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Abstract— Non-Bayesian social learning enables multiple a-
gents to conduct networked signal and information processing
through observing environmental signals and information ag-
gregating. Traditional non-Bayesian social learning models only
consider single signals, limiting their applications in scenarios
where multiple viewpoints of information are available. In this
work, we exploit, in the information aggregation step, the
independently learned results from observations taken from
multiple viewpoints and propose a novel non-Bayesian social
learning model for scenarios with multiview observations. We
prove the convergence of the model under traditional assump-
tions and provide convergence conditions for the algorithm
in the presence of misleading signals. Through theoretical
analyses and numerical experiments, we validate the strong
reliability and robustness of the proposed algorithm, showcasing
its potential for real-world applications.

I. INTRODUCTION

Networked signal and information processing [1]–[5]
refers to the collaborative processing of information and
signals among a network of distributed agents. This approach
leverages the collective capabilities of interconnected devices
to perform tasks like decision-making, inference, and learn-
ing more efficiently than isolated systems. The significance
of networked information processing lies in its ability to
enhance performance through cooperation, offering advan-
tages such as improved scalability, resilience, and resource
efficiency. It is particularly relevant in applications like sen-
sor networks, distributed control systems, and collaborative
robotics.

Non-Bayesian social learning [6]–[20] offers a novel
framework for networked signal and information processing,
enabling a distributed way for agents with limited rationality
and diverse sensing capabilities to infer collectively over a
network. Agents process streams of incomplete data based
on the underlying true state of the world, using network
communications to form beliefs about various possible hy-
potheses and make an estimate of the underlying true state.
This collaborative mechanism, which integrates neighbors’
insights with fresh individual data, fosters a scalable method
of learning without prior knowledge of network structure or
historical data.

Various social learning models have been proposed, in-
cluding aggregation methods such as linear averages [6],
[7], geometric averages [8], [9], and the minimum operator
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[10]. These rules can be applied to different network struc-
tures, including undirected/directed, time-varying [11], [12],
weakly-connected graphs [13], and higher-order topology
[21], as well as to agents with growing self-confidence
[14] and heterogeneous stubbornness parameters [15], dis-
parate hypothesis [16], under inferential attacks [17], and
in adversarial conditions [18]. Research has also explored
learning under uncertain likelihood models and performance
against malicious agents [19], [20]. All of these models offer
theoretical assurances that, over time, agents can collectively
learn the underlying true state of the world.

In previous non-Bayesian social learning models, the
agents receive signals from the environment and cooper-
atively infer the underlying state based on their a priori
knowledge of the signals. However, in practice, the group
could perceive different features of the environment from
various perspectives. For example, individuals could judge
the species of trees based on the characteristics of both leaves
and trunks; customers always infer the quality of a target
product by observing the quality of other products from the
same brand. Traditional methods cope with such situations by
integrating these multiple viewpoints into one single signal,
making it challenging to determine the likelihood functions
of agents with the integrated signal due to the requirement
of substantial data to assess the independence or correlation
among multiple signals.

In this work, we propose a novel non-Bayesian social
learning algorithm based on multiview observations. Our
algorithm allows the group to learn independently from mul-
tiple signals and achieves interaction among multiview obser-
vations during the information aggregation process. Similarly
to previous methods, we prove the correct convergence
of our proposed algorithm under traditional assumptions.
Additionally, we provide convergence conditions based on
the presence of misleading signals. Numerical experiments
validate the effectiveness of our theoretical analysis, and
we showcase the robust fault-tolerance capability of our
proposed algorithm in the task of multi-agent collaborative
localization.

