α1 ∈ R1×(1+q1) and α2 ∈ R1×(2+q2) are unknown
constant vectors, Q1 : R → Rq1 and Q2 : R× R → Rq2 are
continuously differentiable functions containing nonlineari-
ties in x1 and (x1, x2), respectively. Assume that Q1(0) = 0.
Define

Z1(x1) =

[
x1

Q1(x1)

]
, Z2(x1, x2) =

 x1

x2

Q2(x1, x2)

 .

The system (1) can then be written into the linear-like form

ẋ1 = α1Z1(x1) + β1x2

ẋ2 = α2Z2(x1, x2) + β2u. (2)

The objective is to use input-state data to stabilize the
origin for the closed-loop system when αi, βi, i = 1, 2, are
unknown. Note that if the known equilibrium is not at the
origin, a coordinate transformation can be performed such
that the origin is an equilibrium for the new coordinate.

Remark 1 (Second-order systems): The system (1) is an
important class of dynamics for the study of nonlinear
systems. Many classic nonlinear dynamical systems are in the
form of (1), such as the tunnel diode circuits and the van der
Pol oscillators. In this work, the structure of (1) is essential

for the proposed learning control approach. By exploiting the
structure, we introduce and demonstrate a learning control
approach based on nonlinearity cancellation. The result can
be extended to more generic nonlinear systems, such as high-
order lower-triangular nonlinear systems. ■

Remark 2 (Known basis functions): To better depict the
main idea of the proposed approach, this work considers a
simple case where the types of functions in f1 and f2 are
explicitly known, so that exact nonlinearity cancellation is
achievable. It is not unreasonable to assume known basis
functions, as in many applications such as the control of
mechanical systems, basis functions can be obtained via the
physics of the system. In the case where the basis functions
are not explicitly known, one would resort to analyzing the
impact of the neglected nonlinearities as proposed in [11],
which is an interesting topic to be further investigated. ■

We denote the data sampled in an offline experiment as
DS := {u(tk);x1(tk);x2(tk); ẋ1(tk); ẋ2(tk)}T−1

k=0 . Arrange
the collected data and obtain the following matrices

X10 =
[
x1(t0) · · · x1(tT−1)

]
∈ R1×T

X20 =
[
x2(t0) · · · x2(tT−1)

]
∈ R1×T

X11 =
[
ẋ1(t0) · · · ẋ1(tT−1)

]
∈ R1×T

X21 =
[
ẋ2(t0) · · · ẋ2(tT−1)

]
∈ R1×T

Z10 =

[
x1(t0) · · · x1(tT−1)

Q1(x1(t0)) · · · Q1(x1(tT−1))

]
∈ R(1+q1)×T

Z20 =

 x1(t0) · · · x1(tT−1)
x2(t0) · · · x2(tT−1)

Q2(x1(t0), x2(t0)) · · · Q2(x1(tT−1), x2(tT−1))


∈ R(2+q2)×T

U0 =
[
u(t0) · · · u(tT−1)

]
∈ R1×T . (3)

By the system dynamics, the arranged data satisfies that

X11 = α1Z10 + β1X20 =
[
β1 α1

] [X20

Z10

]
, (4)

X21 = α2Z20 + β2U0 =
[
β2 α2

] [U0

Z20

]
. (5)

The problem studied in this work is to design a feedback
controller u = F (x1, x2) for the system (1) with known
functions Z1 and Z2 using the data set DS, such that the
origin is a globally asymptotically stable equilibrium for the
closed-loop dynamics.

Remark 3 (Identification of the dynamics): Under the as-

sumption that
[
X20

Z10

]
and

[
U0

Z20

]
have full row rank, the

system parameters αi and βi, i = 1, 2, can be identified
from (4) and (5), and controllers can be designed based on
the identified model. These rank conditions ensure that the
data is rich enough for the parameter identification. We will
show a similar data richness requirement after presenting the
main result of this work. ■

Remark 4 (Full state and state derivative measurement):
It is assumed that the state is fully measurable, for a different
approach has to be applied otherwise, which is out of the
scope of this work. We note that the full measurement

3056



assumption can be restrictive in applications, and it is of
importance to relax it in our future investigations. The state
derivative can be well-approximated using methods such as
the numerical differentiation with an approximation error,
which is proportional to the sampling time. ■

B. Data-driven control via (approximate) nonlinearity can-
cellation

This work is inspired by the idea of data-driven control via
(approximate) nonlinearity cancellation developed in [11].
For the completeness of this paper, we summarized the
approach therein in what follows.

