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Abstract— We analyze the convergence of online regularized
learning algorithm based on dependent and non-stationary
online data streams for the nonparametric regression problem
in reproducing kernel Hilbert space (RKHS). We show that the
algorithm achieves mean-square convergence if the algorithm
gain and regularization parameter are chosen appropriately,
the online data streams are weakly dependent and satisfy the
eigenvalue-wise persistence of excitation condition. Especially,
for the case with independent but non-identically distributed
online data streams, we give more intuitive convergence condi-
tions on the drifts of the probability measures induced by the
data.

I. INTRODUCTION
Supervised statistical learning aims to reveal the funda-

mental laws of the learning process by training or learning
datasets to efficiently approximate the mapping relationship
between the input and output in a suitable hypothesis space,
where the key concern is to control the complexity of
the hypothesis space ([1]). The reproducing kernel Hilbert
space (RKHS) provides a uniform processing framework
for nonparametric regressions containing generalized smooth
spline functions, real analytic functions with bounded band-
width, and Gaussian processes ([2]-[3]). The convergence
and optimal convergence rate of the batch learning algo-
rithms with independent and identically distributed (i.i.d.)
datasets under RKHS framework have been systematically
investigated ([4]).

In recent years, with the widespread use of online learning
in training deep neural networks ([5]), online learning has
gained the attention of many scholars. Compared with batch
learning, which requires processing the entire dataset at once,
online learning only needs to process a single piece of data
at a time and update the output in real time. Therefore,
investigating online learning algorithms under the RKHS
framework has gradually become a hot topic in supervised
statistical learning. For the nonparametric regression problem
in statistical learning, [6]-[9] have obtained rich research
results on online learning algorithms based on i.i.d. data
streams.

In fact, i.i.d. datasets are difficult to be obtained in many
scenarios for which machine learning algorithms are applied,
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such as market prediction, system diagnosis, and speech
recognition, which are all inherently temporal ([10]). There-
fore, machine learning and statistics community have been
devoted to the development of learning theory by weakening
the special assumption of i.i.d. data for a long time, however,
most valuable results in this direction are concentrated on
batch supervised learning ([10]-[14]), and up till now, the
statistical online learning with dependent sampling data is a
valuable but unexplored area and the study of online learning
algorithms based on non-i.i.d. data streams still remains
open. On the one hand, unlike batch learning which can
process all data at once, online learning algorithms receive
very little information and can only process a single piece
of data at a time. On the other hand, unlike online learning
assuming i.i.d. data streams, dependent observations contain
less information and therefore lead to more unstable learning
errors as well as the performance degradation of learning
compared with i.i.d. data ([13]-[14]). The best results at
present remains the analysis of the convergence rate of online
learning algorithms with samples drawn according to a non-
identical sequence of probability distributions while main-
taining independence ([15]-[16]). Based on independent but
non-identically distributed online data streams, Smale and
Zhou [15] first proposed the exponential convergence condi-
tion of marginal distribution and analyzed the performance
of the online regularized learning algorithm. Subsequently,
Hu and Zhou [16] proposed the polynomial convergence
condition of marginal distribution and gave an analysis of
the convergence rate of the online regularization algorithm
with general loss function.

In this paper, an online regularized learning algorithm
based on dependent and non-stationary online data streams
is proposed under the RKHS framework for the nonpara-
metric regression problem. Removing the assumption of
independence poses an essential difficulty for the conver-
gence analysis of online algorithms. Firstly, online learning
algorithms are intrinsically obtained by the stochastic gradi-
ent descent method, and the dependent and non-stationary
data cannot provide sufficient information about the true
gradient, which leads to poor stability of the learning error.
Secondly, since the observation data at different moments are
no longer independent, the existing methods in [6]-[9] and
[15]-[16], which construct martingale difference sequences
by means of the property of independence and separates
the operator products, thereby separating the information
among coupled terms, are no longer applicable. It is worth
noting that, in the past several decades, many scholars have
proposed the persistence of excitation condition based on
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the minimum eigenvalues of the conditional expectations of
the information matrices in finite-dimensional space ([17]).
The stochastic persistence of excitation condition was first
proposed in the analysis of the Kalman filter algorithm
by Guo in [18] and then refined in [19]-[22], which was
proved to be necessary and sufficient for exponential stability.
However, the above excitation conditions all require to some
extent that the information matrix is positive definite, i.e.
all the eigenvalues of the matrix have a common strictly
positive lower bounds. This is not applicable for the statis-
tical learning problems in RKHS, which is usually infinite-
dimensional. The information operator induced by the data
in RKHS is self-adjoint, however, even for strictly positive
compact operators, the infimum of the infinite eigenvalues
of the compact operator is zero.

