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Abstract— This paper proposes a fixed-time fault-tolerant
controller for n-DOF robotic manipulators with actuator partial
loss of effectiveness (LOE) faults, external disturbances, and
unknown nonlinearities. A novel fixed-time extended state
observer (FxTESO) is designed to estimate joint velocities and
lumped uncertainty, and the estimation error can theoretically
be arbitrarily small by increasing the bandwidth. An adaptive
law is designed to estimate an upper bound related to Fx-
TESO error, which can enhance the controller robustness. The
proposed controller can guarantee practical fixed-time stability
of the manipulator, and require no velocity measurement and
prior information about lumped uncertainty. The comparative
experiments with the other state-of-the-art controllers on a 4-
DOF manipulator under different external disturbances and
actuator faults verify the superiority of the proposed controller.

I. INTRODUCTION

Nowadays, robotic manipulators have made significant
contributions to various fields, such as industrial manufactur-
ing, healthcare, and aerospace, etc. Therefore, high-accuracy
control, strong reliability, and fast response speed are crucial
for manipulators. However, due to the complex structure and
dynamic working environment, the manipulators are often af-
fected by unknown nonlinearities and external disturbances.
Many studies have been conducted on these issues, such
as in [1], a sliding mode disturbance observer is designed
to compensate for uncertainty and disturbance. In [2], the
RBF neural network are used to estimate the unknown
manipulator dynamics and external disturbance to address
their negative effects. In [3], two adaptive laws are designed
to estimate the uncertain kinematics and uncertain dynamics
of the manipulator respectively, and the developed controller
can guarantee that the estimation error and tracking error
converge globally exponentially.

The aforementioned studies only consider the effects of
uncertainties and disturbances, without considering the issue
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of faults. However, manipulators are often used for high-
load or high-frequency tasks, which can easily lead to
actuator faults such as partial loss of effectiveness (LOE)
faults, bias faults, or stuck faults, etc. Fault-tolerant control
(FTC) is an effective strategy for handling system faults. For
example, in [4], an FTC controller based on adaptive fuzzy
integral sliding mode control is developed, and a hybrid
fuzzy approximation and disturbance observer is designed to
estimate the actuator faults. In [5], a learning-based adaptive
FTC method is proposed, which utilizes RBF networks to
identify system uncertainties and actuator faults. In [6], a
fault diagnosis based on time delay estimation (TDE) is pro-
posed, and developed an FTC controller by combining TDE-
based fault diagnosis, nonsingular fast terminal sliding mode
control (NFTSMC), and high-order sliding mode control.

However, these approaches only guarantee that the system
states are uniformly ultimately bounded (UUB) or finite
time convergence, and the settling time is related to the
initial conditions. Therefore, fixed-time control is proposed
[7] to ensure that the system states can converge within
a fixed time constant, and the settling time is independent
of the initial conditions. There have been some studies on
fixed-time control of manipulators, such as fixed-time neural
network control [8], fixed-time adaptive fuzzy control [9],
and reinforcement learning-based fixed-time control [10],
etc. Fixed-time FTC of manipulators has also been studied
by researchers [11], [12]. In addition, most robotic ma-
nipulator controllers require joint velocity, but in practice,
manipulators may not be equipped with velocity sensors,
and the approximate velocity obtained by differentiating the
position signal will be affected by noise [13]. Extended state
observer (ESO) can estimate both unmeasured states and
disturbances of the system simultaneously. Besides, fixed-
time ESO (FxTESO) has also been proposed to guarantee
that the estimation errors converge within a fixed time [14].

Inspired by the aforementioned studies and issues, this
paper proposes a FxTESO-based fixed-time fault-tolerant
controller for manipulators with actuator partial LOE faults,
external disturbances, and unknown nonlinearities. The main
contributions are as follows:

1) In this paper, a novel FxTESO is designed to estimate
the joint velocities and lumped uncertainty of the
manipulator. The estimation errors can achieve fixed
time convergence, and the errors can be reduced by
increasing the bandwidth ωo of FxTESO.