Consider the nonlinear system

ẋ = f(x) +Bu (6)

which can be written as

ẋ = AZ(x) +Bu (7)

where x ∈ Rn is the state and u ∈ Rm is the control input.
The matrices A ∈ Rn×S and B ∈ Rn×m are unknown.
Assume that Z : Rn → RS is a known continuous function
that contains at least all functions in the nonlinear dynamics
f(x). In particular, Z is supposed to take the form of

Z(x) =

[
x

Q(x)

]
(8)

where Q : Rn → RS−n contains the nonlinear functions in
Z.

Assume that both x and u are fully measured. The
data set sampled in an experiment is denoted as D :=
{x(tk), ẋ(tk), u(tk)}T−1

k=0 for some integer T > 0. Write the
data matrices as

X1 =
[
ẋ(t0) · · · ẋ(tT−1)

]
∈ Rn×T ,

U0 =
[
u(t0) · · · u(tT−1)

]
∈ Rm×T ,

Z0 =

[
x(t0) · · · x(tT−1)

Q(x(t0)) · · · Q(x(tT−1))

]
∈ RS×T ,

which satisfy the relation

X1 = AZ0 +BU0. (9)

The following lemma is the continuous-time counterpart
of [11, Lemma 1], which gives the data-based closed-loop
representation of system (6).

Lemma 1: Consider any matrices K ∈ Rm×S and G ∈
RT×S such that [

K
IS

]
=

[
U0

Zo

]
G (10)

where G =
[
G1 G2

]
, G1 ∈ RT×n and G2 ∈ RT×(S−n).

Then, the controller designed as u = KZ(x) leads to the
closed-loop dynamics

ẋ = Mx+NQ(x) (11)

where M := X1G1 and N := X1G2. ■

Proof: With the designed control input u = KZ(x), the
closed-loop dynamics is written as

ẋ = AZ(x) +BKZ(x)

=
[
B A

] [K
IS

]
Z(x)

(10)
=

[
B A

] [U0

Zo

] [
G1 G2

] [ x
Q(x)

]
(9)
= X1G1x+X1G2Q(x),

which gives (11). □
Lemma 1 establishes a data-based representation of the

closed-loop dynamics (6) composed of a linear part Mx and
a nonlinear part NQ(x). When the function Z is explicitly
known, a semi-definite program (SDP) has been derived
in [11], whose solution leads to a control gain K that
cancels out the nonlinearity and renders the origin globally
exponentially stable for the closed-loop system. The result
for the continuous-time system (6) is presented as follows.

Theorem 1: [11, Section V.A] Consider the nonlinear
system (6). With decision variables P1 ∈ Rn×n, P1 ≻ 0,
Y1 ∈ RT×n, and G2 ∈ RT×(s−n), if the following SDP

Z0Y1 =

[
P1

0(S−n)×n

]
, (12a)

Z0G2 =

[
0n×(S−n)

IS−n

]
, (12b)

X1G2 = 0(S−n)×n, (12c)

X1Y1 + (X1Y1)
⊤ ≺ 0, (12d)

is feasible, then the controller u = KZ(x) with K =
U0

[
Y1P

−1
1 G2

]
linearizes the closed-loop dynamics, and

renders the origin globally exponentially stable. ■
The essential idea of Theorem 1 is to find a matrix G

that cancels out the closed-loop nonlinearity X1G2Q(x)
and makes the time derivative of the Lyapunov function
V (x) = x⊤P−1

1 x negative for all x ̸= 0, such that the
origin is globally exponentially stable. However, there are
cases where (12c) is infeasible, for which [11] proposed to
minimize the nonlinearity, i.e., ∥X1G2∥, and obtained local
stability results. The system (1) is one of those cases, since
the control input u only directly affects the x2-subsystem,
and cannot cancel out the nonlinearity in the x1-subsystem.
Hence, directly applying Theorem 1 to the system (1) leads
to a locally stable origin, and thus cannot solve the problem
formulated in the previous subsection.

III. STABILIZATION OF SECOND-ORDER SYSTEMS VIA
NONLINEARITY CANCELLATION

To render the origin globally asymptotically stable, the
nonlinearity in the x1-subsystem also needs to be handled,
despite the fact that it is not matched with the control input
u. To address this problem, this work performs data-driven
control via nonlinearity cancellation for each subsystem.
Specifically, for the x1-subsystem, a virtual control input is
designed based on the idea of Theorem 1. Then, we establish
an error subsystem that is the difference between the virtual
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control input and the actual input x2 [17], [18]. Applying
the nonlinearity cancellation approach again to the obtained
error subsystem, the error converges to the origin globally
and exponentially. Finally, an overall controller for (1) is
obtained.