To overcome the aforementioned difficulties caused by re-
moving the i.i.d. assumption, by probability theory in Banach
space, measure theory and stochastic time-varying system
theories, we construct a class of sequences of martingale
differences consisting of regularization paths without relying
on the independence assumption. We develop a more general
theory of regularization paths than those in [8] and [23] by
proving the compactness and invertibility of the information
operators induced by data, and establish the eigenvalue-
wise persistence of excitation condition. Furthermore, the
sufficient conditions for mean-square convergence of online
learning algorithms based on dependent and non-stationary
data streams are obtained for the first time. We prove
that if the algorithm gain and regularization parameter are
chosen appropriately and the online data streams satisfy the
eigenvalue-wise persistence of excitation condition, i.e. each
component of the sequence formed by the decreasing order
of the eigenvalues of the covariance operators over a fixed-
length time period has a positive lower bound, then the
algorithm’s estimation and regularization path asymptotically
coincide in mean square sense, thus showing the algorithm
converges in mean square. Especially, for the case with inde-
pendent but non-identically distributed online data streams,
we obtain more intuitive convergence conditions, where the
convergence condition of the marginal distributions in [15]-
[16] is relaxed to a restriction on the drifts of the probability
measures induced by the data.

Notation and symbols: Rn denotes n dimensional real
vector space. Let L (X) be a linear space consisting of all
bounded linear operators mapping from the Banach space X
to X . The eigenvalues of a compact operator A are denoted
by {λi(A), i = 1, 2, ...}, where λi(A) is the i-th largest
eigenvalue of A. For any random element ξ, E[ξ] denotes its
mathematical expectation. The notation bn = O(rn) denotes
limn→∞ sup |bn|rn < ∞, where {bn, n ≥ 0} is a sequence
of real numbers, {rn, n ≥ 0} is a sequence of real positive
numbers; bn = o(rn) denotes limn→∞

bn
rn

= 0.

II. ONLINE REGULARIZED LEARNING IN RKHS
A. Reproducing Kernel Hilbert Space

Let X be a subset of Rn and K : X × X →
R be a Mercer kernel, i.e. a continuous symmetric real

function which is positive semi-definite in the sense that∑m
i=1

∑m
j=1 cicjK(xi, xj) ≥ 0 for any m ≥ 1 and any

choice of xi ∈ X and ci ∈ R (i = 1, · · · ,m). A Mercer
kernel K induces a function Kx : X → R (x ∈X ) defined
by Kx(x′) = K(x, x′). Let HK be the reproducing kernel
Hilbert space (RKHS) associated with a Mercer kernel K,
i.e. the completion of Span{Kx, x ∈X } with respect to the
inner product, defined as the linear extension of the bilinear
form 〈Kx,Kx′〉K = K(x, x′), ∀x, x′ ∈ X . The norm of
HK is denoted by ‖f‖K =

√
〈f, f〉K for each f ∈ HK .

The most important property of RKHS is the reproducing
property: for all f ∈HK and x ∈X , f(x) = 〈f,Kx〉K .