2) The proposed controller can guarantee that the tracking
error of each joint converges to a neighborhood of zero
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within a fixed time, and the settling time is independent
of the initial conditions. An adaptive law is designed
to estimate an upper bound related to the estimation
error of FxTESO, which can enhance the robustness
of the controller.

3) The controller proposed in this paper uses estimated
joint velocities, eliminating the need for velocity sen-
sors, and avoiding additional significant noise gener-
ated by differentiating the position signal. In addition,
the proposed controller requires no prior information
about the lumped uncertainty.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Model of Robotic Manipulator

The dynamic model of a class of rigid manipulator with
n-links is constructed as

q̈ = M−1 (q) τ +M−1 (q) ((Λ− In) τ −C (q, q̇) q̇)

+M−1 (q) (−G (q)− F (q̇)− τd −∆)

= M−1 (q) τ + d(t)

(1)

where q, q̇, q̈ ∈ Rn are the position, velocity, and acceler-
ation of the joints, τ ∈ Rn is the driving torque, M (q) ∈
Rn×n is the inertia matrix, C (q, q̇) is the Centripetal and
Coriolis matrix, G (q) is the vector of gravitational torque,
and F (q̇) is the friction vector. In addition, Λ = diag {λi}
is the matrix of the actuator LOE fault coefficients with
λi ∈ (0, 1], In is the identity matrix, τd is the external
disturbances, ∆ = ∆Mq̈ + ∆Cq̇ + ∆G is the model
uncertainty. Matrix C (q, q̇), vectors G (q), F (q) and ∆
are difficult to obtain, thus the lumped uncertainty d (t) =
[d1 (t) , · · · , dn (t)]T contains actuator fault components, ex-
ternal disturbances, and unknown nonlinearities.

Assumption 1 : The lumped uncertainty d (t) and its
derivative ḋ (t) are bounded, such that ∥d (t)∥ ≤ d̄ and∥∥∥ḋ (t)

∥∥∥ ≤ γ̄, where d̄ and γ̄ are unknown positive constants.

B. Preliminaries

Definition 1 [15]: A function F is homogeneous of
degree d with respect to the weights (r1, · · · , rn) ∈ Rn

>0

if F (ρr1x1, · · · , ρrnxn) = ρdF (x1, · · · , xn) for all ρ > 0.
A vector field v is homogeneous of degree d with respect

to the weights (r1, · · · , rn) ∈ Rn
>0 if the ith component vi

of v satisfies vi (ρr1x1, · · · , ρrnxn) = ρri+dvi (x1, · · · , xn)
for all 1 ≤ i ≤ n and ρ > 0.

Lemma 1 [14]: If continuous functions F1(x) > 0 and
F2(x), x ∈ Rn, are homogeneous with respect to r of degree
l1 > 0 and l2 > 0, there exists

ϑ1[F1 (x)]
l2
l1 ≤ F2 (x) ≤ ϑ2[F1 (x)]

l2
l1 (2)

where ϑ1 = min{g:F1(g)=1}F2 (g) and ϑ2 =
max{g:F1(g)=1}F2 (g).

Lemma 2 [16]: If there exists a candidate Lyapunov
function V (x), x ∈ Rn, satisfies

V̇ (x) ≤ −αV p (x)− βV q (x) (3)

where α > 0, β > 0, 0 < p < 1, q > 1 are positive constants,
then the origin of the system ẋ = f (x (t)) is fixed-time
stable and the settling time T satisfies

T ≤ Tmax =
1

α (1− p)
+

1

β (q − 1)
. (4)

If the following inequality holds:

V̇ (x) ≤ −αV p (x)− βV q (x) + η (5)

where 0 < η < ∞, then the trajectory of ẋ = f (x (t)) is
practical fixed-time stable and the settling time T satisfies

T ≤ Tmax =
1

αϕ (1− p)
+

1

βϕ (q − 1)
(6)

where 0 < ϕ < 1 is a positive constant, and the residual set
of the solution is

x ∈

{
V (x) ≤ min

{(
η

(1− ϕ)α

) 1
p

,

(
η

(1− ϕ)β

) 1
q

}}
.