The remaining part of this paper is organized as follows:
Section II provides a full description of the problem settings
and introduces our learning strategies. Section III presents
sufficient assumptions/lemmas and proves the convergence
of the proposed algorithm. Section IV provides extensive
numerical examples illustrating the theoretical results and
demonstrating the effectiveness and applicability of the algo-
rithm. The findings are concluded in Section V with possible
future works.
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II. PRELIMINARIES AND THE MODEL

A. Problem formulation

Consider a group of n agents, collectively trying to reveal
the underlying true state of nature, denoted as θ∗, from a
finite set of hypotheses Θ = {θ1, θ2, · · · , θm}. At each time
step t = 1, 2, · · · , agent i obtains p types of observations{
sli,t
}p
l=1

, which may come from multiple perspectives or
represent different features of the true state. Each element
sli,t is the realization of an environmental random variable
Sli,t. The set slt =

{
sl1,t, s

l
2,t, · · · , sln,t

}
represents the

actual observations made by all agents from signal type l
at time t, generated according to the likelihood function
f l(·) associated with the underlying true state θ∗. The set
s̃t =

{
s1
t , · · · , s

p
t

}
and f̃ = f1 × · · · × fp. Each Sli,t has

its individual observation space Sli and is i.i.d. with respect
to t.

The signal structure for agent i with signal type l and
possible state θ is described by a probability distribution
`li(·|θ). In these settings, `li(s

l
i,t|θ) indicates the likelihood

of agent i observing type l signal sli,t at time t when it
believes θ is the underlying true state.

The agents interact in a networked fashion,
which is usually modelled by a directed graph
G = (V, E). V = {1, 2, · · · , n} is the set of
vertices representing the n agents, and E =
{(i, j)|agent j can receive information from agent i} is
the set of directed edges. We denote A = (aij)n×n as
the weight matrix of G, which is assumed to be row-

stochastic, i.e.,
n∑
j=1

aij = 1,∀i = 1, · · · , n, and aij > 0 if

(j, i) ∈ E . The row-stochastic condition of A ensures that
all agents assign normalized weights to the information, i.e.,
proportions of the total, that they receive from neighbors.

The belief of agent i at time t with signal type l is
denoted as µli,t, which is a probability distribution over the

set of states Θ, i.e.,
m∑
k=1

µli,t(θk) = 1, ∀i = 1, · · · , n,∀l =

1, · · · , p, and ∀t = 0, 1, · · · . Here µli,0 represents the initial
belief of agent i with signal type l.

Define a probability triple (Ω,F ,P∗), where Ω = {ω|ω =
(s̃1, s̃2, · · · )}, F is the σ-algebra generated by the observa-
tions, and P∗ is the probability measure induced by paths in

Ω, i.e., P∗ =
∞∏
t=1
f̃ . We use E∗[·] to denote the expectation

operator associated with measure P∗.
In this work, we consider the following two different

circumstances:
Circumstance 1: For every agent i and every signal type l,

the signal structure `li(·|θ∗) aligns with the i-th marginal dis-
tribution of f l(·) for all l = 1, · · · , p, thereby characterizing
the probability distribution of Sli,t. In this case, all agents’
a priori knowledge is accurate, and none of the signal types
are misleading.

Circumstance 2: The condition in Circumstance 1 is not
satisfied, and there may exist a signal type l such that `l(·|θ∗)
is not the best match of the real distribution f l(·) from the

group’s perspective. In this case, the group may experience
false learning solely based on the type l signal.

The second circumstance could be quite common in practi-
cal applications, often arising from faults in signal perception
or incorrect prior information due to a lack of training data.

B. Social Learning Strategies with Multiple Signals

Non-Bayesian social learning typically involves two steps
for agents to update their beliefs at each time, i.e., the
Bayesian update step and the aggregation of neighbors’
beliefs [22]–[24]. In the belief aggregation step, every agent
shares its current belief with its one-hop neighbors, whereas
in the Bayesian update step, every agent combines its prior
belief with observations from the environment to form its
posterior belief.

Traditionally, when dealing with tasks involving multiview
observations, social learning algorithms integrate these di-
verse signals into a single signal and design a joint likelihood
function as the signal structure. This approach demands a
thorough understanding of the correlations among different
viewpoints of observations, often making it challenging to
achieve in practical tasks. In our work, however, we allow
agents to independently perform Bayesian inference for
each signal type and integrate information from multiview
observations during the information aggregation process.