B. Problem Formulation

Throughout this paper, (Ω,F ,P) is assumed to be a
complete probability space. Suppose that f? : X → R is
the unknown function in HK . The nonparametric regression
model at instant k is given by

y(k) = f?(x(k)) + v(k), k ≥ 0, (1)

where x(k) : Ω→X is a random vector at instant k, called
the random input data, and the observation noise v(k) : Ω→
R is a random variable at instant k. Online learning aims
to construct the approximation of the unknown function f?

using only the current observation data (x(k), y(k)).
Denote the σ-field F(k) = σ(x(i), v(i), 0 ≤ i ≤ k), k ≥ 0

with F(−1) = {Ω, ∅}. For the regression model (1) and the
kernel function K which determines the Hilbert space HK ,
we need the following assumptions.

Assumption 1: The sequence {v(k),F(k), k ≥ 0} is a
martingale difference sequence, which is independent of the
sequence {x(k), k ≥ 0}, and there exists a constant β > 0,
such that supk≥0 E[v2(k)|F(k − 1)] ≤ β a.s.

Assumption 2: supx∈X K(x, x) <∞.

Let I ∈ L (HK) be the identical operator. Define operator
g ⊗ h : f 7→ 〈f, h〉Kg. It follows from Assumption 2
that Kx(k) ⊗ Kx(k) is a random element with values in
L (HK), ∀k ≥ 0, which thus is Bochner integrable.

Definition 1: The linear operator Σk : g 7→ Σkg, ∀g ∈
HK , is called the covariance operator of data x(k), where

〈f,Σkg〉K =

∫
Ω

f(x(k))g(x(k))dP, ∀ f, g ∈HK , ∀ k ≥ 0.

Remark 1: By Riesz’ representation theorem, Σk is well-
defined. Using the reproducing property, we have Σk =
E[Kx(k) ⊗ Kx(k)], ∀k ≥ 0, where the mathematical ex-
pectation is formally defined as a Bochner integration. In
finite-dimensional space HK = Rn, for g, h ∈ Rn, we
have g ⊗ h = gh> ∈ Rn×n since for any f , (gh>)f =
(h>f)g = 〈f, h〉Kg. Thus in finite-dimensional space, Σk =
E[x(k)x>(k)] is the auto-correlation matrix of x(k).

It follows from Assumption 2 and [24] that the conditional
mathematical expectation of Kx(k) ⊗Kx(k) with respect to
the σ-field F(m) exists uniquely, which is denoted by

Σk|m , E
[
Kx(k) ⊗Kx(k)

∣∣F(m)
]
, ∀ k ≥ 0, ∀ m ≥ −1.
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Note that Σk|m = Σk if x(k) is independent of F(m).
By Arzela-Ascoli theorem and the spectral decomposition
of compact operator, we have the following propositions of
Σk|m, whose proofs are omitted.

Proposition 1: If Assumption 2 holds, then Σk|m : Ω →
L (HK) is a self-adjoint, positive and compact operator a.s.,
∀ k ≥ 0, ∀ m ≥ −1.

Proposition 2: If Assumption 2 holds, then Σk|m + λI is
invertible a.s., ∀ λ > 0, ∀ k ≥ 0, ∀ m ≥ −1.

C. Regularization Path and Stochastic Gradient Algorithms

The Hilbert space HK is generally an infinite-dimensional
functional space with high complexity, regularization is nec-
essary and the following Tikhonov regularization is widely
adopted ([4]). Let, for all k ≥ 0, fλ(k) be the solution of
the regularized least square problem in HK ,

arg min
f∈HK

∫
Ω

(y(k)− f(x(k))2dP + λ(k)‖f‖2K , (2)

where y(k) is given in (1) and λ(k) > 0 is the regularization
parameter. Depending on the assumptions on the covariance
operator Σk, we will show that fλ(k) converges to f? in
mean square as k →∞.

Definition 2: The map Pf? : k 7→ fλ(k) is called the
regularization path of f? at instant k in HK .

Remark 2: For online learning with i.i.d. data, Tarrès and
Yao [8] studied the regularization path concerning with time-
invariant covariance operator. It is worth noting that the
covariance operator in the regularization path defined by
Definition 2 can be time-varying, and is applicable to the
non-i.i.d. case consequently.

The following proposition gives an explicit form of the
regularization path, whose proof is omitted.

