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Abstract— The description of stochastic mechanical systems
naturally leads to Stratonovich stochastic differential equations
on Lie groups. But calculating statistical properties is naturally
done using Ito stochastic differential equations. All this is well
known. But numerical implementations raise new issues. In
particular, we show that the common practice of construct-
ing numerical schemes for Stratonovich stochastic differential
equations in Lie groups by following deterministic numerical
schemes is in general flawed. Such numerical schemes do not
in general converge to the correct limits. In a particular case,
we give conditions showing when they do and when they don’t.

I. Introduction
Stochastic differential equations (SDEs) on manifolds and

Lie Groups have a long history in mathematics [1]. And the
engineering literature is growing due to e.g. applications in
mechanics [2] molecular dynamics [3] and robotics [4].

The literature on numerical schemes for orinary differ-
ential equations (ODEs) evolving on Lie groups is well
established, including a classic monograph [5]. The book also
describes numerical schemes on Riemannian manifolds but
the development there is less mature. However the situation
with numerical schemes for SDEs on manifolds remains
rudimentary. There is a mature development for SDEs in
Euclidean spaces [6] but it remains to be fully generalised
to Lie groups and manifolds.

In some earlier work [7] we pointed out the problem with
some numerical schemes in the robotics literature [8],[9]. But
while we gave examples, and an heuristic argument, we did
not spell out any theory explaining what goes wrong.

Here we tackle that problem of finding what SDE a par-
ticular numerical scheme converges to as the step size tends
to 0. This is a challenging problem and we restrict attention
to multiplicative SDEs, which however arise commonly in
applications [2],[4]. It turns out problems arise when the
diffusion coefficients in the multiplicative SDE depend on
the state. Our previous work on convergence [10],[11] did
not cover that case; while [12] does, it deals with a very
special case and a very different numerical scheme to that
discussed here.

Here we discuss a particular first order SDE scheme from
[7] and show that it agrees with an ODE scheme when the
diffusion coefficients are constant matrices. A convergence
analysis of the SDE scheme then shows that when the
diffusion coefficients are state dependent the SDE scheme
converges to the correct SDE but the ODE scheme does not.
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Notation: SDE = stochastic differential equation; iid =
independent identically distributed. We say f(δ) is O(δ)
if f(δ)/δ → const. as δ → 0. We say f(δ) is o(δ) if
f(δ)/δ → 0 as δ → 0. Matrix Hilbert-Schmidt norm:
‖ A ‖=

√∑
kl|Akl|2. Prefixes: I- Ito; S- Stratonovich.

In the sequel, ‘Theorem’ refers to an existing result,
whereas ‘Result’ denotes a new one.

The remainder of the paper is organised as follows. In sec-
tion II we review some features of Stratonovich and Ito SDEs
in manifolds and Lie groups. In section III we introduce two
numerical schemes. In section IV are the main results. We
analyse convergence of one of the schemes and argue that
the other only converges in special cases. Conclusions are
in section V. There is one appendix containing the longer
proofs.

II. Review of Ito and Stratonovich Integrals in
Riemannian Manifolds and Lie Groups

We first recap vector results and then less well known
matrix versions. We refer to [13],[14] for basic definitions
and properties of Stratonovich and Ito SDEs. We also develop
one new result in this section.

A. Vector SDEs
Consider a system whose Euclidean p−dimensional state

r = r(t) obeys a Stratonovich [13] SDE

ąr = αS(r)dt+
∑
jαj(r)ąbj (2.1)

where bj(t) are independent Brownian motions.
We can now state some results.