The algorithm we propose can be described in the follow-
ing two steps:

1) Information aggregation. For each agent i and signal
type l = 1, · · · , p, we calculate the updated belief using the
formula:

µ̃li,t+1(θ) =

exp

(
γl

n∑
j=1

aij logµlj,t(θ) +
p∑
k 6=l

γk logµki,t(θ)

)
∑
θ′∈Θ

exp

(
γl

n∑
j=1

aij logµlj,t(θ
′) +

p∑
k 6=l

γk logµki,t(θ
′)

) ,
where the assigned parameter γl ∈ (0, 1) for all l = 1, · · · , p,

and
p∑
l=1

γl = 1.

2) Bayesian update. For each agent i and signal type l =
1, · · · , p, the posterior belief is given by:

µli,t+1(θ) =
µ̃li,t+1(θ)`li(s

l
i,t+1|θ)∑

θ′∈Θ

µ̃li,t+1(θ′)`li(s
l
i,t+1|θ′)

.

III. ASSUMPTIONS AND RESULTS

As widely discussed in previous works of social learning,
we care about the convergence of the algorithms as well
as the rate of convergence. The following assumptions are
required to ensure the convergence of the proposed social
learning strategies:

Assumption 1 (Communication network): The graph G =
(V, E) and its weight matrix A satisfy that:

a) The graph is strongly-connected;
b) A has at least one positive diagonal entry.
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Assumption 1 ensures that A is the transition matrix of
an irreducible, aperiodic Markov chain with finite states. We
recall the following lemma [25]:

Lemma 1: If a Markov chain with finite states is irre-
ducible, then it has a unique stationary distribution π. Let
A be the transition matrix of the Markov chain and further
suppose it is aperiodic, then we have lim

k→∞
[Ak]ij = πj , for

1 ≤ i, j ≤ n.
The stationary distribution π can be interpreted as the

normalized left eigenvector of A corresponding to eigenvalue
1, known as the eigenvector centrality in related literature.
The Perron-Frobenius theorem ensures that all components
of π are strictly positive.

Assumption 2 (Belief and signal structure): Every agen-
t i = 1, · · · , n in the group satisfies:

a) It has positive initial beliefs on all states regarding all
types of signals, i.e., µli,0(θ) > 0 for all l = 1, · · · , p and
θ ∈ Θ;

b) The logarithms of its signal structures are integrable,
i.e., E∗

[
| log `li(s

l
i|θ)|

]
< ∞ for all l = 1, · · · , p, sli ∈ Sli ,

and θ ∈ Θ.
Assumption 2a) is imposed to ensure the well-definedness

of logµli,t(·). Meanwhile, Assumption 2b) guarantees that
log `li(s

l
i|θ) is real-valued almost surely [26]. In practical

scenarios where the signal structures of the agents are
Gaussian, Assumption 2b) holds naturally since Gaussian
random variables are square integrable.

Two states, θj and θk, are called observationally equiva-
lent with signal type l for agent i if `li(s

l
i|θj) = `li(s

l
i|θk)

for all sli ∈ Sli , in which case the agent can not distinguish
between these states using its own information obtained from
type l signal. The true state is called globally identifiable

if the set Θ̂ =
p⋂
l=1

n⋂
i=1

Θ̂l
i has only one element θ∗, where

Θ̂l
i = {θ ∈ Θ|`li(si|θ) = `li(s

l
i|θ∗),∀sli ∈ Sli}. Intuitively, if

a state θ′ is observationally equivalent to θ∗ with all types of
signals for all agents, i.e., Θ̂ = {θ∗, θ′}, then the two states
are indistinguishable from the view of all agents, and they
can not collectively learn the underlying true state.

To ensure the convergence of groups’ beliefs on the true
state, we introduce the following assumption:

Assumption 3 (Globally identifiable): The true state θ∗ is
globally identifiable.

Under this assumption, for all θ 6= θ∗, there exists at least
one agent i and a signal type l such that DKL(`li(·|θ∗) ‖
`li(·|θ)) is strictly positive, where DKL(P ‖ Q) represents
the Kullback-Leibler divergence between two probability
distributions P and Q.

Denote in the following that Kl
i(θ
∗, θ) = DKL(f li (·) ‖

`li(·|θ∗)) − DKL(f li (·) ‖ `li(·|θ)). Its positivity or negativity
depends on whether, from the perspective of agent i, state θ
or θ∗ is more likely to be the underlying true state. Notice
that under Circumstance 1, Kl

i(θ
∗, θ) = −DKL(`li(·|θ∗) ‖

`li(·|θ)). Now we can state the main results describing the
correct convergence of the proposed strategy.

