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Abstract— The paper explores the computation of output
reachable sets for Interval Neural Networks (INNs) with ReLU
activation functions. An INN is a generalization of a Neural
Network (NN), where the weights and biases are intervals rather
than numbers. We propose a novel algorithm for computing
precise over-approximations of the output reachable sets for
INNs by introducing a novel data structure called interval star set
which is a generalized version of the star set. Specifically, when
the INN is a traditional NN, our method reduces to the standard
star-based verification of NNs. We present experimental results
that demonstrate that our method outperforms the existing
method based on mixed integer linear programming (MILP)
for the problem of INN output reachable set computation.

I. INTRODUCTION

Neural Networks (NN) are being extensively used in
safety critical control systems such as airborne collision
avoidance systems [1] and autonomous vehicles [2] to perform
sophisticated tasks. For these systems, strong assurances of
correctness of verification are desired and this has attracted a
large body of work focusing on formal verification of neural
networks [3], [4], [5], [6], [7]. Output range computation
problem is a fundamental problem in the safety analysis of
neural network controlled autonomous systems. However,
the problem is known to be NP-hard [5], and becomes
computationally expensive for large number of neurons.

Abstraction based analysis is a promising approach to deal
with the scalability issue. More recently, such an approach
has been employed for neural networks [8], where a neural
network is abstracted into a small network albeit with interval
weights and biases, called an Interval Neural Network (INN).
The abstraction is sound in that the output range of the INN
is an over-approximation of the original network and the
safety of the abstract INN implies the safety of the original
NN. The paper also provides an MILP based method for
computation of the range of an INN.

The broad objective of this paper is to explore efficient
algorithms for the output range analysis of INNs which are
promising data structures for the abstraction based analysis of
neural networks. We note that existing algorithms for neural
network verification cannot be directly applied in the case
of INNs. We, however, take inspiration from existing NN
verification approaches, specifically, star based approach [7],
to analyze the output range of INNs in this paper. Star set is an
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abstract domain [9] that has been successfully applied toward
scalable verification of neural networks. Here, we propose a
generalization of the star set, namely, interval star set as an
abstract domain for reachable set computation of an interval
neural network. The crux of reachable set computation of
neural networks relies on being able to efficiently compute
two types of functions on an abstract domain, namely, affine
transformations and ReLU application. These two operations
can be done efficiently using the star set data structure as
opposed to, say, polyhedral set representations. To compute
the reachable set of an interval neural network, we need to
compute the output of a set with respect to an infinite set of
affine transformations that are presented by an interval matrix
and an interval vector. Our first result provides an elegant
representation for an interval star set that abstracts the set of
states obtained by the "interval" affine transformation of an
input interval star set. The next step is the application of the
ReLU function on an interval star set. This can be interpreted
as the application of a series of intersections with half-planes
followed by linear transformation. We show that intersections
with half planes for interval star set can be performed exactly
and efficiently.

We have implemented this interval star set based reachable
set computation algorithm for interval neural networks.
Our experimental evaluation highlights the benefits of this
approach with respect to a previously known MILP based
analysis [10]. Specifically, our algorithm is faster and is able
to analyze large interval neural networks, whereas the MILP
solver runs into technical issue due to large constants in the
encoding.

II. RELATED WORK

We discuss the existing body of literature concerned with
the verification of neural networks. There is a large body
of work on heuristic and dynamic analysis techniques to
test robustness of neural networks [3], [11], [12], [13]. They
are effective in finding adversarial examples as opposed to
formally proving safety of a network or range computation
of a network.

Earlier neural network verification makes use of constraint
solving where a verification problem is reduced to solving
constraints, existing SAT/SMT based verification techniques
include [14], [15], [5], [16]. These techniques are often sound
and complete, however they are limited in scalability.

To improve the scalability, several verification techniques
have been proposed which utilize the idea of abstraction
in the form of abstract interpretation [17]. The main idea
is to consider well designed numerical abstract domains
such as boxes [17], zonotopes [18] and polyhedra [19].
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Some examples are DeepZ [4], DeepPoly [20], β -Crown [6],
NNV [7] and nnenum [21]. These techniques have produced
promising results in neural network verification.