Proposition 3: If Assumptions 1-2 hold, then fλ(k) =
(Σk + λ(k)I)−1Σkf

?, ∀k ≥ 0.

To solve the regularized least square problem (2), by the
reproducing property and Assumptions 1-2, we can see that

grad

∫
Ω

(y(k)− f(x(k))2dP + λ(k)‖f‖2K

= 2

∫
Ω

[
(f(x(k))− y(k))Kx(k) + λ(k)f

]
dP, ∀k ≥ 0.

Through the stochastic gradient descent (SGD) method, we
obtain the online regularized learning algorithm in HK ,

fk+1 = fk − a(k)
(
(fk(x(k))− y(k))Kx(k) + λ(k)fk

)
(3)

with deterministic initial value f0 ∈HK , where {a(k), k ≥
0} and {λ(k), k ≥ 0} are the gain sequence and regulariza-
tion sequence, respectively. The following conditions may be
needed later.

Condition 1: The gain sequence {a(k), k ≥ 0} and regu-
larization sequence {λ(k), k ≥ 0} are all positive sequences
monotonically decreasing to zero.

Condition 2: The gain sequence {a(k), k ≥ 0} and regu-
larization sequence {λ(k), k ≥ 0} satisfy

∑∞
k=0 a(k)λ(k) =

∞ and a(k) = o(λ(k)).

Condition 3: The gain sequence {a(k), k ≥ 0} and regu-
larization sequence {λ(k), k ≥ 0} satisfy λ(k)−λ(k+ 1) =
O(a(k)λ2(k)).

Remark 3: If a(k) = (k + 1)−τ and λ(k) = (k +
1)τ−1, k ≥ 0, τ ∈ (0.5, 1), then Conditions 1-3 hold since

λ(k)− λ(k + 1)

a(k)λ2(k)
= (k + 1)

(
1−

(
k + 1

k + 2

)1−τ
)
→ 1− τ,

as k →∞.

III. MAIN RESULTS

To establish the online learning theory with non-i.i.d. data,
we introduce the following eigenvalue-wise persistence of
excitation (P.E.) condition, which is an indispensable part of
the convergence analysis of the algorithm.

Condition 4 (eigenvalue-wise P.E. condition): There ex-
ists an integer h ≥ 0, such that

inf
k≥0

λi

k+h∑
j=k

Σj

 > 0, i = 1, 2, ...

Remark 4: Condition 4 ensures that the regularization
path fλ(k) converges to f? in mean square, which does
not require that the data streams be stationary. To learn the
unknown element f? under valid measurement information,
Condition 4 requires the distributions of data streams to
have the persistence of excitation property: for any given
positive integer i, the i-th eigenvalues of the covariance
operators over a fixed length time period have a positive
lower bound, i.e. infk≥0 λi(

∑k+h
j=k Σj) > 0, where the i-

th eigenvalue of the covariance operator at each instant is
not necessarily required to have a positive lower bound, i.e.
infk≥0 λi(Σk) > 0. If the online data streams are indepen-
dent and identically distributed, then the eigenvalue-wise P.E.
condition degenerates to requiring Σ0 = E[Kx(0) ⊗ Kx(0)]
to be strictly positive, i.e. λi(Σ0) > 0, ∀ i ≥ 1, which is
exactly the case in [8].

In the past decades, to solve the problems of parame-
ter estimation and signal tracking with non-stationary and
non-independent observation matrices, many scholars have
proposed persistence of excitation conditions based on the
minimum eigenvalues of the conditional expectations of
the information matrices in finite-dimensional space. The
stochastic persistence of excitation condition was first pro-
posed by Guo [18] in the analysis of the Kalman filtering al-
gorithm and then refined in [19]-[22], which was proved to be
necessary and sufficient for exponential stability. However,
the stochastic persistence of excitation conditions proposed
for finite-dimensional systems all require to some extent that
the information matrix is positive definite, i.e. the eigenvalues
of the matrix have strictly positive lower bounds. This is not
applicable for the statistical learning problems in infinite-
dimensional RKHS. The information operator induced by
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the data in RKHS is self-adjoint, even for strictly positive
compact operators, all the persistence of excitation conditions
in finite-dimensional space cannot hold, due to the infimum
of the infinite eigenvalues of the compact operator is zero.