Theorem 1: Under Circumstance 1 and Assumptions 1, 2

and 3, the proposed social learning strategy satisfies:

lim
t→∞

µli,t(θ
∗) = 1, P∗−a.s., ∀1 ≤ i ≤ n, 1 ≤ l ≤ p.

Proof: For each agent i, signal type l, and θ 6= θ∗, we
have

log
µli,t+1(θ)

µli,t+1(θ∗)
=γl

n∑
j=1

aij log
µlj,t(θ)

µlj,t(θ
∗)

+

p∑
k 6=l

γk log
µki,t(θ)

µki,t(θ
∗)

+ log
`li(s

l
i,t+1|θ)

`li(s
l
i,t+1|θ∗)

.

By denoting νli,t+1(θ) = log
µl
i,t+1(θ)

µl
i,t+1(θ∗)

and Lli,t+1(θ) =

log
`li(s

l
i,t+1|θ)

`li(s
l
i,t+1|θ∗)

, the above equation simplifies to

νli,t+1(θ) = γl

n∑
j=1

aijν
l
j,t(θ) +

p∑
k 6=l

γkν
k
i,t(θ) + Lli,t+1(θ).

(1)
Define the n-dimensional column vector
νlt(θ) =

(
νl1,t(θ), · · · , νln,t(θ)

)>
for each l =

1, · · · , p and the np-dimensional column vector

ν̃t(θ) =
(
ν1
t (θ)

>
, · · · ,νpt (θ)

>
)>

. Similarly,

Llt(θ) =
(
Ll1,t(θ), · · · , Lln,t(θ)

)>
and L̃t(θ) =(

L1
t (θ)

>
, · · · ,Lpt (θ)

>
)>

. Additionally, denote the matrix

Ã =


γ1A γ2I · · · γpI
γ1I γ2A · · · γpI

...
...

. . .
...

γ1I γ2I · · · γpA

 ,
where I is the identity matrix. It is evident that Ã is a row-
stochastic matrix, we further demonstrate that Ã serves as
the transition matrix for an irreducible, aperiodic Markov
chain with finite states. Given that A has at least one positive
diagonal element, Ã contains a minimum of n positive
diagonal elements, making it aperiodic.

We then examine the strong connectivity of the corre-
sponding graph of the np × np matrix Ã to prove its
irreducibility. For any node with index i = n(l − 1) + i0,
where 1 ≤ i0 ≤ n and 1 ≤ l ≤ p, it can establish a path to
any node with index j within the range n(l−1)+1 ≤ j ≤ nl
due to the irreducibility of A. We need to further find a
path from node i to any node j, where j = n(k − 1) + j0,
1 ≤ j0 ≤ n, and k 6= l. Since ãn(k−1)+i0,i = [γlI]i0i0 =
γl > 0, a path P1 from node i to node n(k − 1) + i0
exists. Additionally, node n(k−1)+ i0 can find a path P2 to
node j as previously demonstrated. Combining these paths
as P = P1 ∪ P2 establishes a path from node i to node j.
Thus, we can conclude that every node i has a path to any
node j in the graph corresponding to matrix Ã, confirming
its irreducibility.

Subsequently we can rewrite (1) in matrix form:

ν̃t+1(θ) = Ãν̃t(θ) + L̃t+1(θ).
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Now it follows that
1

t
ν̃t+1(θ) =

1

t
Ãν̃t(θ) +

1

t
L̃t+1(θ) = · · ·

=
1

t
Ãt+1ν̃0(θ) +

1

t

t∑
k=1

ÃkL̃t+1−k(θ) +
1

t
L̃t+1(θ).