Theorem I. Vector Stratonovich-Ito (SI) transformation [13].
If r obeys the S-SDE then it also obeys the I-SDE

dr = αI(r)dt+
∑
jαj(r)dbj

αI(r) = αS(r) + α∆(r)

α∆(r) =
1

2

∑
j

∂αj(r)

∂r>
αj(r)

We now need to find properties the drift and diffusion
coefficients must satisfy to ensure the state trajectory lies in
a constraint space h(p−d)×1(r) = 0. We assume h(·) is twice
differentiable and can then regard the constraint as defining
an embedded Riemannian manifold (RM). We introduce, at
the point r, the matrix of normals

Np×(p−d) =
∂h>

∂r
= [nu] = [

∂hu

∂r
]

which we assume to have rank p − d. The (p − d)
columns/normals of N are linearly independent and span the
normal space N of the embedded RM at the point r. The
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d−dimensional tangent space at the point r, T is spanned
by linearly independent vectors of dimension p that are each
orthogonal to the p− d normal vectors.
Theorem II. [15]. Constrained S-SDE.
The S-SDE (2.1) evolves in the embedded RM h(r) = 0 iff
• N>αS(r) = 0.
• N>αj(r) = 0 for all j

B. Multiplicative Matrix SDEs
The vector results are first converted into general matrix

versions and we then focus on multiplicative matrix SDEs.
This vector to matrix conversion massively simplifies,
statements of results, proofs and intuitions. Also moving to
matrices will put us in a matrix Lie group setting [16].

Theorem III. Matrix SI transformation [15]
Suppose Xn×p obeys the matrix S-SDE

ąX = AS(X)dt+
∑
jAj(X)ąbj (2.2)

This just means that each column of X obeys a vector S-
SDE. Then X also obeys the matrix I-SDE

dX = AI(X)dt+
∑
jAj(X)dbj (2.3)

AI(X) = AS(X) +A∆(X)

A∆(X) =
1

2

∑
j

∑
rs:(Aj)rs 6=0

∂Aj
∂Xrs

(Aj)rs

Result I. Matrix SI transform for Multiplicative Noise SDE.
Suppose X obeys the multiplicative noise S-SDE

ąX = AS(X)dt+X
∑
jBjąbj

Then it also obeys the multiplicative noise I-SDE

dX = AI(X)dt+X
∑
jBjdbj

AI(X) = AS(X) +A∆(X)

A∆(X) =
1

2
X
∑
j(Bj)

2 +
1

2
X
∑
jKj

Kj =
∑
rs

∂Bj
∂Xrs

(XBj)rs

Proof. See the appendix.
Corollary Ia. [15].

In Result I, when the diffusion coefficients Bj are constants
Bj = Boj then Kj = 0 so A∆(X) = 1

2X
∑
j(B

o
j )2.

Corollary Ib.
In Result I, when Bj(X) = σj(X)Boj where σj(X) > 0 are
state dependent scalar standard deviations, then

Kj = Bj(X)τj where τj = tr(σ′j(X)XBoj )

σ′j(X) = [
∂σj(X)

∂Xrs
]

Proof. We have

Kj =
∑
rs(σ

′
j(X))rsB

o
j (XBoj )rsσj(X)

= σj(X)Boj tr(σ
′
j(X)XBoj )

= Bj(X)tr(σ′j(X)XBoj )

We now specialise further to fully multiplicative square
SDEs.

Theorem IV. SDEs in SO(n). [7].
In order that the solution Xn×n of the multiplicative I-SDE

dX = XBo,I(X)dt+X
∑
jBj(X)dbj

lies in SO(n) (i.e. X>X = I) it is necessary and sufficient
that Bj(X) are skew matrices and that

Bo,I +B>o,I =
∑d

1B
2
j (X)

Corollary IV. In order that the solution X to the multiplica-
tive S-SDE

ąX = XBo,S(X)dt+X
∑
jBj(X)ąbj

lies in SO(n) (i.e. X>X = I) it is necessary and sufficient
that Bj(X) are skew matrices and that Bo,S is skew.

Proof. We convert to an I-SDE and apply Theorem IV. We
find via Theorem III and Result I that

Bo,I = Bo,S +
1

2

∑
j(Bj)

2 +
1

2

∑
jKj

⇒ Bo,I +B>o,I =
∑
j(Bj)

2 +
1

2

∑
j [Kj +K>j ]

+ Bo,S +B>o,S

=
∑
j(Bj)

2 +Bo,S +B>o,S

where we have used the fact that Bj are skew ⇒ Kj are
skew. Then we see that the condition of Theorem IV holds
iff Bo,S +B>o,S = 0.