Based on the algorithm, assumptions and conditions es-
tablished above, the convergence analysis of the algorithm
(3) are presented in this section. The proofs of Lemma 1
and Theorem 1 are given in Section IV, and the proof of
Corollary 1 is omitted.

Denote

ϕ(k) , sup
u(k)∈F(k−1)
‖u(k)‖K=1

E
[∥∥(Σk − Σk|k−1

)
u(k)

∥∥2

K

] 1
2

.

Let δ(k) = fk − fλ(k) be the tracking error, which is used
to measure the deviation of the algorithm from following the
regularization path. The asymptotic analysis of the tracking
error is obtained in the following lemma, which plays a key
role in the convergence analysis of the algorithm.

Lemma 1: Suppose that Assumptions 1-2 hold. For the
algorithm (3), assume that Conditions 1 and 4 hold. If
ϕ(k) = O(λ2(k)) and

(A)
∞∑
i=0

a(i)λ(i) =∞;

(B) lim
k→∞

k∑
i=0

a2(i)

k∏
j=i+1

(1− a(i)λ(i))2 = 0;

(C) lim
k→∞

k∑
i=0

‖fλ(i+1)−fλ(i)‖K
k∏

j=i+1

(1−a(i)λ(i)) = 0,

then limk→∞ E[‖δ(k)‖2K ] = 0.

Remark 5: Online learning with dependent data usually
lead to poor stability of learning error due to lack of
information. According to the no free lunch principle, it
is necessary to make some assumptions on the dependence
among data. The condition ϕ(k) = O(λ2(k)) in Lemma
1 requires the data streams to satisfy only a certain weak
dependence condition instead of the temporal-independent
condition. Intuitively, for the purpose of obtaining enough
information from the data as time going, the prediction of the
“future” Σk|k−1 given the “past” data {x(i), 0 ≤ i ≤ k− 1}
is required to be consistent with Σk in mean-square sense.
Especially, the independent sequence {x(k), k ≥ 0} contains
sufficiently enough information, which satisfies ϕ(k) ≡
0, ∀k ≥ 0.

Theorem 1: Suppose that Assumptions 1-2 hold. For the
algorithm (3), assume that Conditions 1-2 and 4 hold. If
ϕ(k) = O(λ2(k)) and

(D) lim
k→∞

a(k)λ(k)

‖fλ(k + 1)− fλ(k)‖K
=∞,

then limk→∞ E[‖fk − f?‖2K ] = 0.

Remark 6: The choice of the gain sequence and regular-
ization sequence is crucial for the algorithm to successfully
learn the unknown element f?. To reduce the effect of
measurement noise, Condition 1 requires the algorithm avoid

making excessive changes to the current estimate when ac-
quiring new noisy data. Condition 2 requires {a(k)λ(k), k ≥
0} not to be too small for the convergence of the algorithm,
which is often used in the stochastic approximation algo-
rithms to drive the estimations to the unknown true element
from arbitrary initial conditions. Condition (D) in Theorem
1 implies that the drifts along regularization path drop faster
than a(k)λ(k), under which the learning sequence {fk, k ≥
0} can follow the regularization path {fλ(k), k ≥ 0}.

We are now in position to consider a special setting
where the assumption of i.i.d. data is weakened by keeping
the independence but abandoning the identical restriction.
Denote ρX (k) , P◦x−1(k) the probability measure induced
by the random data x(k) : Ω → X , ∀k ≥ 0. The Hölder
space Cs(X ), 0 ≤ s ≤ 1 is defined by

Cs(X ) ,
{
f ∈ C(X ) : ‖f‖∞ + ‖f‖Cs(X ) <∞

}
, (4)

where ‖f‖∞ = supx∈X |f(x)| and |f |Cs(X ) = supx6=y∈X
|f(x)−f(y)|
‖x−y‖sRn

, which is a Banach space. For any given prob-
ability measure ρ on X , it follows from [15] that ρ ∈
(Cs(X ))∗, i.e. ρ is a bounded linear functional on Cs(X ).
With the above settings, we need the following assumption
on the kernel function.