(7)

Lemma 3 [17]: For ∀ϑ, χ, and any positive constant ς , ι
and ω, the following inequality holds:

|ϑ|ς |χ|ι ≤ ς

ς + ι
ω|ϑ|ς+ι

+
ι

ς + ι
ω

−ς
ι |χ|ς+ι

. (8)

Lemma 4 [18]: For ∀x ≥ y, c > 1 and c is a odd number,
the following inequality holds:

y(x− y)
c ≤ c

c+ 1

(
xc+1 − yc+1

)
. (9)

Lemma 5 : For νi ∈ R, i = 1, · · · , n, 0 < β1 < 1, and
β2 > 1, the following inequalities hold:(

n∑
i=1

|νi|

)β1

≤
n∑

i=1

|νi|β1 ,

(
n∑

i=1

|νi|

)β2

≤ nβ2−1
n∑

i=1

|νi|β2 .

(10)

III. MAIN RESULTS

A. Design of Fixed-Time Extended State Observer

The lumped uncertainty d(t) is defined as an extended
state variable x3, and the derivative of x3 is ẋ3 = γ,
where γ = [γ1, · · · , γn]T is an unknown function, then
the states of the manipulator model are

[
xT
1 ,x

T
2 ,x

T
3

]T
=[

qT , q̇T ,dT (t)
]T

. The FxTESO is designed as
˙̂x1 = x̂2 + g1ω0

(
Sigα1 (x̃1) + Sigβ1 (x̃1)

)
˙̂x2 = x̂3 + g2ω

2
0

(
Sigα2 (x̃1) + Sigβ2 (x̃1)

)
+M−1τ

˙̂x3 = g3ω
3
0

(
Sigα3 (x̃1) + Sigβ3 (x̃1)

)
(11)

where x̂j (j = 1, · · · , 3) is the state estimation, x̃j =
xj − x̂j is the estimation error, gj is the design gain,
ω0 is the bandwidth of the FxTESO, Siga (x) =
[siga (x1) , · · · , siga (xn)]T with siga (x) = sgn (x) |x|a,
αj = j (α− 1) + 1, βj = 1/α+ (j − 1) (α− 1), where
α ∈ (1− ε1, 1) and ε1 > 0 is a small constant.

Theorem 1 : The state estimation error x̃j = xj − x̂j

can converge to a neighborhood of the origin within a fixed
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time, and the convergence domain can be arbitrarily small
by increasing the bandwidth ω0.

Proof: According to (1) and (11), the estimation error
dynamics of the FxTESO can be described as

ξ̇1 = ω0ξ2 − g1ω0

(
Sigα1 (ξ1) + Sigβ1 (ξ1)

)
ξ̇2 = ω0ξ3 − g2ω0

(
Sigα2 (ξ1) + Sigβ2 (ξ1)

)
ξ̇3 = −g3ω0

(
Sigα3 (ξ1) + Sigβ3 (ξ1)

)
+ γ

/
ω2
0

(12)

where ξ =
[
ξT1 , ξ

T
2 , ξ

T
3

]T
=
[
x̃T
1 , x̃

T
2

/
ω0, x̃

T
3

/
ω2
0

]T
, and

ξj = [ξj,1, · · · , ξj,n]T . Firstly, consider the following system:

ξ̇ = Sα (ξ) (13)

where

Sα (ξ) =

ω0ξ2 − g1ω0Sig
α1 (ξ1)

ω0ξ3 − g2ω0Sig
α2 (ξ1)

−g3ω0Sig
α3 (ξ1)

 . (14)

Define v =
[
vT
1 , · · · ,vT

n

]T
with vi =

[ξ1,i, · · · , ξ3,i]T (i = 1, · · · , n). If α = 1, the error
system (13) can be written as v̇ = ω0 (In ⊗A)v with
A = [−g1, 1, 0;−g2, 0, 1;−g3, 0, 0], and ⊗ represents
Kronecker product. If all gains are designed such that the
matrix A is Hurwitz, then there exists a Lyapunov equation
PA + ATP = −Q, where P and Q are positive definite
matrices, and P is symmetric. Consider the following
candidate Lyapunov function:

V1 (α, ξ) = zT (In ⊗P) z (15)

where z =
[
zT1 , · · · , zTn

]T
with zi = fz (vi) =[

sig
1
µ (ξ1,i) , sig

1
µα1 (ξ2,i) , sig

1
µα2 (ξ3,i)

]T
, µ = α1α2α3.