Further Notation. In the sequel when X(t) obeys the
S-SDE of corollary IV we write

X ∼ SSO(n)(Bo,S, Bj)

and when X(t) obeys the I-SDE of theorem IV we write

X ∼ ISO(n)(Bo,I , Bj)

III. Numerical Schemes for Multiplicative SDEs in Lie
Groups

Here we discuss numerical solution of SDEs. For ODEs
evolving in Lie groups there is a well developed literature,
for which the now classic reference is [5]. That book also
has some schemes applicable to embedded RMs.

For Euclidean SDEs there is a rich literature on construc-
tion and analysis [6]. However development of numerical
schemes for SDEs in Lie groups and RMs remains rudimen-
tary: see [7] for methods and references.

One approach to finding a numerical solution to a multi-
plicative SDE (2.2) uses the Magnus expansion (ME) [5]

• X(t) = X(0)eΩ(t)

The idea is to find the SDE obeyed by Ω(t) and apply a
standard Euclidean numerical scheme to that. The second
advantage of the ME is that it enables easy application of
constraints. Thus if we require that X(t) evolve in a Stiefel
manifold so that X>X = I , this is easily achieved by
ensuring Ω is skew symmetric.
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A. ME Numerical Schemes based on I-SDE
We consider the multiplicative I-SDE of Theorem IV,

which is equivalent to the multiplicative S-SDE of corollary
IV. We find the I-SDE obeyed by Ω(t) and develop a Eu-
clidean numerical solution for that which induces a numerical
scheme for the original I-SDE.

To do this we need the following result.
Theorem V. [7].
Suppose X(t) = X(0)eΩ(t) obeys the multiplicative I-SDE

dX = XBo,I(X)dt+X
∑d
j=1Bj(X)dbj

where Ω(0) = 0. Then Ω(t) obeys the I-SDE

dΩ = Γodt+
∑
jΓjdbj

where

Γo = dexp−1
−Ω(Co)−

1

2

∑d
1dexp

−1
−Ω(Cj)

Co = Bo,I −
1

2

∑d
1B

2
j

Γj = dexp−1
−Ω(Bj)

and Cj , j ≥ 1 are doubly infinite series [15] and not given
here since we will not need them. Also

dexp−1
−Ω(W ) =

∑∞
0

πk
k!
adk−Ω(W )

where πk are the Bernoulli numbers and adk are defined
recursively by

ad0
R(W ) = W,ad1

R(W ) = [R,W ] = RW −WR

adkR(W ) = [R, adk−1
R (W )]

Numerical schemes can be constructed by truncating the
infinite series. Here we consider a single term numerical
method. In that case we find

dexp−1
−R(W ) ≈ ad0

−R(W ) = W

⇒ Γo ≈ Co = Bo,I −
1

2

∑d
1B

2
j

Γj ≈ Bj

We now state the equispaced special case of the first order
algorithm described in [7] in the table above remark 6.

First Order I-ME.
Divide the interval [0, T ] into M subintervals each of width
δ so that Mδ = T . Set X̂o = X(0) (so that X̂>o X̂o = I)
and iterate the following three steps:

(i) At step m draw εj,m, j = 1, · · · , d iid ∼ N(0, 1).
(ii) Given X̂m compute B̂j,m = Bj(X̂m) and

Ωδm+1 = δBo,I(X̂m)− δ

2

∑d
1B̂

2
j,m +

√
δ
∑d

1B̂j,mεj,m

(iii) Set X̂m+1 = X̂me
Ωδm+1(⇒ X̂>m+1X̂m+1 = I).

We need to define the numerical approximation in continuous
time. A step function interpolation is sufficient. A linear
interpolation can also be done but is mathematically more
complicated but does not improve the convergence rate. We
set

X̂(t) = X̂k−1, kδ − δ ≤ t < kδ for 1 ≤ k ≤M

and we write

X̂(t) ∼MSO(n)(Bo,I , Bj)

IV. Convergence of I-ME Numerical Schemes

The analysis of the behaviour of matrix SDE numerical
schemes as δ → 0 is very challenging. While convergence
analysis is well developed in the Euclidean case [6] it is
in its early stages for SDEs on manifolds and Lie groups.
We extend the approach previously developed in [17],[12].
It does not deliver optimal rates (i.e. O(δ)) but is fairly
straightforward. To develop optimal rates, a totally different
approach will be required [11]. Note that [11] does not treat
the case considered here, where Bj are functions of X .