Specifically, for the x1-subsystem, we present the follow-
ing result that is analogous to Lemma 1.

Lemma 2: Consider any matrices K1 ∈ R1×(1+q1) and
G1 ∈ RT×(1+q1) such that[

K1

I(1+q1)

]
=

[
X20

Z10

]
G1. (13)

Let G1 be partitioned as G1 =
[
G11 G12

]
where G11 ∈

RT×1 and G12 ∈ RT×q1 . Then, the system

ẋ1 = f1(x1) + β1x2

can be written as

ẋ1 = M1x1 +N1Q1(x1) + β1(x2 − v) (14)

where M1 := X11G11, N1 := X11G12, and v := K1Z1(x1).
■

Proof: Let v = K1Z1(x1) be the virtual input applied
to the x1-subsystem. Applying the virtual input gives the
dynamics of x1 as

ẋ1 = α1Z1(x1) + β1v + β1x2 − β1v.

Consider the matrices K1 and G1 satisfying (13). Apply-
ing Lemma 1, we have the dynamics of the x1-subsystem
as

ẋ1 = M1x1 +N1Q1(x1) + β1(x2 − v)

where M1 = X11G11 and N1 = X11G12. □
The following result illustrates the design of K1.
Proposition 1: Consider the system

ẋ1 = f1(x1) + β1x2 (15)

along with Ω1 > 0 and the following program

Z10G1 = I(1+q1) (16a)
X11G12 = 01×q1 (16b)
X11G11 ≤ −Ω1. (16c)

If the program is feasible, then x2 = K1Z1(x1) with K1 =
X20G1 renders the origin of (15) a globally exponentially
stable equilibrium. ■

Proof: Recall that by Lemma 2, the system (15) can be
written as

ẋ1 = X11G11x1 +X11G12Q1(x1) + β1(x2 − v).

When x2 = v = K1Z1(x1), the above equation becomes

ẋ1 = X11G11x1 +X11G12Q1(x1). (17)

By the condition (16b), the nonlinear term X11G12Q1(x1)
is cancelled out, leaving the closed-loop dynamics of the
x1-subsystem as

ẋ1 = X11G11x1 (18)

where X11G11 is Hurwitz by the condition (16c). Hence, the
origin is a globally exponentially stable equilibrium of (15).
□

Define the difference between the virtual input v and
the actual input x2 as δ := x2 − v. By the designed
v = K1Z1(x1), one can write its dynamics as

δ̇ = ẋ2 − v̇

= α2Z2(x1, δ +K1Z1(x1)) + β2u−K1
∂Z1

∂x1
ẋ1.

Define function Q2 : R × R → Rq2 as the vector
containing all types of nonlinear functions in Q2(x1, δ +
K1Z1(x1)), Z1(x1), and ∂Z1

∂x1
ẋ1. Letting Q̃2(x1, δ) :=[

x⊤
1 Q2(x1, δ)

⊤]⊤ and

Z2(x1, δ) =

[
δ

Q̃2(x1, δ)

]
(19)

gives the δ-subsystem as

δ̇ = α2Z2(x1, δ) + β2u (20)

where α2 is the unknown vector satisfying

α2Z2(x1, δ) = α2Z2(x1, δ +K1Z1(x1))−K1
∂Z1

∂x1
ẋ1.

We note that the function Q2 is known because Q2(x1, x2)
is known, and ẋ1 can be written explicitly after designing v.
Moreover, as the function Z2 is known, one can evaluate it
at the data points in DS to obtain the data matrix Z20. The
data of δ̇, denoted as ∆1, can be obtained using X11 and
X21 based on the relation δ̇ = ẋ2 −K1

∂Z1

∂x1
ẋ1.

Remark 5 (Nonlinearity in ∂Z1

∂x1
ẋ1): Under the designed

virtual input v, the nonlinearity is cancelled out, and the
closed-loop dynamics of x1 is linear and in the form of
ẋ1 = M1x1 + β1δ. Therefore, one has that

v̇ = K1
∂Z1

∂x1
ẋ1 = M1K1

∂Z1

∂x1
x1 + β1K1

∂Z1

∂x1
δ,

where the nonlinearity is contained in ∂Z1

∂x1
x1 and ∂Z1

∂x1
δ,

which is available as Z1(x1) is known. ■
For the δ-subsystem, results similar to Lemma 2 and