According to Definition 1, the function V1 (α, ξ) is homo-
geneous of degree l1 = 2/µ with respect to weight r =
(1, α, 2α− 1). The Lie derivative LSα

V1 (α, ξ) of V1 (α, ξ)
along Sα (ξ) is homogeneous of degree l2 = 2/µ + α − 1
with respect to r. According to Lemma 1 , there exists
κα = −max{g:V1(α,g)=1}LSα

V1 (α, g) > 0 such that the
following inequality holds:

LSαV1 (α, ξ) ≤ −καV l2/l1
1 (16)

where lim
α→1

κα = λmin (Q)/λmax (P), λmin (·) and λmax (·)
are the minimum and maximum matrix eigenvalues, l2/l1 =
1 + µ (α− 1)/2 < 1.

Then we consider the following system:

ξ̇ = Sβ (ξ) (17)

where

Sβ (ξ) =

 −g1ω0Sig
β1 (ξ1)

−g2ω0Sig
β2 (ξ1)

−g3ω0Sig
β3 (ξ1)

 . (18)

The Lie derivative LSβ
V1 (α, ξ) of V1 (α, ξ) along Sβ (ξ)

is homogeneous of degree l3 = 2/µ+1/α−1 with respect to
r. Hence, there exists κβ = −max{g:V1(α,g)=1}LSβ

V1 (α, g)
such that

LSβ
V1 (α, ξ) ≤ −κβV l3/l1

1 (19)

where l3/l1 = 1 + µ (1/α− 1)/2 > 1.
Finally, the derivative of V1 (α, ξ) along the estimation

error dynamics (12) yields

V̇1 (α, ξ) = LSα
V1 (α, ξ) + LSβ

V1 (α, ξ) +

n∑
i=1

∂V1
∂ξ3,i

· γi
ω2
0

(20)
where ∂V1/∂ξ3,i is homogeneous of degree l4 = 2/µ−2α+1
with respect to r, and the following inequality holds:

κ1,iV
l4/l1
1 ≤ ∂V1

∂ξ3,i
≤ κ2,iV

l4/l1
1 (21)

where κ1,i = min{g:V1(α,g)=1}∂V1/∂ξ3,i and κ2,i =
max{g:V1(α,g)=1}∂V1/∂ξ3,i.

According to (16), (19) and (21), we have

V̇1 (α, ξ) ≤ −καV l2/l1
1 − κβV

l3/l1
1 + κmγ̄V

l4/l1
1

/
ω2
0 (22)

with κm =
∑n

i=1 max {|κ1,i| , |κ2,i|}. Then (22) can be
rewritten as

V̇1 (α, ξ) ≤ −καV l2/l1
1 − κβ (1− δ)V

l3/l1
1

− V
l4/l1
1

(
κβδV

l3/l1−l4/l1
1 − κmγ̄

/
ω2
0

) (23)

where 0 < δ < 1 is a positive constant. It is obvious
that when κβδV

l3/l1−l4/l1
1 ≥ κmγ̄

/
ω2
0 , then V̇1 (α, ξ) ≤

−καV l2/l1
1 − κβ (1− δ)V

l3/l1
1 . According to Lemma 2, the

estimation error of FxTESO will converge to the following
neighborhood around zero:

D1 =

{
z| ∥z∥ ≤

√
V̄1
/
λmin (P)

}
(24)

where V̄1 =
(
κmγ̄

/
κβδω

2
0

)l1/(l3−l4), the settling time T1 is
bounded by

T1 ≤ Tmax 1 =
1

κα (1− l2/l1)
+

1

κβ (1− δ) (l3/l1 − 1)
.

(25)
■

Remark 1 : It is worth noting that l1/(l3 − l4) > 0, so V̄1
can be reduced arbitrarily by increasing ω0.

Remark 2 : According to (24), it can be deduced that
|x̃2,i| ≤ x̄2 = ω0

(
V̄1
/
λmin (P)

)µα1
2 , where x̃2,i is the ith

component of x̃2.

