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Abstract— This paper addresses the problem of controlling
constrained systems subject to disturbances in the case where
controller and system are connected over a lossy network. To
do so, we propose a novel framework that splits the concept
of tube-based model predictive control into two parts. One
runs locally on the system and is responsible for disturbance
rejection, while the other runs remotely and provides optimal
input trajectories that satisfy the system’s state and input
constraints. Key to our approach is the presence of a nom-
inal model and an ancillary controller on the local system.
Theoretical guarantees regarding the recursive feasibility and
the tracking capabilities in the presence of disturbances and
packet losses in both directions are provided. To test the
efficacy of the proposed approach, we compare it to a state-of-
the-art solution in the case of controlling a cartpole system.
Extensive simulations are carried out with both linearized
and nonlinear system dynamics, as well as different packet
loss probabilities and disturbances. The code for this work is
available at https://github.com/EricssonResearch/
Robust-Tracking-MPC-over-Lossy-Networks

I . I N T R O D U C T I O N

Wireless communication has evolved to enable higher and
faster data transfer, with 5G being envisioned as being a key
enabler of Industry 4.0 [1], [2] and of mass digitalization.
Looking into control systems and robotics in general, faster
and more reliable wireless communication enables plants
and systems to be controlled remotely, utilizing edge and
cloud computing, in a so-called offloaded control [3]. Running
heavy-processing components remotely allows industries to
save costs with cabling and processing power in the plant,
easier integration of autonomous mobile agents in the in-
dustrial floor, and also a reduced energy consumption on
battery-powered agents.

However, any wireless network is subject to imperfections
and constraints. The former means that it can present delays,
packet drops, and even longer outages. The latter implies that
its resources, such as throughput and load, are constrained.
These two factors are specially precarious for time- and safey-
critical systems, such as unstable plants, mobile robots and
autonomous cars [4].

A popular approach to address the problem of stabilization
under safety and actuator constraints is Model Predictive
Control (MPC) [5], since such constraints can be explicitly
accounted for in its formulation. Several approaches have
been proposed to make MPC robust to network imperfection.
Looking specifically into the stabilization problem, [6] consid-
ers a bound on the amount of consecutively lost packets, while
[7] considers bounded delay. Moving to trajectory tracking
problems, [8] assumes Bernoulli distributed packet loss, while
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[9] only assumes that from time to time there are consecutive
successful packet deliveries from the plant to the controller
and back. In addition to network imperfections, [7] considers
a bounded disturbance and [8] considers an unbounded zero
mean stochastic disturbance acting on the plant.

Extensive research has been carried out on MPC that
disregards the effects of imperfect communication, either
because the controller is running onboard or because perfect
communication was assumed, but can handle local distur-
bances. Limon et al. [10] propose a robust tracking MPC
that keeps the plant state in a bounded neighborhood of
the nominal plant state, while tracking a constant reference.
Here, the nominal plant represents the plant dynamics without
a disturbance present. Roque et al. [11] combine control
barrier function with the nominal system to guarantee that
the continuous system is within a bounded neighborhood of
the desired reference in between discrete controller updates.
Neither [10] nor [11] can handle network imperfections.

In our work, we combine the mild network assumptions
of [9] with the disturbance rejection of [10] to develop
a novel remote tracking MPC framework. This framework
guarantees the satisfaction of state and actuator constraints
in the presence of a local disturbance and a lossy network.
The key idea is to use a nominal model on the local plant
to simulate the nominal plant state in case of packet losses.
This nominal plant state allows us to reduce the bandwidth by
sending only control input trajectories over the network and it
is used in an ancillary controller to reject the disturbance. This
allows us to handle both packet losses and local disturbances.
Furthermore, the code for our approach is available online.1

Notation: Let x ∈ Rn and A ∈ Rn×m be a real-valued
n-dimensional column vector and matrix with n rows and
m columns, respectively. The transpose of a vector x and
matrix A are x⊤ and A⊤, respectively. The spectral radius
and matrix square root of a square matrix A are denoted
by ρ(A) and A

1
2 , respectively. The n dimensional identity

matrix is denoted by In, while 0 denotes a scalar, vector,
or matrix with zero elements of appropriate dimensions. A
symmetric and square positive (semi-)definite matrix A is
denoted by A > 0(A ≥ 0) and we use ∥x∥2A = x⊤Ax. For
a set P and a matrix A of appropriate dimension, we define
AP = {Ap | p ∈ P}. For two sets P and Q, the Minkowski
sum and the Pontryagin difference are denoted as P⊕Q and
P⊖Q, respectively. The probability of an event E is denoted
by Prob(E).

1https://github.com/EricssonResearch/
Robust-Tracking-MPC-over-Lossy-Networks
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Fig. 1: Block diagram of the problem setup

I I . P R O B L E M D E F I N I T I O N

A block diagram summarizing the components involved
in our setup is presented in Figure 1. In what follows in
this section, we describe such components and formulate the
problem addressed in this paper.