Assumption 3: The kernel function K ∈ C2(X ×X ).

In fact, Assumption 3 guarantees the fact that HK is in-
cluded in Cs(X ) ([15]), under which we have the following
corollary with independent but non-identical distributed data.

Corollary 1: Suppose that Assumptions 1 and 3 hold. For
the algorithm (3), assume that Conditions 1-4 hold. If the
online data stream is an independent sequence satisfying
(E) ‖ρX (k + 1)− ρX (k)‖(Cs(X ))∗ = O

(
a(k)λ2(k)

)
,

then limk→∞ E[‖fk − f?‖2K ] = 0.

Remark 7: For online learning with independent but non-
stationary data, the convergence depends largely on the
measure sequence {ρX (k), k ≥ 0} induced by the data. For
this reason, Smale and Zhou [15] proposed the exponential
convergence condition of marginal distribution: there exists
a probability measure ρX and a constant α ∈ (0, 1), such
that ‖ρX (k) − ρX ‖(Cs(X ))∗ = O(αk). Subsequently, Hu
and Zhou [16] improved above condition by proposing the
polynomial convergence condition of marginal distribution:
there exists a probability measure ρX and a constant b > 0
such that ‖ρX (k) − ρX ‖(Cs(X ))∗ = O(k−b). In Corollary
1, neither the exponential convergence condition nor the
polynomial convergence condition of marginal distribution
is needed, instead of that, Condition (E) in Corollary 1
only requires the drifts of the measures induced by the
data drop faster than a(k)λ2(k). To our best knowledge, we
have obtained the most general results ever, even for online
learning with independent and non-stationary data.

IV. PROOFS OF MAIN RESULTS

The proofs of main results need the following lemmas,
whose proofs are omitted.
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Lemma 2: ([25]) Assume that {s1(k), k ≥ 0} and {s2(k)
, k ≥ 0} are real sequences satisfying 0 ≤ s2(k) < 1,∑∞
k=0 s2(k) = ∞ and limk→∞

s1(k)
s2(k) exists. Then limk→∞∑k

i=1 s1(k)
∏k
j=i+1(1− s2(k)) = limk→∞

s1(k)
s2(k) .

Lemma 3: Suppose that Assumptions 1-2 hold. For the
algorithm (3), assume that Condition 1 holds. If the gain
sequence and regularization sequence satisfy

lim
k→∞

k∑
i=0

a2(i)

k∏
j=i+1

(1− a(j)λ(j))2 = 0,

then supk≥0 E[‖fk − f?‖2K ] <∞.

Proof of Lemma 1. Denote Hk , Kx(k) ⊗ Kx(k).
Subtracting fλ(k) from both sides of (3) at the same time
gives

δ(k + 1)
= (I − a(k)(Hk + λ(k)I))δ(k)− (fλ(k + 1)− fλ(k))
−a(k)((Hk + λ(k)I)fλ(k)−Hkf

?) + a(k)v(k)Kx(k),(5)

Denote gλ(k) , (Σk|k−1 + λ(k)I)−1Σk|k−1f
?. Noting that

δ(0) = f0 − fλ(0) ∈HK , it follows from the tracking error
equation (5) and Cauchy-Schwarz inequality that

1

7
E
[
‖δ(k + 1)‖2K

]
≤ ‖Φ(k, 0)δ(0)‖2K

+E

∥∥∥∥∥
k∑
i=0

a(i)Φ(k, i+ 1)
(
Σi|i−1 −Hi

)
δ(i)

∥∥∥∥∥
2

K


+E

∥∥∥∥∥
k∑
i=0

a(i)Φ(k, i+ 1)
(
Σi − Σi|i−1

)
δ(i)

∥∥∥∥∥
2

K


+E

∥∥∥∥∥
k∑
i=0

a(i)Φ(k, i+ 1)v(i)Kx(i)

∥∥∥∥∥
2

K

+ E

[∥∥∥∥∥
k∑
i=0

a(i)

× Φ(k, i+ 1) ((Hi + λ(i)I) gλ(i)−Hif
?)