Our work is mainly concerned about Interval Neural
Networks (INNs) which are a new abstract system that
models the behavior of neural networks by representing
the weights of a network as intervals [8]. An MILP based
verification technique for analyzing these abstract networks
is also provided in the original paper [8]. However, it is not
efficient to verify neural networks or compute its output range
using MILP-based techniques [22] and the same applies to
INNs for similar reasons. It is important to note that existing
verification engines for neural networks cannot be applied to
work on INNs.

Our work generalizes and extends the state-of-the-art star
based verification ideas [7], [21] for the scalable verification
analysis and output range computation of the INNs.

III. PRELIMINARIES

The set of all real numbers is represented by R. The set of
all non-negative real numbers is represented by R+. Given
a non-negative integer k, let [k] denote the set {1,2, · · · ,k}.
A partition P over a set S is the set P = {P1, · · · ,Pk} such
that

⋃k
i=1 Pi = S and Pi∩Pj = /0, ∀i, j ∈ [k] and i ̸= j. The

cardinality of a set S is represented as |S|. An ordered set S is
a set whose elements are arranged in an order and where S[i]
represents the i-th element of S. The complement of a set S
is represented as ¬S. We will use ‘σ ’ to represent the ReLU
activation function, where σ(x) = x if x≥ 0 and σ(x) = 0 if
x≤ 0.

A. Intervals and operations

We review some standard definitions and results from
interval analysis [23]. A closed interval is denoted by [a,b]
which represents the set {x ∈ R : a≤ x≤ b}. The set of all
closed (real-valued) intervals is denoted by IR. We denote
the left and right endpoints of an interval X by X and X
respectively, i.e X = [X , X ]. An interval X is called a point
interval if X = X . The sum of two intervals X ,Y ∈ IR is given
by X +Y = {x+ y : x ∈ X ,y ∈ Y}. In terms of endpoints, the
sum X +Y of two intervals is given by:

X +Y = [X +Y , X +Y ]

The product of two intervals X ,Y ∈ IR is given by X .Y =
{xy : x ∈ X ,y ∈ Y}.
In terms of endpoints, the products X .Y of two intervals is
given by:

X .Y = [min(S), max(S)] where,

S = {XY , XY , XY , XY}

B. Interval Matrices and Vectors

A matrix M of dimension (m,n) over a set S is a function
from [m]× [n] to S. We denote the (i, j)-th element of M,
namely M(i, j), as Mi j and the set of all matrices of dimension
(m,n) as Sm×n. When n = 1, we write Sm×1 as simply Sm

which represents the set of all vectors of dimension m over

the set S. The j-th element of a vector V will be written as
Vj instead of Vj1.

A real valued matrix is a matrix over real numbers.
An interval matrix is a matrix whose elements are real
intervals. Alternatively we represent an interval matrix M of
dimensions (m,n) as a tuple of two (m,n) dimensional real-
valued matrices (M ,M ) where Mi j = [M i j,M i j]. M and
M are referred to as the ‘lower’ and ‘upper’ matrices(limits)
of M respectively. Given two real matrices M′ and M′′

having the same dimensions (m,n), we write M′ ≤ M′′ if
∀(i, j) ∈ [m]× [n], M′i j ≤M′′i j .

We also say that a real-valued matrix M is an instance of
an interval matrix M of dimensions (m,n) if both have the
same dimensions and ∀(i, j) ∈ [m]× [n], M i j ≤Mi j ≤M i j.
We write M ∈M to mean that M is an instance of M .

Throughout this paper, bold font symbols will represent
interval matrices (vectors) and their lower and upper limits
and normal font symbols will represent real valued matrices
(vectors) unless explicitly mentioned otherwise. For example,
M ∈ IRm×n is an interval matrix and M, M ∈ Rm×n are real
matrices. M′ ∈M is also a real matrix belonging to Rm×n.

C. Interval Constraints

We refer to a constraint of the form W∗ x+b≤ 0, where
W∈ IRp×n, b∈ IRp×1 and x∈Rn×1 as an interval constraint
over variables x. A valuation v ∈ Rn×1 is said to satisfy the
above interval constraint if ∃W ∈W and ∃b ∈ b such that
W ∗ v+ b ≤ 0. When W,b are point intervals, the interval
constraints are just linear constraints.