1) Network: Local plant and remote controller commu-
nicate via a potentially lossy network, in which network
packets can be lost in both directions. Reasons for a lost
packet include a large transmission delay, a packet drop in
the network, reordering, or a short network outage. To model
these packet losses, we introduce two variables: θk and γk.
The variable θk ∈ {0, 1} indicates whether the local plant has
received the packet Uk or not, i.e., θk = 1 if Uk, sent from
the remote controller at time step k, has been received at
the local plant, and θk = 0 otherwise. Similarly, the variable
γk ∈ {0, 1} indicates that the packet Xk sent from the local
plant has been received at the remote controller (γk = 1) or
not (γk = 0).

Assumption 1. Over time, there is an infinite amount of two
successful consecutive transmissions from plant to controller
and controller to plant, i.e.,

Prob(∩t≥k{γt−1θt = 0}) = 0 ∀ k ≥ 0. (1)

This assumption is as in [9], and does not put any major
restrictions on the reasons for the packet loss, such as a fixed
distribution or a maximum amount of lost packets in a row.

2) Local plant: Consider a linear time-invariant discrete-
time plant with additive disturbance given by

x(k + 1) = Ax(k) +Bu(k) + w(k),

y(k) = Cx(k),
(2)

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny and
w(k) ∈ Rnx are the plant’s state, control input, output, and
disturbance at time step k ∈ N≥0, respectively. Here,
A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx are the system,
input, and output matrices, respectively.

Assumption 2. The system (A,B) is stabilizable.

This assumption is necessary to be able to design a
controller that stabilizes the plant (2).

Assumption 3. The disturbance is bounded by a compact
set W, such that w(k) ∈ W for all k, where

W = {w ∈ Rnx | Hww ≤ hw}, (3)

and W contains the origin in its interior.

This assumption confines the disturbance to a bounded set,
which could, for example, depend on the modelling errors.

Furthermore, we also consider constraints in state x(k) ∈ X
and input u(k) ∈ U. These sets indicate, for example, safe
set of states in which the plant should evolve, and actuator
saturation. If x(k) ∈ X and u(k) ∈ U, x(k) and u(k) are
called admissible.

Assumption 4. The sets X and U are bounded sets containing
the origin in their interior and are defined as

X = {x ∈ Rnx | Hxx ≤ hx}, (4)
U = {u ∈ Rnu | Huu ≤ hu}. (5)

The control input is determined as
u(k) = f(x(k), {Ui}ki=0, {θi}ki=0), where {Ui}ki=0 and
{θi}ki=0 are the sequence of packets sent from the remote
controller to the local plant and the binary sequence
indicating the successful transmission of them, respectively.
Note that this function can make use of all previously
received packets.

3) Remote Controller: The remote controller is used to
determine the controller packet Uk based on the received
packets Xi and the desired reference xr. More formally the
controller is defined as g({Ui}k−1

i=0 , {Xi}k−1
i=0 , {γi}

k−1
i=0 , xr),

which has access to all previous controller packets and can
make use of all previously received plant packets. Here,
{Xi}k−1

i=0 and {γi}k−1
i=0 are defined similarly as {Ui}ki=0 and

{θi}ki=0 above.
4) Problem Formulation: Now that all the components are

defined, let us formulate the problem we want to solve.

Problem 1. Given a local plant (2), design f(·) and g(·)
such that i) state and input constraints are respected, i.e.
x(k) ∈ X and u(k) ∈ U for k ≥ 0, and ii) x(k) converges to
a bounded neighborhood of reference xr(k) ∈ Rnx , despite
the lossy network and the disturbance w(k).

I I I . P R E L I M I N A R I E S

In the previous section, we have set up our problem and
and now we will present several preliminaries, found, e.g.,
in [9], [10], [12], necessary for our proposed approach. This
section introduces the nominal plant dynamics, i.e. the plant
dynamics without an additive disturbance, the error between
the actual and the nominal plant state, as well as the steady-
state behaviour of the nominal plant.

1) Nominal plant: The nominal plant [12] is given by

xn(k + 1) = Axn(k) +Bun(k),

yn(k) = Cxn(k),
(6)

where xn(k) ∈ Rnx , un(k) ∈ Rnu , and yn(k) ∈ Rny are the
nominal state, the nominal control input, and the nominal
output, respectively. Due to the disturbance w(k) in (2), the
plant state differs from the nominal state and subsequently
we want to show how close the plant state is to the nominal
state. To do so, we introduce the error e(k) = x(k)− xn(k).

If A is unstable, then the error will diverge such that the
plant state is not close to the nominal state. To prevent that,
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we introduce an ancillary controller, which will be used by
the plant to track the nominal state. The ancillary controller
is given by

u(k) = un(k)−K (x(k)− xn(k)) , (7)

where K ∈ Rnu×nx is a linear state feedback controller
chosen such that ρ(A−BK) < 1, which is possible due to
Assumption 2. Note that if the system matrix A is stable, i.e.,
ρ(A) < 1, then we could choose K = 0.