B. Adaptive Fixed-Time Fault-Tolerant Controller
An adaptive fixed-time fault-tolerant controller is designed

to guarantee the actual trajectory q of manipulator joints
track the desired trajectory qd within a fixed time.

The sliding surface is designed as

s = q̇d − x̂2 +H1U
a (e) +H2Sig

b (e) (26)

where 0 < a < 1, b > 1, s = [s1, · · · , sn]T , e =
qd − q is the tracking error and e = [e1, . . . , en]

T , H1 =
diag {h1,1, · · · , h1,n} and H2 = diag {h2,1, · · · , h2,n} are
parameter matrices, Ua (e) = [ua (e1) , · · · , ua (en)]T with

ua (ei) =

{
sgn(ei)|ei|a, |ei| ≥ σ

σa−1ei, |ei| < σ
(27)
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where σ is a small positive constant. The derivative of s is
as follows:

ṡ = q̈d − ˙̂x2 +
(
H1F

a (e) +H2R
b (e)

)
ė

= q̈d −
(
ẋ2 − ˙̃x2

)
+
(
H1F

a (e) +H2R
b (e)

)
(q̇d − x̂2)

−
(
H1F

a (e) +H2R
b (e)

)
x̃2

= −M−1 (q) τ − x3 +Θ+Ψ
(28)

where Θ = q̈d +
(
H1F

a (e) +H2R
b (e)

)
(q̇d − x̂2), Ψ =

˙̃x2 −
(
H1F

a (e) +H2R
b (e)

)
x̃2 and Ψ = [ψ1, · · · , ψn]

T ,
Rb (e) = diag

{
b|e1|b−1

, · · · , b|en|b−1
}

, and Fa (e) =

diag {fa (e1) , · · · , fa (en)} with

fa (ei) =

{
a|ei|a−1

, |ei| ≥ σ

σa−1, |ei| < σ
. (29)

Assumption 2 : The desired trajectory qd and its deriva-
tives q̇d, q̈d are bounded such that ∥qd∥ ≤ q̄1, ∥q̇d∥ ≤ q̄2,
and ∥q̈d∥ ≤ q̄3, where q̄1, q̄2, and q̄3 are unknown positive
constants.

Remark 3 : According to FxTESO (11), Theorem 1,
Assumption 1 and 2, we can know that ψi and x̃3,i are
bounded, so there exists |ψi| + |x̃3,i| ≤ ki, where ki is an
unknown constant.

The adaptive fixed-time fault-tolerant controller is de-
signed as follows:

τ = M (q)

(
K̂tanh (s⊙ ō) +AsSig

2m−1 (s)

+BsSig
2l−1 (s)− x̂3 +Θ

)
(30)

where K̂ = diag
{
k̂1, · · · , k̂n

}
, k̂i is the estimation of ki,

and the estimation error is k̃i = ki − k̂i, tanh (s⊙ ō) =

[tanh (s1/o1) , · · · , tanh (sn/on)]T , ō =
[
o−1
1 · · · , o−1

n

]T
,

oi is design small constant, As = diag {as,1, · · · , as,n} and
Bs = diag {bs,1, · · · , bs,n} are parameter matrices, 0 < m <
1, l > 1, and ⊙ represents Hadamard product.

Substituting (30) into (28), we have

ṡi = −k̂i tanh (si/oi)− as,isig
2m−1 (si)− bs,isig

2l−1 (si)

− x̃3,i + ψi.
(31)

The adaptive law k̂i is designed as

˙̂
ki = φi tanh (si/oi) si − ak,ik̂i − bk,ik̂

2l−1
i (32)

where φi, ak,i, and bk,i are positive parameters. The diagram
of the proposed controller is shown in Fig. 1. FxTESO only
requires position q to obtain velocity estimate ˆ̇q and lumped
uncertainty estimate d̂. The sliding surface s is calculated
from the desired trajectory qd, desired velocity q̇d, and
velocity estimate ˆ̇q. In addition, the adaptive law K̂, lumped
uncertainty estimate d̂, and sliding surface s are used to
generate controller to drive the manipulator.