Proposition 1 can be established.
Lemma 3: Consider any matrices K2 ∈ R1×(2+q̄2) and

G2 ∈ RT×(2+q̄1) such that[
K2

I(2+q2)

]
=

[
U0

Z20

]
G2. (21)

Let G2 be partitioned as G2 =
[
G21 G22

]
where G21 ∈

RT×1 and G22 ∈ RT×(1+q̄2). Then, the system

δ̇ = α2Z2(x1, δ) + β2u

with u = K2Z2(x1, δ) can be written as

δ̇ = M2δ +N2Q̃2(x1, δ) (22)

where M2 := ∆1G21 and N2 := ∆1G22. ■
Proposition 2: Consider the system

δ̇ = α2Z2(x1, δ) + β2u (23)
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along with Ω2 > 0 and the following program

Z20G2 = I2+q̄2 (24a)
∆1G22 = 01×(1+q̄2) (24b)
∆1G21 ≤ −Ω2 (24c)

If the program is feasible, then u = K2Z2(x1, δ) with K2 =
U0G2 renders the origin of (23) a globally exponentially
stable equilibrium. ■

The proof of Lemma 3 and Proposition 2 is similar to that
of Lemma 2 and Proposition 1, and thus is omitted.

We outline the data-driven control design procedure in the
pseudo-algorithm Algorithm 1,

Algorithm 1 Data-driven control of the second-order system
(1) via nonlinearity cancellation
Step 1. Collect the data set DS and obtain the data matrices

X20, X11, X21, Z10, and U0

Step 2. Design data-driven virtual input v = K1Z1(x1) for
ẋ1 = α1Z1(x1) + β1x2 (Lemma 2 and Proposition 1)

Step 3. Find the function Z2 that represents the dynamics
of the error δ = x2 − v as δ̇ = αZ2(x1, δ) + β2u

Step 4. Evaluate Z2 and δ̇ at the data points in DS to obtain
Z20 and ∆1

Step 5. Design data-driven controller u = K2Z2(x1, δ)
(Lemma 3 and Proposition 2)

The main result of the data-driven control design is
summarized as follows.

Theorem 2: Consider the nonlinear system (1) with the
data set DS. For any fixed Ω1 > 0, Ω2 > 0, and the
decision variables G1 =

[
G11 G12

]
with G11 ∈ RT×1,

G12 ∈ RT×q1 , and G2 =
[
G21 G22

]
with G21 ∈ RT×1,

G22 ∈ RT×(1+q̄2), if the programs (16) and (24) are feasible,
then the controller

u = U0G2Z2(x1, δ)

δ = x2 −X20G1Z1(x1) (25)

where Z2(x1, δ) is defined in (19), renders the origin glob-
ally asymptotically stable for the closed-loop system (1). ■

Proof: Under the given assumptions, the closed-loop
system (1), (25) in the (x1, δ) coordinates is given by

ẋ1 = X11G11x1 + β1δ

δ̇ = ∆1G21δ (26)

where X11G11 ≤ −Ω1 < 0 and ∆1G21 ≤ −Ω2 < 0. Then,
the origin is a globally exponentially stable equilibrium for
(26). Recall that x2 = δ + X20G1Z1(x1). Therefore, the
origin is a globally asymptotically stable equilibrium of the
closed-loop system (1) and (25). □

Remark 6 (Data richness): To have (16a) and (24a) fea-
sible, a necessary requirement is that Z10 and Z20 have full
row rank, which indicates that the data is rich enough for
designing a controller. Remark 3 mentions that to identify
the system parameters

[
β1 α1

]
and

[
β2 α2

]
via data, one

needs the full row rank condition for
[
X20

Z10

]
and

[
U0

Z20

]
,

respectively. The rank condition of Z10 is weaker than that of[
X20

Z10

]
for the x1-subsystem, but

[
X20

Z10

]
having full row rank

brings certain advantages, as discussed in [11]. On the other
hand, if the system is first identified using data,

[
β2 α2

]
is calculated for the x2-subsystem, while our proposed ap-
proach deals with

[
β2 α2

]
of the error dynamics δ. Hence,

for general cases, it is difficult to compare the strictness of

the rank conditions of Z20 and
[
U0

Z20

]
. ■

Remark 7 (Lyapunov function): A Lyapunov function can
also be synthesized from the proposed design procedure.
Define

V (x, δ) =
1

2
β−2
1 x2

1 +
1

2
δ2.

It holds that the time derivative of V (x, δ) along the trajec-
tory of the closed-loop dynamics satisfies

V̇ (x, δ) ≤ −β−2
1 Ω1x

2
1 − Ω2δ

2.