When the plant uses the ancillary controller (7), we obtain
the following error dynamics

e(k + 1) = (A−BK)e(k) + w(k). (8)

The evolution of e(k) is bounded, because W is a compact
set and A−BK is stable [13].

We introduce the minimal robust positively invariant set
[14] to determine the bounded set in which e(k) evolves as

ZK =

∞⊕
i=0

(A−BK)iW. (9)

It is guaranteed that (A − BK)ZK ⊕ W ⊆ ZK , i.e., if
e(k0) ∈ ZK , then e(k) ∈ ZK for all k > k0. Since 0 ∈ W,
we have 0 ∈ ZK [14]. The set ZK can be overapproximated
with, for example, the methods proposed in [14] and [15].

With ZK defined, it is known that [12]

x(k) ∈ {xn(k)} ⊕ ZK ∀k > 0, (10)

given that x(0) ∈ {xn(0)} ⊕ ZK This means that the plant
state evolves in a bounded neighborhood ZK around the
nominal state. This bounded neighborhood is often called a
tube. The size of ZK depends on the ancillary controller K,
so that the ancillary controller determines how close the plant
state will track the nominal state. Similarly, we obtain

u(k) ∈ {un(k)} ⊕ (−K)ZK , (11)

which means that the control input also evolves in a bounded
neighborhood around the nominal control input.

Therefore, we will introduce tightened constraint sets [12]
in which the nominal state and input trajectory should evolve,
i.e., xn(k) ∈ Xc and un(k) ∈ Uc, which guarantee that the
plant state and input trajectories evolve in the sets X and U,
respectively. We define the tightened sets Xc = X⊖ ZK and
Uc = U⊖ (−K)ZK , which guarantee that Xc⊕ZK ⊆ X and
Uc ⊕ (−K)ZK ⊆ U.

2) Steady-state behavior: Next, we look into the steady-
states of the nominal plant [9], [10] and how to control the
nominal plant towards a steady state while guaranteeing that
the nominal state and input remain in Xc and Uc, respectively.

The steady-state equations of (6) are given by[
A− Inx

B
] [x̄

ū

]
= 0, (12)

which have a solution due to Assumption 2. Here, x̄ ∈ Rnx

and ū ∈ Rnu are a steady state and steady-state input, respec-
tively. To control the nominal system towards the steady state,
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Fig. 2: The block diagram of our proposed remote tube-based tracking MPC
approach over lossy networks.

we introduce the state feedback controller K̄ ∈ Rnx×nu for
the nominal plant

un(k) = ū− K̄(xn(k)− x̄), (13)

where K̄ is chosen such that ρ(A − BK̄) < 1. However,
we want to guarantee that xn ∈ Xc and un ∈ Uc. Thus, we
define the augmented state xa(k) = [x⊤

n (k), x̄⊤, ū⊤]⊤ and
its dynamics with the controller in (13) are given by

xa(k + 1) = Aaxa(k) with Aa =

A−BK̄ BK̄ B
0 Inx

0
0 0 Inu

 .

Next, we define the maximum admissible set [13]

Xf,K̄ = {xa | Ak
a xa ∈ Xa,K̄ ∀ k ∈ N≥0}, (14)

where Xa,K̄ = {xa|xn ∈ Xc, ū− K̄(xn(k)− x̄) ∈ Uc}.
If [xn(0)

⊤, x̄⊤, ū⊤]⊤ ∈ Xf,K̄ , then the nominal
plant (6) using the control law (13) guarantees that
[xn(k)

⊤, x̄⊤, ū⊤]⊤ ∈ Xf,K̄ for all k > 0 and that xn(k)
converges to the steady state x̄. We can compute Xf,K̄

as described in [13]. Since Xf,K̄ might not be finitely
determined, i.e., the polytope Xf,K̄ cannot be described by
a finite amount of inequalities, we introduce

Xλ
f,K̄ = Xf,K̄ ∩ {x̄, ū | x̄ ∈ λXc, ū ∈ λUc}, (15)

with λ ∈ (0, 1). This is a finitely determined set that
approximates Xf,K̄ arbitrarily well as λ → 1 [13].

I V. R E M O T E T U B E - B A S E D T R A C K I N G M P C
O V E R L O S S Y N E T W O R K S

In this section, we describe in more details the Remote
Tube-based Tracking MPC over Lossy Networks approach that
we propose to solve Problem 1 and its theoretical guarantees.
As mentioned earlier, the proposed approach is an extension
of those presented in [9] and [10] that enables remote tracking
of references even in the presence of disturbance on the plant
and lossy networks.