We deal only with the case of a multiplicative SDE
evolving on SO(n). In this case we have three important
properties:

(i) Bj are skew.
(ii) Bo,I +B>o,I =

∑
j(Bj)

2

(iii) Ωδm are skew and so X>mXm = I .
To proceed we introduce some assumptions.

A1. For X ∈ SO(n), Bo(X), Bj(X) obey Lipschitz
conditions with bounded Lipschitz constant.
A2. For X ∈ SO(n), Bo(X), Bj(X) are bounded.

A crucial part of the argument is to introduce the inter-
mediate quantity Xδ(t) with Xδ(0) = X(0) defined by

Xδ(t)−Xδ(0) =

∫ t

0

X̂(u)Bo,I(X̂(u))du

+

∫ t

0

X̂(u)
∑
jBj(X̂(u))dbj(u)

Now introduce the error processes

e(t) = X̂(t)−X(t) = ν(t) + η(t)

ν(t) = X̂(t)−Xδ(t)

η(t) = Xδ(t)−X(t)

It follows that

E[ sup
0≤t≤T

‖ e(t) ‖2]

≤ 2E[ sup
0≤t≤T

‖ η(t) ‖2] + 2E[ sup
0≤t≤T

‖ ν(t) ‖2]

We now bound each term separately. This requires the
following result.

Theorem VI. [17].
Let W (t) be a standard Brownian motion and introduce

Uk = sup
kδ−δ≤t<kδ

‖W (t)−W (kδ − δ) ‖

Then by the stationary independent increments property of
Brownian motion, U1, · · · , UM are iid. Then

E[ max
1≤k≤M

U2
k ] ≤ O(δ1−θ)

where θ > 0 can be made arbitrarily small.
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Result IIIa. Under A1, A2 for X̂ ∼ MSO(n)(Bo,I , Bj)
and X ∼ ISO(n)(Bo,I , Bj)

E[ sup
0≤t≤T

‖ ν(t) ‖2] ≤ O(δ1−θ)

Proof. See the appendix.
Result IIIb. Under A1, A2 for X̂ ∼ MSO(n)(Bo,I , Bj)

and X ∼ ISO(n)(Bo,I , Bj)

E[ sup
0≤t≤T

‖ η(t) ‖2] ≤ O(δ1−θ)

Proof. See the appendix.
Putting these together gives the main result.
Result IV. Under A1, A2 for X̂ ∼MSO(n)(Bo,I , Bj) and

X ∼ ISO(n)(Bo,I , Bj)

E[ sup
0≤t≤T

‖ X̂(t)−X(t) ‖2] ≤ O(δ1−θ)

Thus X̂(t) converges to X(t) uniformly in mean square as
δ → 0.

V. Convergence of S-ME
We now consider convergence of Stratonovich motived

numerical schemes which we denote as S-ME. In particular
we consider firstly the setup in corollary Ia.

Suppose X(t) ∼ SSO(n)(Bo,S, Bj) then the corresponding
S-ME numerical scheme is

X̂(t) ∼MSO(n)(Bo,S +
1

2

∑
jB

2
j , Bj).

because the first two terms in the Ωδm update reduce to δB̂o,S .
Now introduce the I-SDE

X(t) ∼ ISO(n)(Bo,S +
1

2

∑
jB

2
j , Bj)

Then from Result IV we can conclude

E[ sup
0≤t≤T

‖ X̂(t)−X(t) ‖] ≤ O(δ1−θ)

However, from corollary Ib X(t) ∼ SSO(n)(Bo,S, Bj) corre-
sponds to the I-SDE

X(t) ∼ ISO(n)(Bo,S +
1

2

∑
jB

2
j +

1

2

∑
jτjBj , Bj)