Reasoning about such quantified constraints can be hard
in general as opposed to linear constraints. We observe that
when the variables belong to the domain of non-negative real
numbers, the problem of finding the set of values satisfying
an interval constraint reduces to finding the set of values
satisfying a linear constraint corresponding to the lower or
upper matrices of the interval matrices. This is captured by
the following lemma.

Lemma 1: The set of satisfying valuations of an interval
constraint W ∗ x+ b ≤ 0 and that of the linear constraint
W∗ x+b≤ 0 over x ∈ R+n are equal. The set of satisfying
valuations of an interval constraint W∗ x+b≥ 0 and that of
the linear constraint W∗ x+b≥ 0 over x ∈ R+n are equal.

Proof: We prove the above by showing that if a valuation
v satisfies the the linear constraint W∗ x+b≤ 0 then it also
satisfies the interval constraint W∗ x+b≤ 0 and vice-versa.

For a valuation v satisfying W∗ x+b≤ 0, it follows from
the definition of an interval constraint that it satisfies W∗x+
b≤ 0.

For a valuation v satisfying W ∗ x+b ≤ 0, there exists
some W,b such that W ∗v+b≤ 0. Observe that W≤W and
b≤ b and v is non-negative. This implies that W∗ v+b≤
W ∗ v+b≤ 0.

This proves that v ⊢W∗ x+b≤ 0 ⇐⇒ v ⊢W∗ x+b≤ 0.
The proof of the statement v ⊢W ∗ x+b ≥ 0 ⇐⇒ v ⊢

W∗ x+b≥ 0 follows in a similar manner.
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D. Interval Affine Transformation

Given a set of linear transformations which are instances of
the interval matrix W i.e {W |W ∈W}, a set of vectors which
are instances of the interval vector b and a set of real vectors
X , we refer to ⟨W,b⟩(X) as the interval affine transformation
of X with respect to W and b. The set ⟨W,b⟩(X) represents
the union of all the sets which are obtained by the linear
transformation of X by some W ∈W followed by a translation
along some vector b ∈ b.

Definition 1: Given a set S⊆ Rn, an interval matrix W ∈
IRm×n and an interval vector b ∈ IRn, the interval affine
transformation of X w.r.t W and b is:
⟨W,b⟩(X) = {W ∗ x+b |W ∈W,b ∈ b,x ∈ X}

E. Interval Neural Network

An interval neural network (INN) [8] is a new computa-
tional model which is a generalized version of the standard
neural network (NN). Recall that, a neural network is a
computational model that consists of an input layer, an output
layer and multiple hidden layers. Each layer consists of nodes
also called neurons. Each layer of neurons is connected to
the preceding layer of neurons by edges that are ascribed
with some weight values. Given some input values to the
input layer neurons, the values of the neurons at the next
layer are obtained in two steps. First, a weighted sum is
computed using the weighted edges followed by an addition of
a bias associated with the output node. We refer to the above
computation as the affine transformation across a layer. Then,
this is followed by an application of an activation operation.
We will only consider the ReLU activation function. An INN
is structurally identical to a neural network with the only
difference being that the ascribed weights and biases assume
a range of values from an interval instead of a single number.
Consequently, the output of an INN is a set of values. An
INN can also be viewed as a collection of an uncountable
number of neural networks (having the same structure), where
the weights and biases lie in the corresponding weight and
bias intervals of the given INN. Therefore, the output range
of the INN can be understood as the union of the output
ranges of all these neural networks it represents.

Definition 2 (Interval Neural Network): [8]
An interval neural network (INN) is a tuple,
(k, {S(i)}i∈[k]∪{0}, {W(i)}i∈[k], {b(i)}i∈[k]) where,
• k+1 ∈ N refers to the number of layers
• ∀i∈ [k]∪{0}, S(i) is an ordered set of nodes of i-th layer

in the interval neural network. S(0) is the input layer,
S(k) is the output layer and S(i),∀i ∈ [k]/{k} is a hidden
layer.