Figure 2 presents the architecture of our proposed approach.
It is composed of five parts: two are placed remotely represent-
ing g(·), namely the MPC controller and the state estimator,
and three are placed together with the local plant representing
f(·), namely the consistent actuator, the nominal plant, and
the ancillary controller.
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A. Remote Model Predictive Controller For Tracking

To track the reference xr, we will use a model predictive
controller on the remote controller-side, which is inspired by
[9]. The cost function optimized in the MPC is given by

c(u,x, x̄, ū, xr) =

N−1∑
i=0

(ci(u,x, x̄, ū)) + c̄(x, x̄, xr), (16)

where u = {u(0), . . . ,u(N)}, x = {x(0), . . . ,x(N)},

ci(u,x, x̄, ū) = ∥x(i)− x̄∥2Q + ∥u(i)− ū∥2R, (17)

c̄(x, x̄, xr) = ∥x(N)− x̄∥2P + ∥x̄− xr∥2T , (18)

and Q ≥ 0, R > 0, and T > 0 are the symmetric cost
matrices for the state, input, and the tracking output, and P
is the solution of P = (A−BK̄)⊤P (A−BK̄)+Q+K̄⊤RK̄.
Given the cost function, a state estimate x̂(k|k − 1) and a
reference signal xr, the optimization problem of the MPC is
formulated as follows

min
u,x̄,ū

c(u,x, x̄, ū, xr) (19a)

s.t. x(i+ 1) = Ax(i) +Bu(i), (19b)
x(i) ∈ Xc, u(i) ∈ Uc, i ∈ {0, . . . , N − 1}, (19c)
x(0) = x̂(k|k − 1), (19d)

(x(N), x̄, ū) ∈ Xλ
f,K̄ , (19e)[

A− Inx B
] [x̄

ū

]
= 0 (19f)

where the sets Xc, Uc, and Xλ
f,K̄

, are as in Section III.
Compared to the remote MPC formulated in [9], the MPC

(19) generates trajectories for the nominal plant by using the
tightened sets Xc,Uc, and Xλ

f,K̄
. This difference is inspired by

[10] and we make use of it in Section IV-C to generate inputs
u(k) ∈ U, which guarantee x(k) ∈ X for all k ∈ N≥0. Since
the communication from the plant to the remote controller
is lossy, we are not guaranteed to have the plant state x(k)
available at time k. Therefore, we use the estimate x̂(k|k − 1)
based on the previously received packets as in [9] (see
Section IV-D) instead of the true state.

Let the optimal solution of (19) at time step k be u∗
k, ū

∗
k,

and x̄∗
k. With that, the packet Uk is, similar to [9], constructed

as follows
Uk = {u∗

k, ū
∗
k + K̄x̄∗

k, qk}, (20)

where qk is the time instance when the remote estimator
has last received a packet from the local plant. The packet
contains the optimal nominal input trajectory at time step k
and the steady-state control input for the nominal plant.

B. Consistent Actuator

The consistent actuator is located at the local plant and is
responsible for deciding the next nominal control input un(k).
It has the same functionality as the Smart Actuator in [9].
When a packet Uk is received, the consistent actuator needs
to decide if Uk will be used or if it will be discarded; in the
latter, the packet already in use continues to be applied.

The consistent actuator might discard a received packet
because the estimated state on the remote controller side is

inconsistent with the actual state on the plant. This means
that the control inputs have been calculated based on an
incorrectly estimated state. To determine consistency, we use
a variable Θk as in [9], which is calculated as follows

Θk =

{∏k
i=qk+1 θi if θk = 1,

0 otherwise.
(21)

We observe that if θk = 1, i.e., the packet is received at
time step k, then we can calculate the product and otherwise
Θk = 0. Once Θk is determined the consistent actuator
updates its internal state sk as follows

sk = Θkk + (1−Θk)sk−1. (22)

This internal state keeps track of which packet Usk should
be used by the consistent actuator at time step k. Note that
if Θk = 1 then sk = k and the latest packet Uk will be used.
Once sk has been determined, the packet Xk is sent from
the plant to the controller with the following content,

Xk = {xn(k), sk}. (23)

While in [9] the packet Xk contains x(k) and sk, our
proposed solution sends the nominal state xn(k) to the remote
controller, which is obtained as described in Section IV-C.

The consistent actuator determines un(k) as

un(k) =

{
u∗
sk
(k − sk) if k − sk < N,

ū∗
sk

+ K̄x̄∗
sk

− K̄xn(k) otherwise.
(24)

In a nutshell, the consistent actuator uses all predicted control
inputs in a packet Uk if no new consistent packet has been
received and once there are no more predicted inputs available
it uses the controller K̄ in (13) to control the nominal plant
around the steady state x̄∗

sk
.

Note that since un(k) is determined from an optimal trajec-
tory coming from the MPC, it is guaranteed that un(k) ∈ Uc.

C. Nominal Plant and Ancillary Controller

The main idea of our proposed approach is that a model
of the nominal plant runs on the local plant to determine the
nominal plant state xn(k). Here, xn(k) together with un(k)
coming from (24) are used to determine the control input
u(k) for the plant via the ancillary controller K in (7).