(2)
The assumptions admit that the first and the third terms on
r.h.s. of (2) go to zero as t → ∞. The second term can be
deformed as

1

t

t∑
k=1

ÃkL̃t+1−k(θ) =
1

t

t∑
k=1

(Ãk − 1npπ̃)L̃t+1−k(θ)

+
1

t

t∑
k=1

1npπ̃(L̃t+1−k(θ)− K̃(θ∗, θ))

+
1

t

t∑
k=1

1npπ̃K̃(θ∗, θ),

(3)
where 1np is an np-dimensional column vector of ones, π̃ is
the eigenvector centrality corresponding to matrix Ã and is a

row vector, K̃(θ∗, θ) =
(
K1(θ∗, θ)

>
, · · · ,Kp(θ∗, θ)

>
)>

,

and Kl(θ∗, θ) =
(
Kl

1(θ∗, θ), · · · ,Kl
n(θ∗, θ)

)>
. Lemma 1

admits that lim
k→∞

Ãk = 1npπ̃. Noticing that all elements of

Ãk(k = 1, 2, · · · ) are bounded, the first term on r.h.s. of (3)
converges to zero as t→∞. Moreover, under Circumstance
1, for all l = 1, · · · , p we have

E∗[Lli,t(θ)] = E∗
[

log
`li(s

l
i,t|θ)

`li(s
l
i,t|θ∗)

]

=

∫
sl∈Sl

i

`li(s
l|θ∗) log

`li(s
l|θ)

`li(s
l|θ∗)

dsl

= −DKL(`li(·|θ∗) ‖ `li(·|θ)) = Kl
i(θ
∗, θ).

The Kolmogorov’s strong law of large numbers gives that
∀l = 1, · · · , p,

1

t

t∑
k=1

Llt+1−k(θ)− 1

t

t∑
k=1

E∗[Llt+1−k(θ)]→ 0, P∗−a.s.,

as t→∞, which leads to

lim
t→∞

1

t

t∑
k=1

1npπ̃(L̃t+1−k(θ)− K̃(θ∗, θ)) = 0, P∗−a.s..

Now (3) gives that

lim
t→∞

1

t

t∑
k=1

ÃkL̃t+1−k(θ) = 1npπ̃K̃(θ∗, θ), P∗−a.s..

According to Assumption 3 and Lemma 1, for all θ 6= θ∗

we have
lim
t→∞

1

t
ν̃t+1(θ) < 0, P∗−a.s.. (4)

Thus νli,t+1(θ) → −∞ almost surely for all agents i =
1, · · · , n and signal types l = 1, · · · , p. This implies

𝑁

1

4

2

3

𝑁

1

4

2

3
𝑁

1

4

2

3𝑁

1

4

2

3

𝑺1

𝑺2
𝑺3

𝒢

𝒢1

𝒢3

𝒢2

𝑺1

𝑺3

𝑺2

Fig. 1. An intuitive illustration for an understanding of the proposed
algorithm.

µli,t(θ) → 0 for all i = 1, · · · , n and l = 1, · · · , p almost
surely.

In the proof of Theorem 1, it is noteworthy that we
construct a new row-stochastic matrix Ã and demonstrate its
primitivity. Hence, our proposed algorithm can be viewed as
duplicating the network G of agents into p identical subnet-
works G1, · · · ,Gp, establishing bidirectional links between
each node and its duplicate, and assigning a distinct signal
to each subnetwork for classic non-Bayesian social learning
with geometric averaging. The weight matrix corresponding
to the augmented network is exactly Ã. An illustration is
shown in Fig. 1.

Theorem 1 guarantees that all agents will eventually learn
the underlying true state with our learning strategy as long
as some fundamental assumptions are satisfied. Notably, our
algorithm does not require every type of signal to be informa-
tive for the group. As long as, for every pair of states θ and
θ∗, there exist an agent capable of distinguishing between
them with a certain type of signal, the entire group can
achieve correct learning. Subsequently, we will demonstrate
that, in certain scenarios, our method is capable of learning
correctly even in the presence of misleading signals.

From the proof of Theorem 1, as long as (4) is satisfied,
all agents will learn the underlying true state correctly.
Therefore, it is important to figure out π̃, leading to the
following lemma.

Lemma 2: Let π̃ be the normalized left eigenvector of ma-
trix Ã associated with eigenvalue 1, and π be the normalized
left eigenvector of matrix A associated with eigenvalue 1.
Then, we have π̃ = (γ1π, · · · , γpπ).