• ∀i∈ [k], W(i) ∈ IRm×n , where m = |S(i)| and n = |S(i−1)|
represents the weights of the edges between the i−1-th
and i-th layer. The weight of the edge connecting S(i)[p]
and S(i−1)[q] is given by W(i)

pq.
• ∀i ∈ [k], b(i) ∈ IRm×1 , where m = |S(i)| represents the

biases associated with the nodes in the i-th layer. The
bias of the p-th element of S(i) i.e S(i)[p] is given by
b(i)

p .

A neural network (NN) is a special case of an INN when all
intervals in W(i) and b(i) are point intervals.

Now, we define the reachable set of an INN. First we
explain what a valuation of a layer of an INN is. Formally,
a valuation of a layer S(i) of an INN is a vector v ∈ R|S(i)|.
The interpretation being that the jth node of the ordered
set S(i) is assigned the value v j. Given a set of valuations
of input layer I of an INN, we compute the set obtained
by propagating the input valuations across the first hidden
layer. This is done by computing a weighted sum dictated
by the interval weights of the layer and the addition of the
interval bias associated with the output node followed by a
transformation under the ReLU function. Alternatively, this
set is simply the ReLU transformation of the interval affine
transformation of I with respect to W(1) and b(1). This set
is referred to as the reachable set across the first layer. This
process is continued iteratively across the subsequent layers.
The reachable set of the INN is defined to be the reachable
set across the final layer.

Definition 3: [Reachable set of INN] Given a set of
input valuations I , an interval neural network (INN) T =
(k, {S(i)}i∈[k]∪{0}, {W(i)}i∈[k], {b(i)}i∈[k]), the reachable set
Ri across the i-th layer is defined inductively as follows:

R0 = I ,

∀i ∈ [k], Ri := σ(⟨W(i),b(i)⟩(Ri−1))
The reachable set R(T ,I ) is given by Rk. In this work,
we restrict the input set R0 to be a bounded polyhedron set.

We now explore the notion of safety of an INN. An INN is
‘safe’ for an input I if all the elements of the reachable set
belong to a specified ‘safe’ set. Specifications are encoded
as a set of linear constraints over the set of valuations of
the output layer of the INN. An INN is safe for a given
input set with respect to a safety specification if the reachable
set obtained by propagating the input valuations satisfies the
safety specification.

Problem 1 (Safety Verification of INN ): Given an INN
T , an initial set I and a safety specification X (a set of safe
output layer valuations), we say that T is safe with respect
to I and X , written (T ,I ) |= X , if R(T ,I ) ⊆X .
Otherwise the INN is said to be unsafe.

IV. INTERVAL STAR

A popular method for obtaining the reachable set of a neural
network involves representing the set of input valuations by
a data structure and then propagating this structure across
the layers of the network. The Star Set representation [9] has
emerged as a promising representation for this problem owing
to its cheap and fast affine transformation and inexpensive half-
space intersections. However, in the case of INN, obtaining
affine transformations of a star set is neither straightforward
nor efficient. We introduce a novel set representation Interval
Star Set which is a generalization of the star set for obtaining
the reachable set of an INN.

An Interval Star Θ has three components: a center interval
vector c, a set of basis interval vectors V and a predicate
P. The set of points represented by the Interval Star Θ is
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given by the linear combination of the basis interval vectors
in V with scalars ‘α’ satisfying the predicate P followed by
a translation along the center interval vector c.

Definition 4 (Interval Star): An Interval Star Θ is a tuple
⟨c,V,P⟩ where c ∈ IRn×1, V = {v1,v2, · · · ,vm} is a set of m
interval vectors in IRn which is represented as an interval
matrix having vi for i∈ [m] as column vectors and P : R+m→
{⊤,⊥} is a predicate.

Definition 5: [Set represented by an Interval Star] The
semantics of the set represented by the interval star Θ =
⟨c,V,P⟩ is given as:

JΘK = { c+
m

∑
i=1

(αivi) | c ∈ c,V ∈ V and P(α1, · · · ,αm) =⊤}

We will sometimes refer to the tuple Θ and set of states
JΘK as Θ interchangeably. For this work, we only consider
the predicate P to be a conjunction of linear constraints,
P(α) :=Cα +d ≤ 0 where for p linear constraints, C ∈Rp×n,
α is the vector of n non-negative variables, i.e α ∈ R+n and
d ∈ Rp×1. An interval star is empty if and only if P(α) is
empty.
We note that an interval star set and star set are identical
representations when all intervals in c and V of the interval
star are point intervals.