The nominal control input coming from the consistent
actuator is then applied to the model of the nominal plant,
which evolves as described in (6). Since the nominal control
inputs are determined by the MPC problem, they guarantee
that xn(k) ∈ Xc for all k ≥ 0.

As described in Section III, the ancillary controller will
guarantee that x(k) ∈ {xn(k)} ⊕ ZK ⊆ X for all k ∈ N≥0

and u(k) ∈ {un(k)} ⊕ KZK ⊆ U if xn(k) ∈ Xc for all
k ∈ N≥0, since un(k) ∈ Uc for all k ∈ N≥0.

The nominal plant and ancillary controller on the local
plant are the key to make our approach work because
they enable us to track a reference xr in the presence of
a disturbance w(k), and they are the main architectural
difference to [9]. Furthermore, running a nominal model is
computationally cheaper than running a robust MPC as in
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[10] on the local plant. This makes our proposed approach
more applicable to lightweight devices controlled over a lossy
network without sacrificing robustness.

Remark 1. The ancillary controller K and the steady-state
controller K̄ are not necessarily the same. This enables us
to tune K to minimize ZK , while K̄ can be tuned to increase
the size of Xλ

f,K̄
. For the former, Section 7 in [10] proposed

a semi-definite program to design K, which minimizes ZK

while guaranteeing that Xc and Uc are non-empty. For the
latter, a common choice in the literature is to choose K̄ as
the optimal LQR gain.

D. Estimator

The estimator, similar to [9], is used to estimate the state
of the nominal plant at time step k+1 as x̂(k+1|k). Based
on the reception of Xk, it estimates the nominal plant state

x̂(k + 1|k) = Ax̂(k|k) +Bû(k|k), (25)

where

x̂(k|k) = γkxn(k) + (1− γk)x̂(k|k − 1), (26)
û(k|k) = γkun(k) + (1− γk)u

∗
k(0). (27)

Since only xn(k) and sk are sent to the remote controller, the
remote controller also needs to run a consistent actuator (24)
to determine un(k). Furthermore, qk is updated as follows

qk+1 = γkk + (1− γk)qk (28)

to keep track of which packet Xk has been received last at
the remote controller.

Other than in [9], we estimate the nominal plant state in
the estimator and not the plant state. This guarantees that
x̂(k|k−1) ∈ Xc, such that the constraints x(0) = x̂(k|k−1)
and x(0) ∈ Xc in the optimization problem (19) will not lead
to an infeasible optimization problem.

E. Theoretical Guarantees

In this section, we provide theoretical guarantees for our
proposed MPC. The key insight for our theoretical guarantees
is that the closed-loop system involving the MPC in Figure 2
acts on the nominal plant and not the plant itself. This means
that inside this closed-loop system there is no disturbance,
such that it represents the disturbance-free system assumed
in [9]. Hence, the theoretical guarantees of [9] will hold for
the closed-loop system involving the MPC in our proposed
approach given Assumption 5 below.

Assumption 5. In addition to Assumptions 1 – 4, the
following conditions hold:

1) Q, R, and T are positive definite.
2) The system (Q

1
2 , A) is observable.

3) The gains K and K̄ are such that ρ(A − BK) < 1
and ρ(A−BK̄) < 1, respectively.

4) The matrix P satisfies
P = (A−BK̄)⊤P (A−BK̄) +Q+ K̄⊤RK̄.

We begin by showing that the plant state is in a bounded
neighbourhood around the estimated state if Θk = 1.

Proposition 1. If Θk = 1, then x(k) ∈ {x̂(k|k − 1)} ⊕ ZK .

Proof. Since the closed-loop system of our proposed ap-
proach acts on the disturbance-free nominal plant (see Fig-
ure 2), we can use Proposition 1 of [9] to show that if Θk = 1
then x̂(k|k − 1) = xn(k). Due the ancillary controller, we
know that x(k) ∈ {xn(k)} ⊕ ZK holds.

This shows that when the estimate is consistent with the
nominal plant state, i.e. Θk = 1, then we know that the plant
state is in a tube around the estimated state.

Next, we show recursive feasibility of our proposed remote
MPC and that the plant will always evolve in the constraints
regardless of the network quality.

Proposition 2. Let Assumption 5 hold, and assume there ex-
ists a k0 such that γk0−1 = 1, θk0 = 1, x(k0)− xn(k0) ∈ ZK ,
and that the optimization problem (19) is feasible. If the
consistent actuator (24) and the ancillary controller (7) are
used, the optimization problem (19) is feasible, and x(k) ∈ X
and u(k) ∈ U for all k ≥ k0.

Proof. Given the conditions above, Proposition 2 of [9] shows
us that optimization problem (19) is feasible and xn(k) ∈ Xc
and un(k) ∈ Uc for all k ≥ k0. The constraint satisfaction
of x(k) ∈ X and u(k) ∈ U is guaranteed since the ancillary
controller (7) guarantees that x(k) ∈ {xn(k)}⊕ZK ⊆ X and
u(k) ∈ {un(k)} ⊕ (−K)ZK ⊆ U.