∥∥∥∥∥
2

K


+E

[∥∥∥∥∥
k∑
i=0

a(i)Φ(k, i+ 1)

× (Hi + λ(i)I) (gλ(i)− fλ(i))

∥∥∥∥∥
2

K


+

∥∥∥∥∥
k∑
i=0

Φ(k, i+ 1)(fλ(i+ 1)− fλ(i))

∥∥∥∥∥
2

K

, ∀ k ≥ 0, (6)

where Φ(i, j) =
∏i
k=j(I − a(k)(Σk + λ(k)I)) if i ≥ j and

Φ(i, j) = I if i < j. For notational convenience, the operator
norm ‖ · ‖L (HK) will be abbreviated as ‖ · ‖ in the sequel.
Denote the terms on the right-hand side of the inequality (6)
in turn as Ai(k), i = 1, · · · , 7, which will be analyzed term
by term. By Condition 1 and Assumption 2, there exists a
constant C1 > 0, such that

‖A1(k)‖2K ≤ C1

k∏
i=i0

(1− a(i)λ(i)), ∀k ≥ 0, (7)

where i0 = min{k ≥ 0 : a(k)λ(k) + a(k) supx∈X K(x, x)
< 1}. Noting that δ(k) ∈ F(k − 1), it follows from
the properties of conditional expectations that E[〈Φ(k, i +
1)(Σi|i−1 − Hi)δ(i),Φ(k, j + 1)(Σj|j−1 − Hj)δ(j)〉K ] =
0, ∀0 ≤ i < j ≤ k, which together with Assumption 2
shows that there exist constants C2 > 0 and C3 > 0, such
that

A2(k) ≤ C2

k∏
j=i0

(1− a(j)λ(j)) + C3

k∑
i=i0

a2(i)E
[
‖δ(i)‖2K

]
×

k∏
j=i+1

(1− a(j)λ(j))2, ∀ k ≥ 0. (8)

We can see from Lemma 3 and Cauchy-Schwarz inequal-
ity that supk≥0 E[‖δ(k)‖2K ] < ∞. Noting that ϕ(k) =
O(λ2(k)), by Condition 1 and Minkowski inequality, we
know that there exists a constant C4 > 0, such that

A3(k) ≤ C4

k∏
j=i0

(1− a(j)λ(j)) +

k∑
i=i0

a(i)ϕ(i)

×
(
E
[
‖δ(i)‖2K

]) 1
2

k∏
j=i+1

(1− a(j)λ(j)), ∀ k ≥ 0. (9)

By Assumption 1 and the properties of conditional ex-
pectations, we get E[〈Φ(k, i + 1)v(i)Kx(i),Φ(k, j + 1)v(j)
Kx(j)〉K ] = 0, where 0 ≤ i < j ≤ k. Thus, by Assumptions
1-2, we know that there exist constants C5 > 0 and C6 > 0
satisfying

A4(k) ≤ C5

k∏
j=i0

(1− a(j)λ(j))

+C6

k∑
i=i0

a2(i)

k∏
j=i+1

(1− a(j)λ(j))2, ∀k ≥ 0. (10)

Noting that λ(k)gλ(k) = Σk|k−1(f? − gλ(k)) a.s., ∀k ≥
0 and gλ(k) ∈ F(k − 1), by the properties of conditional
expectations, we get E[〈g(i), g(j)〉K ] = 0, ∀0 ≤ i < j ≤ k,
where g(k) , (Hk + λ(k)I)gλ(k)−Hkf

?. It follows from
Assumption 2 that there exist constants C7 > 0 and C8 > 0,
such that

A5(k) ≤ C7

k∏
j=i0

(1− a(j)λ(j))