So the S-ME numerical scheme converges to the wrong SDE!
In the case of corollary Ia the two SDEs agree and we get

convergence to the correct SDE.
We summarise this as follows.
Result V. Consider the multiplicative S-SDE

X(t) ∼ SSO(n)(Bo,S, Bj) and S-ME numerical scheme
X̂(t) ∼MSO(n)(Bo,S + 1

2

∑
jB

2
j , Bj). Then

(i) If the diffusion coefficients Bj are constants then, as
δ → 0 S-ME converges to the correct I-SDE
X(t) ∼ ISO(n)(Bo,S + 1

2

∑
jB

2
j , Bj).

(ii) If the diffusion coefficients Bj = σj(X)Boj are state-
dependent then, as δ → 0, S-ME converges to the wrong
I-SDE namely
X(t) ∼ ISO(n)(Bo,S + 1

2

∑
jB

2
j + 1

2

∑
jτjBj , Bj).

Proof. (ii) is already established. (i) follows from (ii) since
then τj = 0.

VI. Conclusions
In this paper we have shown, for the first time, (uniform

mean-square) convergence of a Magnus expansion based
numerical scheme for simulating a multiplicative SDE, con-
strained to lie in SO(n), with state dependent coefficients.

We then studied a second numerical scheme based on a
Stratonovich/ODE formulation. We showed that with state
dependent diffusion coefficients it converges to the wrong
SDE. Only if the diffusion coefficients are constants does it
converge to the correct SDE.

This is an alarming result because it appears that most
SDE numerical simulation in applied literatures are using
the wrong numerical schemes. It provides another insight
into the relative properties of Ito and Stratonovich SDEs.

In future work we will study methods to obtain the optimal
convergence rate.

VII. Appendix
In the proofs of IIIa, IIIb:

• we use R,L to denote generic constants.
• we denote B̂o,I(u) = Bo,I(X̂(u)) and B̂j(u) = Bj(X̂(u))
• we denote X̂m = X̂(mδ).
• we denote B̂o,I,m = Bo,I(X̂m), B̂j,m = Bj(X̂m).
• We repeatedly use the fact that ‖ X̂(u) ‖≤ R.
• We repeatedly use the elementary inequalities: (a+ b)2 ≤
2a2 + 2b2 and more generally (

∑d
1aj)

2 ≤ d
∑
ja

2
j and also

|a+ b|3 ≤ 6|a|3 + 6|b|3.

A. Proof of Result I
Introduce Ers which is a matrix of 0s but with a 1 in row

r, column s. Applying the chain rule and Theorem III we
find

∂Aj
∂Xrs

=
∂(XBj)

∂Xrs
= ErsBj +X

∂Bj
∂Xrs

⇒
∑
rs

∂Aj
∂Xrs

(Aj)rs =
∑
rs(Aj)rsErsBj +XKj

= AjBj +XKj

= X(Bj)
2 +XKj

Kj =
∑
rs

∂Bj
∂Xrs

(Aj)rs

=
∑
rs

∂Bj
∂Xrs

(XBj)rs

from which the result follows.

B. Proof of Result IIIa
We have

Xδ(t)−Xδ(0)

=

∫ t

0

X̂(u)B̂o,I(u)du+
∑
j

∫ t

0

X̂(u)B̂j(u)dbj(u)

Next for mδ ≤ t < mδ + δ, since X̂(u) is a step function,
we find

Xδ(t)−Xδ(0)

= X̂mB̂o,I,m(t−mδ) +
∑
jX̂mB̂j,m(bj(t)− bj(mδ))

+
∑m

1 X̂k−1(B̂o,I,k−1δ +
√
δB̂j,k−1εj,k−1)
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To calculate νt we need to calculate X̂m. We have