Proof:

π̃Ã =(γ1(γ1πA+ γ2π + · · ·+ γpπ), · · · ,
γp(γ1π + γ2π + · · ·+ γpπA))

= (γ1π, · · · , γpπ) = π̃.

The second equality follows from πA = π and
p∑
l=1

γl = 1.

Theorem 2: Under Circumstance 2 and Assumptions 1
and 2, all agents will correctly learn the underlying true state,
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i.e.,

lim
t→∞

µli,t(θ
∗) = 1, P∗−a.s., ∀1 ≤ i ≤ n, 1 ≤ l ≤ p,

if and only if
p∑
l=1

γl

n∑
i=1

πiK
l
i(θ
∗, θ) < 0.

Proof: Firstly, similar to the proof of Theorem 1, under
Circumstance 2 we have

E∗
[
Lli,t(θ)

]
= E∗

[
log

`li(s
l
i,t|θ)

`li(si,t|θ∗)

]

=

∫
sl∈Sl

i

f li (s
l) log

`li(s
l|θ)

`li(s
l|θ∗)

dsl

=

∫
sl∈Sl

i

f li (s
l)

(
log

f li (s
l)

`li(s
l|θ∗)

− log
f li (s

l)

`li(s
l|θ)

)
dsl

= DKL(f li (·)||`li(·|θ∗))−DKL(f li (·)||`li(·|θ))
= Kl

i(θ
∗, θ).

and

lim
t→∞

1

t
ν̃t+1(θ) = 1npπ̃K̃(θ∗, θ)

= 1p ⊗
p∑
l=1

γl1nπK
l(θ∗, θ),

(5)

1nπK
l(θ∗, θ) =

n∑
i=1

πiK
l
i(θ
∗, θ)1n,

hence the condition
p∑
l=1

γl1nπK
l(θ∗, θ) < 0 holds if and

only if
p∑
l=1

γl
n∑
i=1

πiK
l
i(θ
∗, θ) < 0.

Theorem 2 demonstrates the robustness of our algorithm
when dealing with multiple signals. Even if some types of
signals might be misleading, the likelihood of collective mis-
learning can be reduced by adjusting the assigned parameter
γl. Additionally, as can be seen from (5), assigning a higher
weight γl to signals that are more instructive, i.e., better able
to help the group distinguish between correct and incorrect
states, can accelerate the convergence rate of the algorithm.

IV. NUMERICAL EXAMPLES

A. Learning with multiview observations

We first demonstrate that our proposed multiview obser-
vations algorithm can address the observational equivalence
issue present when only a single viewpoint of information is
available.

Example 1: Consider a strongly-connected network con-
sisting of two agents. The corresponding weight matrix is

A =

[
0 1

0.7 0.3

]
.

The two agents are engaged in the task of localizing a target
situated within a 4 × 4 grid. They receive Gaussian signals
(type 1) with mean values corresponding to the distances

Type 1

(Isolated)

Type 2

(Isolated)

(a)

Type 1

(Collaboration)

Type 2

(Collaboration)

(b)

Fig. 2. The evolution of beliefs of Agent 1 on different states. (a) The
two agents are unable to identify the underlying true state with a single
type of signal. (b) The two agents achieve correct learning by combining
the information from two types of signals.

Agent 1 Agent 2 Possible States

Target

Observationally 

Equivalent

Fig. 3. Illustration of the scenario in Example 1. In this example, the
two agents, due to the observational equivalence problem, cannot achieve
correct learning relying solely on a single type of signal.

from the target, which could be at any of the 16 grid points.
The signal structure of the two agents with respect to θ also
follows a Gaussian distribution, with the mean value equal
to the true distance between the agent and θ. As shown in
Fig. 3, the two agents struggle to distinguish between two
states due to the overlapping circles centered on these states,
where each circle has a radius equal to the distance from the
target.

At the same time, both agents can receive signals (type
2) regarding whether the target is above or below them. If
the target is above an agent, at each moment, there is a 0.8
probability of receiving signal U and a 0.2 probability of
receiving signal D. The signal structure is set as `2i (U |θ) =
0.8 if θ is located above i and `2i (U |θ) = 0.2 if θ is located
below i. It is obvious that both of the two agents can not
identify the underlying true state based solely on type 2
signal.
The initial beliefs about both types of signal are uniform
distributions over all possible states. Under our settings, the
signal structures of all agents and all types of signal about the
true state θ∗ align with its actual distribution, which satisfy
the conditions in Circumstance 1.