Given a set of valuations represented as an interval star
Θ at a layer of an INN, in order to compute the reach set
across this layer, we first need to compute the interval affine
transformation of JΘK with respect to the weight and bias of
the layer. Obtaining the interval star representation of this set
is challenging and may contain a large number of basis vectors
and a large number of constraints in the predicate. Instead, we
compute an interval star which is an over-approximation of the
exact interval affine transformed set. This over-approximate
interval star has the advantage of being easy to obtain in a
fast manner as it only involves interval matrix arithmetic.

Definition 6: [Over-Approximate Interval Affine Trans-
formation of an Interval Star]. Given an Interval Star
Θ = ⟨c,V,P⟩, we give an over-approximate interval affine
transformation of Θ with respect to M and b represented as
⟨W,b⟩∗(Θ) where the semantics of the set it represents is
given by:

J⟨W,b⟩∗(Θ)K = ⟨Mc+b,MV,P⟩
A. Properties of Interval Stars

We discuss some properties of interval stars in the following
propositions. Some of the proofs are included in the appendix
section.

Proposition 1: Any bounded convex polyhedron set can
be represented as an Interval Star

Proof: Consider a bounded convex polyhedron set P :=
{x |Cx+d ≤ 0,x ∈Rn}. Let B = I1×I2×·· ·×In be any
box containing P where Ii ∈ IR for i ∈ [n] and let b be the
vertex of B such that b = [I 1,I 2, · · · ,I n]

T .
The interval star Θ with the center c such that c = c = b,

the basis vectors V = {v1,v2, · · · ,vn} such that vi = vi = ei
where ei is the ith canonical basis vector of Rn and predicate

P(α) :=Cα +Cb+d ≤ 0 is equivalent to the polyhedron P .
The above is true as x ∈ Θ can be written as x = b+α . If
this x ∈P then this implies that C(b+α)+ d ≤ 0 which
is exactly the predicate P of Θ. Also given a point x ∈P ,
choosing α to be x− b will result in x belonging to Θ as
well.

We also need to check that α ∈ R+n to be consistent with
the definition of an interval star. We observe that for x ∈Θ,
x = b+α . Since Θ and P represent the same set, x ∈P
which implies that α = x−b≥ 0 as b is the lowest vertex of
the box containing P .

Given an input set represented by an interval star set, to
obtain the reach set of an INN we need to compute a series
of interval affine transformations and ReLU transformations.
Instead of computing the exact interval affine transformation
of an interval star, we compute the interval star as described
in Definition 6 and show that it is an over-approximation
of the exact interval affine transformation of an interval star.
For performing the ReLU transformation of an interval star
set, we need to be able to compute the intersection of an
interval star set with a half-space which we explain below in
Proposition 3.

Proposition 2: Given an interval star Θ, an interval matrix
M and an interval offset vector b,

⟨M,b⟩(JΘK) ⊆ J⟨M,b⟩∗(Θ)K

Proof: The above proposition follows as a consequence
of Definitions 1, 5, 6 and the fact that A′ ∗B′ ∈ A∗B where
A′ ∈ A,B′ ∈ B. In general, we have that,

{A′ ∗B′ |A′ ∈ A,B′ ∈ B} ⊆ {X ∈ A∗B}

Refer to section 7.2 of [23]
Proposition 3: [Interval Star and Half Space Intersection]

The intersection of a set represented by an Interval Star
Θ := ⟨c,V,P⟩ and a half space H := {x | H ∗ x+ g ≤ 0}
is given by the set represented by another star Θ̂ with the
following characteristics:

Θ̂ = ⟨ĉ, V̂, P̂⟩, ĉ = c, V̂ = V, P̂ = P∧P′,

P′(α) := (H×V)α +(H× c)+g≤ 0

.
Proof: For any x ∈ JΘK∩H , we have,

x ∈ y = c+
n

∑
i=1

αivi
∧

(Hx+g≤ 0)