Note that the feasibility of the MPC does not depend on
the value of xr, such that for all reference values our solution
is recursively feasible according to Proposition 2.

Finally, the following theorem states the tracking capabili-
ties of our approach given a constant reference xr.

Theorem 1. Let Assumption 5 hold and [x⊤
r , ũ⊤]⊤ fulfil

the steady-state equation (12). If the consistent actuator (24)
and the ancillary controller (7) are used, then almost surely
limk→∞ x(k) ∈ {x̃r} ⊕ X, where x̃r = xr if xr ∈ λXc and
ũ ∈ λUc, and x̃r = argminx∈λXc ∥x− xr∥2T otherwise.

Proof. From Proposition 3 of [9] we obtain that
limk→∞ xn(k) = x̃r almost surely, while Theorem 1
of [10] states that x̃r = argminx∈λXc ∥x − xr∥2T such that
x̃r = xr if xr ∈ λXc and ũ ∈ λUc. The ancillary controller
guarantees that limk→∞ x(k) ∈ {x̃r}⊕X almost surely.

Corollary 1. Theorem 1 and Proposition 2 show us that by
choosing f(·) and g(·) as in our approach, we have solved
Problem 1 for constant references.

F. Extension to include state feedback

While our proposed approach does not require feedback
from x(k), it is common to send the state also to the re-
mote controller, for example, for anomaly detection purposes.
Therefore, we will now propose an extension to our approach,
which includes state feedback, while inheriting the theoretical
guarantees of our previously described approach.

To include the state, we change the content of the plant
packet (23) as follows

Xk = {x(k), xn(k), sk}. (29)
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With the new package (29), the estimator in (25) uses

x̂(k|k) = γkx(k) + (1− γk)x
∗
k(0), (30)

û(k|k) = γku(k) + (1− γk)u
∗
k(0). (31)

Note that we use the state x(k) and control input u(k), when
γk = 1, where u(k) can be calculated according to (7). This
leads to x(k + 1) ⊆ x̂(k + 1|k) ⊕ W, which gives us a
better estimate than with the estimator of Section IV-D, where
x(k + 1) ⊆ x̂(k + 1|k)⊕ ZK . Otherwise, the estimator will
use the last optimal trajectory of the MPC to estimate the
next state, which gives us again an estimate of the nominal
plant. However, this new estimate does not guarantee that
x̂(k + 1|k) ∈ Xc when γk = 1, which requires us to change
the constraint (19d) in our MPC described in Section IV-A to
guarantee feasibility. Thus, we replace constraint (19d) with

{x̂(k − 1|k)} ⊕W ⊆ {xk(0)} ⊕ ZK , (32)

when γk−1 = 1 and otherwise we keep (19d). Hence, the
MPC algorithm is now made aware if packets have been
received. Furthermore, the constraint (32) allows the MPC
to reset the nominal state trajectory, since now it is not
necessarily true that xk(0) = x̂(k|k − 1) as it is the case
for (19d). This can improve the convergence as discussed in
Chapter 3.5 of [5].

Since the MPC can change the optimal trajectory of the
nominal plant, we need to update the trajectory on the nominal
plant if a consistent packet has been received. This is done
by changing the controller packet (20) to

Uk = {u∗
k, ū

∗
k + K̄x̄∗

k,x
∗
k(0), qk}, (33)

and setting xn(k) = x∗
k(0) if Θk = 1.

Proposition 3. Let Assumption 5 hold, and assume there ex-
ists a k0 such that γk0−1 = 1, θk0

= 1, x(k0)− xn(k0) ∈ ZK ,
and that the optimization problem (19) is feasible with the
new constraint (32). If the consistent actuator (24) with the
nominal state update and the ancillary controller (7) are used,
the optimization problem (19) with the new constraint (32)
is feasible, and x(k) ∈ X and u(k) ∈ U for all k ≥ k0.

Proof. If γk = 0, the problem is feasible, since the nominal
state is used in the estimator. If γk = 1 we can show that

x̂(k|k − 1) ∈ {xn(k)} ⊕ (A−BK)ZK . (34)

holds. This leads to

x(k + 1) ∈ {x̂(k|k − 1)} ⊕W ⊆ {xn(k)} ⊕ ZK . (35)

Hence, the constraints {x̂(k|k−1)}⊕W ⊆ {xk(0)}⊕ZK and
xk(0) ∈ Xc are feasible with the choice of xk(0) = xn(k).
So the optimal solution of our original MPC (19) is a feasible
solution of the extended MPC with constraint (32). Thus, the
extended MPC with state feedback is recursively feasible for
all k ≥ k0, since the original MPC is recursive feasible as
shown in Proposition 2. Since x∗

k(0) ∈ Xc, the nominal state
update, when Θk = 1, will not change the guarantees given
by the ancillary controller, such that x(k) ∈ X and u(k) ∈ U
for all k ≥ k0.