X̂m = X̂m−1e
Ωδm

= X̂m−1(I + Ωδm +
1

2
(Ωδm)2) + X̂m−1Em

Em = eΩδm − I − Ωδm −
1

2
(Ωδm)2

Summing gives

X̂m =
∑m

1 (X̂k−1Ωδk +
1

2
X̂k−1(Ωδk)2)

+
∑m

1 X̂k−1Ek + X̂o

Now consider that

Ωδm+1 = δB̂e,m +
√
δ
∑
jB̂j,mεj,m

B̂e,m = B̂o,I,m −
1

2

∑
jB̂

2
j,m

⇒ 1

2
(Ωδm+1)2 =

δ

2

∑
jB̂

2
j,mε

2
j,m + Eδm

Eδm =
δ2

2
B̂2
e,m +

δ

2
(
∑
j 6=j′B̂j,mεj,mB̂j′,mεj′,m)

+ δ3/2B̂e,m
∑
jB̂j,mεj,m

Thus we find

Ωδm+1 +
1

2
(Ωδm+1)2

= δB̂e,m +
√
δ
∑
jB̂j,mεj,m

+
1

2
δ
∑
jB̂

2
j,mε

2
j,m + Eδm

= δB̂o,I,m +
√
δ
∑
jB̂j,mεj,m + Eδm + Ebm

Ebm =
1

2
δ
∑
j(B̂j,m)2(ε2j,m − 1)

Putting this together we get

X̂m − X̂o = ∆m + ∆δ
m + ∆b

m

+
∑m

1 X̂k−1(δB̂o,I,k−1 +
√
δ
∑
jB̂j,k−1εj,k−1)

(∆m,∆
δ
m,∆

b
m) =

∑m
1 X̂k−1(Ek, E

δ
k−1, E

b
k−1)

Now we can form ν(t). Noting that Xδ(0) = X(0) = X̂o

we find the important terms cancel leaving

−ν(t) = Xδ(t)− X̂(t)

= a(t) + b(t) + ∆m + ∆δ
m + ∆b

m

a(t) = X̂mB̂o,I,m(t−mδ)
b(t) =

∑
jX̂mB̂j,m(bj(t)− bj(mδ))

Thus

νT = E[ max
0≤t≤T

‖ ν(t) ‖2] ≤ 5a+ 5b+ 5α+ 5αδ + 5αb

a = const.δ

b = E[ sup
0≤t≤T

b2(t)]

α = E[ max
1≤m≤M

‖ ∆m ‖2]

αδ = E[ max
1≤m≤M

‖ ∆δ
m ‖2]

αb = E[ max
1≤m≤M

‖ ∆b
m ‖2]

We treat each term separately.
b = O(δ1−θ).

We have

b(t) ≤
∑
j max
mδ≤t<mδ+δ

|bj(t)− bj(mδ)|

=
∑
jUjk ≤

√
d
∑
jU

2
jk

⇒ E[ sup
0≤t≤T

b2(t)] ≤ d
∑
jE[ max

1≤k≤M
U2
jk] ≤ O(δ1−θ)

where we have applied Theorem VI.

αb = O(δ).
Since the εj,k are iid then ∆b

m is a martingale and we can
use Doob’s maximal inequality [14] to find

E( max
1≤m≤M

‖ ∆b
m ‖2) ≤ RE(‖ ∆b

M ‖2

≤ R
∑M

1 E ‖ Ebk−1 ‖2

≤ LMδ2 = LTδ = O(δ)

αδ = O(δ).
∆δ
m has three components (see Eδm). The first is bounded

by 1
2Rmδ

2 ≤ RTδ = O(δ). The third is a martingale and
following the same argument used for αb we get a maximal
bound δ3δ = δ4 = o(δ). The second term is also a martingale
and following the same argument used for αb we get a
maximal bound δ2δ = δ3 = o(δ).

α = O(δ).
We have

‖ ∆m ‖ ≤
∑M

1 ‖ Ek−1 ‖
⇒ max

1≤m≤M
‖ ∆m ‖2 ≤ M

∑M
1 ‖ Ek−1 ‖2

⇒ E[ max
1≤m≤M

‖ ∆m ‖2] ≤ M
∑M

1 E[‖ Ek−1 ‖2]

We now use the following result [11][Lemma 11].
If A is skew then ‖ eA − I −A− 1

2A
2 ‖≤ 1

3 ‖ A ‖
3.