The experimental results indicate that the agents are unable
to collectively learn the true state according to one type of
signal solely, as shown in Fig. 2 (a). However, by combining
the information provided by both types of signals, the two
agents can successfully collaborate to identify the underlying
true state due to the fact that Assumption 3 is satisfied, as
shown in Fig. 4 (b). This example demonstrates that learning
from multiple signals can resolve the issue of observation-
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Type 1

(Isolated)

Type 2

(Isolated)

(a)

Type 1

(Collaboration)

Type 2

(Collaboration)

(b)

Fig. 4. The evolution of beliefs of Agent 1 on all possible states in the
first scenario of distributed cooperative localization task. (a) The agent can
identify the optimal state solely based on azimuth information, but using
only distance information results in erroneous learning. (b) By employing
our algorithm to integrate the information from both types of signals, the
beliefs of the agent converge to the true state.

ally equivalence present in single-signal scenarios, thereby
offering more tolerant conditions for successful learning.

B. Learning with misleading signal

In the following example, we will demonstrate how our
proposed algorithm addresses the issue of erroneous learning
that may occur with a single viewpoint of signal by ag-
gregating information from multiview observations, thereby
validating the enhanced robustness of our algorithm.

Example 2: Consider a scenario where a group of N
sensors is randomly distributed in a two-dimensional square,
denoted as [0, 1]

2. Each sensor receives two viewpoints of
observations at every time step, one is related to distance
and the other related to orientation. The first type is a
Gaussian signal with noise, representing the distance from
the sensor to the target. Specifically, S1

i,t ∼ N (d∗i , σ
2
1)

for all i = 1, · · · , N and t = 1, 2, · · · , where d∗i denotes
the distance from the i-th sensor to the target. The second
type of signal also contains Gaussian noise and pertains to
the azimuth between the agent and the target, and S2

i,t ∼
N (α∗i , σ

2
1), where α∗i denotes the azimuth. There are M

possible positions θm (m = 1, · · · ,M ) uniformly distributed
in the square space. Let dmi and αmi denote the distance and
azimuth from sensor i to a possible state θm respectively.
The collective aim of these sensors is to find the state that
has a position closest to the target, and it is conceived as
underlying true state θ∗. For every agent i, we set `1i (·|θm)
to align with N (dmi , σ

2
1), and since the orientation serves as

auxiliary information, we let `2i (·|θm) ∼ N (αmi , 10σ2
2).

We set N = 2, M = 36, σ1 = σ2 = 0.5, and
γ1 = γ2 = 0.5. The weight matrix is the same as that
in Example 1, indicating that the corresponding network
is strongly-connected. The initial beliefs about both types
of signal are uniform distributions over all possible states.
In situations where the target does not coincide with any
possible state, our experimental setup clearly meets the
conditions of Circumstance 2. In this case, based on the proof
of Theorem 2 and through calculation, the collective learning

Type 1

(Isolated)

Type 2

(Isolated)

(a)

Type 1

(Collaboration)

Type 2

(Collaboration)

(b)

Fig. 5. The evolution of beliefs of Agent 1 on all possible states in
the second scenario of distributed cooperative localization task. (a) The
agents cannot achieve correct learning solely relying on distance or azimuth
information. (b) By employing our algorithm to integrate the information
from both types of signals, the agents can learn the underlying true state
asymptotically.

𝜶𝟏
∗

𝜶𝟐
∗

𝜶𝟏
∗

𝜶𝟐
∗

Agents

Possible

States

Underlying 

True State

Optimal State 

under Signal 1

Optimal State 

under Signal 2

Target

Fig. 6. Illustrations of two typical scenarios. In the first scenario, the
group incorrectly selects the optimal state based on distance information. In
the second scenario, due to the similar orientation information of the two
agents, no type of signals leads to correct learning.

outcome θ̂ satisfies:

θ̂ = θj0 ,

j0 = arg min
j=1,··· ,m

2∑
i=1

πi

(
(d∗i − d

j
i )

2 +
1

10
(α∗i − α

j
i )

2

)
,

where π = (π1, π2) is the eigenvector centrality correspond-
ing to the weight matrix.