Corollary 2. The tracking guarantees of Theorem 1 hold for
the extended MPC with state feedback as well.

Proof. Since Proposition 3 shows that the solution of the
original MPC is a feasible solution of the extended MPC, we
can deduce that the tracking guarantees of the original MPC
also hold for the extended MPC.

In summary, this extension includes state feedback from
the plant, which can change the optimal trajectory of the
nominal plant to improve performance as well with the same
theoretical guarantees of the previous approach. However,
this approach requires more bandwidth and might change the
execution times of the MPC.

V. N U M E R I C A L E X A M P L E S

To demonstrate the efficacy of our proposed approach,
henceforth called RT-MPC and ERT-MPC for the extended
version with state feedback (see Section IV-F), we use it
to track a position reference of a cartpole system, where
the pole is in the upright unstable configuration. We compare
our approach with the approach of [9], subsequently called R-
MPC. Scripts to reproduce the results presented are included
in our open-source code.

In order to design our nominal plant, we linearize
the nonlinear dynamics around the unstable equilibrium
point, where the pole is pointing up. The resulting
continuous-time matrices are defined as follows for the state
x =

[
p ṗ ϕ ϕ̇

]⊤
:

Ac =


0 1 0 0

0 −(I+ml2)b
r

−m2gl2

r 0
0 0 0 1

0 −(mlb)
r

mgl(M+m)
r 0

 Bc =


0

I+ml2

r
0

−ml
r

 ,

where p is the position of the cart, ϕ the angle of the
pole, r = I(M +m) +Mml2, with the remaining param-
eters and their values defined in Table I. The system is then
discretized with a zero-order hold and a sampling time of
Ts = 20ms in order to obtain (6). The controllers K and K̄
are designed as a discrete LQR controller with cost matrices
Q = diag(100, 10, 100, 10) and R = 0.1. Furthermore, we
choose |p| ≤ 5m, |ṗ| ≤ 5m/s, |ϕ| ≤ 0.3 rad, |ϕ̇| ≤ 2 rad/s,
and |u| ≤ 10N to define X and U. The constraints on ϕ and
ϕ̇ guarantee that the LQR controller stabilizes the system.
Finally, we choose N = 20 as the horizon for the MPC.

A. Disturbance set W
The linearized model will inherently differ from the non-

linear one, and such model error will be represented as the
disturbance w(k). To estimate the set W, we run several
simulations with randomly chosen initial conditions, and let
the LQR controller bring the system back to the origin. The
disturbance is then estimated as the difference between the
actual state and the linear model, i.e. w(k) = x(k + 1) −
(A − BK)x(k). This results in the following bounds for
the disturbance of the position |wp| ≤ 0.0001m, velocity
|wṗ| ≤ 0.0027m/s, angle |wϕ| ≤ 0.0003 rad, and angular
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TABLE I: Parameters used in the numerical examples.

Definition Value

I Pendulum’s inertia 0.001 kg ·m2

l Length to pendulum center of mass 0.5m
m Pendulum’s mass 0.1 kg
M Cart’s mass 1.0 kg
b Cart’s coefficient of friction 0N/m/s
g Gravity acceleration 9.8m/s2

Ts Sampling Time 0.02 s

velocity |wϕ̇| ≤ 0.043 rad/s. To approximate ZK we use a
method described in [15].

B. Reference Tracking

Next, we present results for the tracking of a constant
reference in position p. To do so, the cartpole system is
always initialized at the origin, and the reference is set to
r(k) =

[
0.5, 0, 0, 0

]⊤
. To evaluate the performance, we use

the average tracking error 1
T+1

∑T
i=0 ∥x(k)−r(k)∥2. For the

lossy network, we assume a constant packet loss probability
of ϱ and investigate ϱ ∈ {0, 0.1, . . . , 0.9}. In addition to that,
we perform 20 simulations for each value of ϱ and record
the average tracking error to get a better insight for different
realizations of the lossy network.

1) Linear Plant: We begin by comparison with the plant
being simulated with linear dynamics, where the disturbance
w(k) is sampled uniformly from the set W at each time step.
The results are presented as a box plot in Figure 3a.

First, note that both RT-MPC and ERT-MPC outperform R-
MPC for every packet loss probability investigated. Second,
for a packet loss probability of ϱ = 0.9, the average tracking
error decreases. The reason for that is that due to the
large packet loss the cartpole moves less aggressively than
when there is less packet loss. This leads to a smaller
tracking error for the velocity, angle, and angular velocity,
since their reference values are zero, which lowers the overall
tracking error. Third, during our simulations, we encountered
infeasibility issues for R-MPC. While [9] proves recursive
feasibility for the plant without a disturbance present, the
presence of a disturbance in our simulations showed that
infeasibility can occur. Hence, modelling errors can result
in infeasible MPC problems for R-MPC, which we will
encounter again when the nonlinear plant is used. Comparing
RT-MPC and ERT-MPC we observe that the performance of
ERT-MPC seems almost constant, while the tracking error
for RT-MPC increases with the packet loss probability. The
ability to reset the nominal trajectory is likely the reason for
the constant performance of ERT-MPC.