Then ‖ Em ‖≤‖ Ωδm ‖3. We have

‖ Ωδm ‖ ≤ Rδ +
√
δ
∑
j |εj,m|

⇒‖ Ωδm ‖3 ≤ Lδ3 + δ3/2(
∑
j |εj,m|)

3

≤ Lδ3 + Lδ3/2∑
j |εj,m|

3

⇒‖ Ωδm ‖6 ≤ Rδ6 +Rδ3(
∑
j |εj,m|

3)2

≤ Rδ6 + Lδ3∑
j |εj,m|

6

Thus

E ‖ Em ‖2 ≤ E ‖ Ωδm ‖6

≤ Rδ6 +Rδ3 ≤ Lδ3

⇒M
∑M

1 E ‖ Ek−1 ‖2 ≤ LM2δ2δ ≤ LT 2δ = O(δ)

We see that all terms are O(δ), except b = O(δ1−θ) and the
result is established.

4332



C. Proof of Result IIIb
We have

η(t) = A(t) +
∑
jCj(t)

A(t) =

∫ t

0

(X̂(u)B̂o,I(u)−X(u)Bo,I(u))du

Cj(t) =

∫ t

0

[X̂(u)B̂j(u)−X(u)Bj(u))]dbj(u)

Since X(u), X̂(u),∈ SO(p) then in view of A1,A2 we have

X̂(u)B̂o,I(u)−X(u)Bo,I(u)

= (X̂(u)−X(u))B̂o,I(u) +X(u)(B̂o,I(u)−Bo,I(u))

⇒ ‖ X̂(u)B̂o,I(u)−X(u)Bo,I(u) ‖

≤ 1

2
R ‖ X̂(u)−X(u) ‖ +

1

2
R ‖ X̂(u)−X(u) ‖

≤ R ‖ ν(u) ‖ +R ‖ η(u) ‖

Thus

‖ η(t) ‖≤
∑
j ‖ Cj(t) ‖

+ R

∫ t

0

‖ ν(u) ‖ du+R

∫ t

0

‖ η(u) ‖ du

Introduce η∗(t) = sup0≤s≤t ‖ η(t) ‖ and similarly define
ν∗(t) and cj,∗(t). Next use the Cauchy-Schwarz inequality
(
∫ t

0
f(u)du)2 ≤ t

∫ t
0
f2(u)du ≤ T

∫ t
0
f2(u)du) to find

η2
∗(t) ≤ 3R2T

∫ t

0

η2
∗(u)du

+ 3R2T

∫ t

0

ν2
∗(u)du+ 3R2d

∑
jc

2
j,∗(t)

We will use this below.
Now observe that Cj(t) are independent martingales and

so Doob’s martingale inequality [14] gives

E(c2j,∗(t)) ≤ 4E(C2
j (t))

Using properties of the Ito integral [14] and A1,A2 we find

E(C2
j (t))

=

∫ t

0

E ‖ X̂(u)B̂j(u)−X(u)Bj(u) ‖2 du

≤ R2

∫ t

0

E ‖ X̂(u)−X(u) ‖2 du

≤ 2R2

∫ t

0

E(‖ ν(u) ‖2 du+ 2R2

∫ t

0

E(‖ η(u) ‖2 du

≤ 2R2

∫ t

0

E(ν2
∗(u))du+ 2R2

∫ t

0

E(η2
∗(u))du

Putting this together we get

E(η2
∗(t))

≤ 3R2T

∫ t

0

E(η2
∗(u))du+ 3R2T

∫ t

0

E(ν2
∗(u))du

+ 6R4d2

∫ t

0

[E(ν2
∗(u)) + E(η2

∗(u))du

= L

∫ t

0

E(η2
∗(u))du+ L

∫ t

0

E(ν2
∗(u))du

Now applying Gronwall’s lemma gives

E(η2
∗(t)) ≤ L

∫ T

0

E(ν2
∗(u))dueLT

≤ LeLTTE(ν2
∗(T )) ≤ Rδ1−θ

where we applied result IIIa. Result IIIb is now established.
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