Or equivalently,

x ∈ y = c+
n

∑
i=1

αivi
∧

∃c ∈ c ∃V ∈ V : (H×V )×α +(H× c)+g≤ 0

Which can be represented as,

x ∈ y = c+
n

∑
i=1

αivi
∧

(H×V)×α +(H× c)+g≤ 0
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Using Lemma 1, we can reduce the quantified linear con-
straints to linear constraints and get,

x ∈ y = c+
n

∑
i=1

αivi
∧

(H×V)×α +(H× c)+g≤ 0

Which implies that the intersection is another Interval Star
with the same center c and basis vectors vi as Θ and an
updated predicate P̂ = P∧P′, P′(α) := (H×V)α +(H× c)+
g≤ 0

V. STAR-BASED REACHABILITY ANALYSIS OF INNS

Given an INN, and an input bounded polyhedron set
I , our main goal is to compute an over-approximation of
the reachable set of I across the INN as per Definition
3. We first begin by converting a given bounded convex
polyhedron input set I into an interval star using Proposition
1. The reach set is computed layer-by-layer, wherein each
layer we first compute the over-approximate interval affine
transformation(with respect to the layer’s weights and biases)
of the reach set across the preceding layer and follow it by a
ReLU transformation. The over-approximate interval affine
transformation of the interval star Θ = ⟨c,V,P⟩ with respect
to the weight W and bias b is quickly computed as another
interval star Θ′ = ⟨Wc+b,WV,P⟩ as per Definition 6.

The crux of the problem lies in computing the exact image
of an interval star Θ across the ReLU layer. As in the existing
star based verification method [7], we consider the ReLU
function as a series of σi functions applied one after the other,
i.e for a layer L of n neurons, the reachable set is

RL = σn(σn−1(· · ·σ1(Θ)) · · ·)

The σi(.) function applies the ReLU activation on the input
for only that particular neuron i. To do so, first the input star
Θ = ⟨c,V,P⟩ is split into two stars Θ1 = ⟨c,V,P1⟩ and Θ2 =
⟨c,V,P2⟩ according to Proposition 3 where Θ1 = Θ∧ xi ≥ 0
and Θ2 = Θ∧xi ≤ 0. Then we check whether Θ1 and Θ2 are
empty using linear programming(LP) feasibility checking. If
Θ2 is non-empty, since all x ∈Θ2 have xi ≤ 0, the activation
of ReLU on the neuron i must map all xi to 0. This is done
by multiplying the center and basis vectors of Θ2 with the
mapping matrix M = [e1, · · · ,ei−1,0,ei+1, · · · ,en]. That is,

Θ2←M ∗Θ = ⟨Mc,MV,P2⟩

If Θ1 is non-empty, since xi ≥ 0, the ReLU activation on
neuron i is the identity transformation that is,

Θ1←Θ = ⟨c,V,P1⟩

Therefore, σi(Θ) = ⟨c,V,P1⟩∪ ⟨Mc,MV,P2⟩.
Our reachability algorithm works as follows. A given set of

inputs to an INN T is represented by an interval star Θ. We
propagate interval stars across the INN layer-by-layer. We first
compute the over-approximate interval affine transformation
of the input star Θ with respect to the starting layer’s weights
W(1)and biases b(1). The ReLU image of of the resultant star
is obtained by computing a series of σi images. Computing a
σi image across a neuron i involves intersecting the star with
two half-spaces xi ≥ 0 and xi ≤ 0 to produce two intermediate

stars Θ
+
j and Θ

−
j respectively. These stars are checked for

emptiness using an LP feasibility solver. This is done by
checking if the predicates associated with the stars admit
any feasible solutions. The intermediate non-empty stars
then undergo a ReLU transformation across the neuron i. In
subsequent layers, the input to the layers may be a collection
of interval stars. We perform the above operations on each
of the individual stars and obtain the reachable set across the
layer as a collection of all the output stars computed. The
set of stars obtained at the final layer T (Θ)′ represent an
over-approximation of the reachable set of the INN. This is
explained below.

Lemma 2: For a given input set Θ and INN T , The output
of the reachability algorithm, T (Θ)′ is an over-approximation
of T (Θ) (the reach set).