2) Nonlinear Plant: Next, we compare the controllers on
the nonlinear cartpole simulated using PyBullet. To do so,
the physics simulators runs at a higher frequency than the
controllers (500Hz, to be precise), and a zero-order hold
keeps the control input constant between controller updates.

Figure 3b shows the box plots of the average tracking
error for the different packet loss probabilities. We observed
that R-MPC struggled with infeasibility issues; notably, for

ϱ ∈ {0, 0.1, 0.2, 0.3, 0.4} R-MPC is always infeasible in our
simulations, and the larger ϱ the less infeasible problems were
encountered. Therefore, the corresponding box plots only
present the results of runs without an infeasible MPC problem.
Our approach, on the other hand, is recursively feasible for
all simulations performed.

The infeasibility issues decreasing with the increase of
packet losses for R-MPC was a surprising result, since the
opposite could sound more logical. Our intuition for this is
that the LQR controller K̄ used as the steady state controller
is able to handle the nonlinearities of the system better than
R-MPC, since it uses direct state feedback, while R-MPC
estimates the next state based on the currently received state.
Hence, the more packet loss there is, the more often the
steady-state controller is used, which brings the plant to a state
that R-MPC can actually handle well. Our approach, on the
other hand, uses the LQR controller both as the steady-state
controller in the MPC as well as the tracking controller to
track the nominal plant state and, in addition to that, tightens
the constraint set of the MPC by taking the propagation of
the modelling error into account. This can be observed in
Figure 3c, where we present one trajectory of the position
and angle at a packet loss of ϱ = 0.4, and the star marks
when the infeasibility occurred in R-MPC. R-MPC exhibits
an oscillatory behaviour before it becomes infeasible, while
RT-MPC has a smoother trajectory, which reaches the desired
reference. By including actual state feedback in ERT-MPC
the trajectory becomes even smoother due to the ability to
reset the nominal trajectory based on the state x(k).

While our approaches have not shown any infeasibility
issues, we noticed that the state is not always in a tube around
the nominal state for ERT-MPC. These violations happened in
the beginning of the simulation and then stopped. We believe
that W does not capture the differences well in the beginning
of the reference tracking which leads to these violations. We
did not observe such violations for RT-MPC, probably because
it is more conservative than ERT-MPC.

In general, we observe that our proposed solution out-
performs R-MPC of [9] for all investigated value of ϱ.
Interestingly, the tracking error seems to peak at ϱ = 0.7
and then reduces again for R-MPC and RT-MPC, which is
due to the same reason as in the linear case.

C. Execution time of the MPC

Our simulations run on a 24GB RAM Windows machine
with a Ryzen7 8-core CPU. From the 50000 executions of
the MPC in Section V-B.1, we removed the first execution
time, since it represents the cold start of the optimization,
and present the histogram of the remaining execution times
in Figure 3d. We observe that the majority of the sampling
times is below 20ms, which shows that our MPC can run in
real-time for the sampling time of 20ms. Further, the median
and the 95% quantile of the execution time for RT-MPC were
5.00ms and 7.85ms, respectively. The median and the 95%
quantile of the execution time for ERT-MPC were 6.21ms
and 7.06ms, respectively. The histogram for ERT-MPC has
two peaks because it solves two different MPC problems
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depending on if a measurement was received or not. While
real-time execution is not considered here, an optimization
problem that is not solved in time can be interpreted as a
lost packet in a real scenario. Hence, our approach can deal
with too long execution times of the MPC as well.

V I . C O N C L U S I O N S

We presented a novel framework that addresses the problem
of controlling systems over lossy network connections. More
precisely, we propose a robust tube-based MPC algorithm
that allows for the tracking of a piecewise-constant reference
signal with guaranteed convergence properties for constant ref-
erences, recursive feasibility, and safety and input constraint
satisfaction. Further, we presented numerical simulation re-
sults of the approach applied to a cartpole system, together
with comparisons with state-of-the-art algorithms. Lastly, our
code is available as open-source.

For future work, we would like to investigate time-varying
trajectories and the reasons for the peak of the reference
tracking error around a packet loss probability of 80%.
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Fig. 3: Results comparing our approaches, RT-MPC and ERT-MPC, and
R-MPC of [9]. In (a) and (b), the average tracking error over 20 runs for
different packet loss probabilities is presented. Then, an example trajectory
for a packet loss probability of ϱ = 0.4 is presented in (c), where the star
marks the moment when R-MPC becomes infeasible. Lastly, (d) shows the
histogram of the execution time of the MPC.
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