■

IV. AN EXAMPLE

Consider the tunnel diode circuit having the dynamics

ẋ1 = 0.5(−h(x1) + x2)

ẋ2 = 0.2(−x1 − 1.5x2 + u) (27)

where the tunnel diode current function is

h(x1) = 17.76x1 − 103.79x2
1 + 229.62x3

1

− 226.31x4
1 + 83.726x5

1.

When a nominal value of input u = 1.2 is applied, the
system has 3 equilibria, among which (0.063, 0.76) and
(0.884, 0.21) are stable equilibria, and (0.286, 0.61) is a
saddle point. The objective in this example is to design a
controller such that (0.286, 0.61) is globally asymptotically
stable for the closed-loop system.

As the equilibrium is not at the origin, we define new
variables x̄1 = x1− 0.286, x̄2 = x2− 0.61, and ū = u− 1.2
such that the origin is a saddle point of the dynamics

˙̄x1 = 0.5 [−h(x̄1 + 0.286) + (x̄2 + 0.61)]

˙̄x2 = 0.2 [−(x̄1 + 0.286)− 1.5(x̄2 + 0.61) + 1.2 + ū)] .
(28)

In what follows, we design the input ū using
[
x̄1 x̄2

]⊤
such

that the origin is globally asymptotically stable for (28).
By setting Z1(x̄1) =

[
x̄1 x̄2

1 x̄3
1 x̄4

1 x̄5
1

]⊤
and

Z2(x̄1, x̄2) =
[
x̄1 x̄2

]⊤
, the dynamics (28) is in the linear-

like form (2).
An experiment is conducted over the time interval [0, 5]

with the initial condition x̄(0) =
[
1 −1

]⊤
and the input

u = 0.1 sin(t). The sampling period is 0.1 and the length
of the data is T = 50. We assume that we have perfect
measurement of the state, input, and the state derivative.
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Fig. 1. Phase portrait of the closed-loop system under the designed data-
driven controller.

Setting Ω1 = 1, we solve the program (16) using MOSEK
in Matlab and obtain the virtual input

v = 83.72x̄5
1 − 106.72x̄4

1 + 39.334x̄3
1 + 1.705x̄2

1 − 7.639x̄1.

The resulting closed-loop system of x̄1 is ˙̄x1 = −2.0x̄1 +
0.5δ, which shows that the nonlinearity is cancelled out.

Using the designed v, we obtain the nonlinearity in the
δ-subsystem as

Q2(x̄1, δ) =
[
x̄2
1 x̄3

1 x̄4
1 x̄5

1 x̄1δ x̄2
1δ x̄3

1δ x̄4
1δ
]⊤

.

Obtain the matrices Z20 and ∆1, and set Ω2 = 1. Then, we
solve the program (15), which leads to the control input

u = 65.933x̄1 − 27.598δ + 8.5249x̄1δ + 295.0x̄2
1δ

− 1067.2x̄3
1δ + 1046.5x̄4

1δ − 31.542x̄2
1 − 1121.0x̄3

1

+ 4108.7x̄4
1 − 4060.4x̄5

1.

Under this control input, the dynamics of the δ-subsystem is

δ̇ = −2.0δ + 4.745× 10−9x̄1 − 2.5877× 10−9x̄1δ

− 4.0952× 10−8x̄2
1δ − 5.5285× 10−7x̄3

1δ

+ 3.3291× 10−8x̄4
1δ + 1.3422× 10−7x̄2

1

− 1.122× 10−7x̄3
1 + 1.4539× 10−6x̄4

1

− 4.6163× 10−7x̄5
1 + 8.8818× 10−18,

which shows that the nonlinearities are cancelled out. The
phase portrait of the original closed-loop system (27) is
illustrated in Fig. 1, which shows the globally asymptotic
stability of the origin.

V. CONCLUSIONS AND FUTURE WORKS

For a class of second-order nonlinear systems, this work
shows that by exploiting its structure and applying the
learning control approach via nonlinearity cancellation to

each subsystem, nonlinearities in both subsystems can be
handled. For the subsystem not directly affected by the
control input, a virtual input is designed for cancelling the
nonlinearity. By dealing with the subsystems respectively,
the proposed approach leads to a globally asymptotically
stable equilibrium, in contrast to the locally asymptotically
stable equilibrium when the control approach is applied to
the system as a whole. More practical issues, such as noisy
data and neglected nonlinearity, are important topics to be
addressed in our future studies. The price to pay for solving
those issues is a more complex control design.
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