+C8

k∑
i=i0

a2(i)

k∏
j=i+1

(1− a(j)λ(j))2, ∀ k ≥ 0. (11)

It follows from Assumption 2 that supk≥0 ‖f? − fλ(k)‖ <
∞, which together with ϕ(k) = O(λ2(k)) gives E[‖gλ(k)−
fλ(k)‖2K ]

1
2 ≤ λ−1(k)E[‖(Σk|k−1−Σk)(f?−fλ(k))‖2K ]

1
2 ≤

2ϕ(k)λ−1(k)‖f?‖K a.s., ∀k ≥ 0. Thus, by Condition 1
and Minkowski inequality, there exist constants C9 > 0 and
C10 > 0 satisfying

A6(k) ≤ C9

k∏
j=i0

(1− a(j)λ(j))

6608



+C10

k∑
i=i0

a(i)ϕ(i)‖fλ(i)− f?‖K
λ(i)

k∏
j=i+1

(1− a(j)λ(j)).(12)

By Condition 1 and Assumption 2, there exists a constant
C11 > 0, such that∥∥∥∥∥

k∑
i=0

Φ(k, i+ 1)(fλ(i+ 1)− fλ(i))

∥∥∥∥∥
K

≤ C11

k∏
j=i0

(1− a(j)λ(j))

+

k∑
i=i0

‖fλ(i+ 1)− fλ(i)‖K
k∏

j=i+1

(1− a(j)λ(j)). (13)

Hence, by (6)-(13) and Lemma 3, we obtain

E
[
‖δ(k + 1)‖2K

]
≤ 7C12

k∏
j=i0

(1− a(j)λ(j)) + 7

k∑
i=i0

a2(i)
(
C3E

[
‖δ(i)‖2K

]
+C6 + C8)

k∏
j=i+1

(1− a(j)λ(j))2 + 7

k∑
i=i0

(
a(i)ϕ(i)

×
(
E
[
‖δ(i)‖2K

]) 1
2 + C10

a(i)ϕ(i)‖fλ(i)− f?‖K
λ(i)

+‖fλ(i+ 1)− fλ(i)‖K

)
k∏

j=i+1

(1− a(j)λ(j)), (14)

where C12 , C1 +C2 +C4 +C5 +C7 +C9 +C11. Noting
that ϕ(k) = O(λ2(k)), by Condition 4 and Lemma 2, it
can be proved that

∑k
i=i0

a(i)ϕ(i)‖fλ(i)−f?‖K
λ(i)

∏k
j=i+1(1 −

a(j)λ(j)) → 0, as k → ∞. It follows from Condition
(A) that

∏k
j=i0

(1 − a(j)λ(j)) → ∞ as k → ∞. By
Assumption 2 and Lemma 3, we have supk≥0 E[‖δ(k)‖2K ] <
∞, which together with Conditions (B)-(C) and (14) gives
limk→∞ E[‖δ(k)‖2K ] = 0.

Proof of Theorem 1. It follows from Conditions 1-
2, Condition (D) in Theorem 1 and Lemma 2 that
Conditions (A)-(C) in Lemma 1 hold, thus by Lem-
ma 1, we get limk→∞ E[‖fk − fλ(k)‖2K ] = 0. It fol-
lows from Conditions 2, 4 and Condition (D) in Theo-
rem 1 that limk→∞ ‖fλ(k)− f?‖2K = 0. Thus, we have
limk→∞ E[‖fk − f?‖2K ] = 0.

V. CONCLUSION

We analyze the convergence of online regularized learning
algorithm based on dependent and non-stationary online
data streams for the nonparametric regression problem in
reproducing kernel Hilbert space (RKHS). We show that the
algorithm achieves mean-square convergence if the algorithm
gain and regularization parameter are chosen appropriately,
the online data streams are weakly dependent and satisfy
the eigenvalue-wise persistence of excitation condition. Es-
pecially, for the case with independent but non-identically
distributed online data streams, we give more intuitive con-
vergence conditions on the drifts of the probability measures
induced by the data.
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