We fix the position of the target and allow agents to be
distributed in different locations to study the collaborative
learning outcomes with two types of signals separately and
jointly. In 1000 experiments, our proposed method, which
combines distance and azimuth information, successfully
achieves localization 853 times, while relying solely on dis-
tance or azimuth information leads to successful localization
550 and 582 times, respectively. This clearly demonstrates
the benefits of integrating both types of signal information.

We will further present the detailed results of two typical
scenarios. In the first scenario, agents relying solely on
distance information fail to find the state closest to the target,
while exclusive reliance on azimuth information results in
successful localization, as shown in Fig. 4 (a). If they com-
bine both types of information, all agents could successfully
achieve the task, as shown in Fig. 4 (b). In the second
scenario, agents relying solely on either distance or azimuth
information are unable to achieve accurate localization, as
evidenced in Fig. 5 (a). However, after applying our method,
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agents are able to successfully identify the state closest to the
target, as demonstrated in Fig. 5 (b). The schematic diagrams
of agent and state positions in two scenarios are presented
in Fig. 6.

This experiment, serving as a complement to Theorem
2, demonstrates that our proposed multiview observations
algorithm can, to a certain extent, alleviate the impact of
misleading signals, thereby increasing the fault tolerance of
collective learning.

V. CONCLUSION AND FUTURE WORK

In this paper, we extend traditional non-Bayesian social
learning algorithms designed for single signal and propose a
distributed information processing algorithm that integrates
information from multiview observations. Our proposed al-
gorithm enables the group to learn from multiple viewpoints
of information independently and achieving interaction a-
mong multiview observations during the information aggre-
gation step. By introducing weight parameters for various
signal types, we not only ensure the convergence of the
algorithm under traditional assumptions, but also, in certain
scenarios, correct errors introduced by a single view of sig-
nal, significantly enhancing the fault tolerance of collective
learning.

Our work not only presents a distributed information
processing algorithm capable of handling a more diverse
range of task scenarios but also contributes to the theoretical
foundation of distributed machine learning. In future en-
deavors, we plan to explore the application of non-Bayesian
social learning algorithms with multiview observations in the
design of distributed machine learning methods to address
challenges associated with multi-feature or high-dimensional
problems. Additionally, we may consider other interaction
mechanisms among multiple signals, such as negative feed-
back, and introduce more parameter settings to enable appli-
cations in a wider range of tasks.

REFERENCES

[1] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks with imperfect communication: Link failures and channel
noise,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp.
355–369, 2009.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[3] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distribut-
ed optimization and learning over networks,” IEEE Transactions on
Signal Processing, vol. 60, no. 8, pp. 4289–4305, 2012.

[4] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter
estimation in sensor networks: Nonlinear observation models and
imperfect communication,” IEEE Transactions on Information Theory,
vol. 58, no. 6, pp. 3575–3605, 2012.

[5] S. Vlaski, S. Kar, A. H. Sayed, and J. M. Moura, “Networked signal
and information processing: Learning by multiagent systems,” IEEE
Signal Processing Magazine, vol. 40, no. 5, pp. 92–105, 2023.

[6] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
bayesian social learning,” Games and Economic Behavior, vol. 76,
no. 1, pp. 210–225, 2012.

[7] S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter
estimation in networks using distributed dual averaging,” in 52nd IEEE
Conference on Decision and Control. IEEE, 2013, pp. 6196–6201.

[8] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distribut-
ed hypothesis testing,” IEEE Transactions on Information Theory,
vol. 64, no. 9, pp. 6161–6179, 2018.

[9] M. A. Rahimian, P. Molavi, and A. Jadbabaie, “(non-)bayesian learn-
ing without recall,” in 53rd IEEE Conference on Decision and Control,
2014, pp. 5730–5735.

[10] A. Mitra, J. A. Richards, and S. Sundaram, “A new approach for
distributed hypothesis testing with extensions to byzantine-resilience,”
in 2019 American Control Conference (ACC), 2019, pp. 261–266.
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