Proof: Consequence of Proposition 2.
We also discuss about the verification complexity of

determining the safety of an INN T for a given input set Θ

and a safety specification X in the below theorem.
Theorem 1 (Verification Complexity): Let T be a N-

neuron INN , Θ be a Interval Star with p linear constraints and
m-variables in the predicate, X be a safety specification with
s linear constraints. In the worst case, the safety verification
or falsification problem T (Θ)′ |=X is equivalent to solving
2N feasibility problems in which each has N + p+ s linear
constraints and m variables.

Proof: Proof is same as that in [7] where Θ is a star
set and T is a NN.

VI. EXPERIMENTS

In this section, we perform a series of experiments to
evaluate the scalability and effectiveness of our method in
computing the reach set of INNs and compare it with the
existing MILP based verification method for INNs [8].

Setup: Our tool is written using Python 3.8. We use the
Gurobi solver for solving LP and MILP problems. We set up a
python interface to MATLAB-R2022a and used CORA-2022
toolbox for all interval matrix arithmetic. All experiments
were run on a virtual Ubuntu 20.04 with single core on a
host Mac machine.

Range computation times for large synthetic INNs: In the
following experiments, we generated INNs having 2 input
neurons and 2 output neurons. The input range for both the
neurons was set to [0.5,1.0]. The values of the weights and
biases of the INN were uniformly randomly generated from
the range [−1.0,1.0]. We obtained different INNs by varying
the number of hidden layers and the number of neurons
per hidden layer. For larger and more practical networks,
the MILP method runs into issues whereas the interval star
method does not.

For large networks, the MILP encoding contains large
constants and the solver is unable to handle such large
constants and reports that the model is unbounded. The star
method does not have such a limitation and can be used
on very large networks. We demonstrate few examples of
this in Table I. In, Table I, ‘Nodes’ refers to the number of
neurons per hidden layer, ‘Layers’ refers to number of hidden
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Nodes Layers Star MILP
15 15 1.311 0.291
20 20 2.283 MU
50 20 10.048 MU

TABLE I
OUTPUT RANGE COMPUTATION TIMES BETWEEN OUR METHOD AND THE

MILP BASED METHOD ON RANDOMLY GENERATED INNS.

Network Num Stars Star time MILP time
2_9 36 36.292 320.925
3_7 151 113.589 583.817
5_7 378 91.593 595.197

TABLE II
RANGE COMPUTATION TIMES ON INNS DERIVED FROM ACAS XU

NETWORKS BY PERTURBING THE WEIGHTS AND BIASES BY 0.00001.

layers, ‘Star’ refers to the time (in seconds) taken by our
method to compute the reach set, ‘MILP’ refers to the time
(in seconds) taken by the MILP method. ‘MU’ refers to the
‘Model Unbounded’ message returned by the MILP solver.

Range computation time comparison on INNs derived
from ACAS XU benchmarks: We consider the ACAS XU
benchmarks which are neural networks with 6 hidden layers
with 50 neurons each [1]. Specifically we considered the net-
works 2_9, 5_7, 3_7 from the VNN-COMP 2021 benchmark
repository [24]. To convert these networks to INNs, we added
a perturbation of 0.00001 to all the weights and biases of
the network. We compute the output range of these networks
using the input range X0 = [0.0,0.0], X1 = [0.0,0.009549297],
X2 = [0.493380324,0.5], X3 = [0.45,0.5], X4 = [0.45,0.5]. We
observe that the MILP method is considerably slower than our
method on ACAS XU derived INNs. Table II presents some
examples. In Table II, ‘Network’ refers to the index number
of the network in the repository. ‘Num Stars’ refers to the
number of stars output by the our method. ‘Star time’ refers
to the time (in seconds) taken by our method to compute the
range. ‘MILP time’ refers to the time (in seconds) taken by
the MILP method to compute the range.

We also point out that the verification time of our approach
is positively correlated with the number of stars output by the
method. Our implementation is baseline and does not include
any optimizations present in the star based NN verification
tool nnenum [21] which can further reduce the verification
time of our approach.

VII. CONCLUSIONS

We have implemented a reachability method which per-
forms better than the existing verification method for verifying
large and practical INNs. For future work, we will extend
the optimizations for star based reachability used in the state-
of-the-art NN verification tool nnenum [21] to our method.
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