Theorem 2 : For the manipulator system (1) with actuator
partial LOE faults, external disturbances, and unknown non-
linearities, after time T1, the designed controller (30) with

Actuator 
faults

Δu
Δt

Desired 
trajectory

Manipulator

dq

Sliding surface 
(26)

Fixed-time extended 
state observer (FxTESO)

(11)

q

Fixed-time 
fault-tolerant controller (30)Adaptive law 

(32)

dq
q̂

s
d̂

K̂ τ

External
disturbances

Unknown
nonlinearities

Fig. 1. Diagram of the proposed controller.

adaptive law (32) can guarantee the sliding surface si and
the estimation error k̃i convergence to a small neighborhood
of zero within a fixed time Tmax 2.

Proof: Consider the following Lyapunov function:

V2 =

n∑
i=1

s2i
2

+

n∑
i=1

k̃2i
2φi

. (33)

The derivative of V2 with respect to time is

V̇2 =

n∑
i=1

(
−ki tanh (si/oi) si − as,i|si|2m − bs,i|si|2l

)
+

n∑
i=1

(
ak,i
φi

k̃ik̂i +
bk,i
φi

k̃ik̂
2l−1
i

)
+

n∑
i=1

(ψi − x̃3,i) si.

(34)
According to −ki tanh (si/oi) si ≤ 0.2785kioi − ki |si|

[19] and Remark 3, (34) can be rewritten as

V̇2 ≤
n∑

i=1

(
0.2785kioi − ki |si| − as,i|si|2m − bs,i|si|2l

)
+

n∑
i=1

(
ak,i
φi

k̃ik̂i +
bk,i
φi

k̃ik̂
2l−1
i + (|ψi|+ |x̃3,i|) |si|

)
≤

n∑
i=1

(
0.2785kioi − as,i|si|2m − bs,i|si|2l

)
+

n∑
i=1

(
ak,i
φi

k̃ik̂i +
bk,i
φi

k̃ik̂
2l−1
i

)
.

(35)
The following expression can be obtained by using

Young’s inequality:
ak,i
φi

k̃ik̂i =
ak,i
φi

k̃iki −
ak,i
φi

k̃2i ≤ −ak,i
2φi

k̃2i +
ak,i
2φi

k2i . (36)

Based on lemma 3, let ϑ = k̃2i

/
2φi, χ = 1, ς = m,

ι = 1−m and ω = 1/m, the following inequality holds:(
k̃2i
2φi

)m

− (1−m)m
m

1−m ≤ k̃2i
2φi

. (37)

If the initial value of k̂i satisfies k̂i (0) ≥ 0, then k̂i (t) ≥
0,∀t ≥ 0 [18], and according to lemma 4, we have

k̃ik̂
2l−1
i = k̃i

(
ki − k̃i

)2l−1

≤ (2l − 1)

2l

(
k2li − k̃2li

)
. (38)
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Substituting (36), (37) and (38) into (35) yields

V̇2 ≤ −
n∑

i=1

as,i2
m

(
s2i
2

)m

−
n∑

i=1

ak,i

(
k̃2i
2φi

)m

−
n∑

i=1

bs,i2
l

(
s2i
2

)l

−
n∑

i=1

2l − 1

l
bk,i(2φi)

l−1

(
k̃2i
2φi

)l

+

n∑
i=1

(
0.2785kioi + ak,i (1−m)m

m
1−m

)
+

n∑
i=1

(
ak,ik

2
i

2φi
+
bk,i
φi

2l − 1

2l
k2li

)
.

(39)
Then (39) can be simplified to the following form

V̇2 ≤ −ℏ

(
n∑

i=1

(
s2i
2

)m

+

n∑
i=1

(
k̃2i
2φi

)m)

− λ̄

 n∑
i=1

(
s2i
2

)l

+
n∑

i=1

(
k̃2i
2φi

)l
+ η

(40)

where

ℏ = min
1≤i≤n

{as,i2m, ak,i} ,

λ̄ = min
1≤i≤n

{
bs,i2

l,
bk,i (2l − 1)

l
(2φi)

l−1

}
,

η =

n∑
i=1

(
0.2785kioi + ak,i (1−m)m

m
1−m

)
+

n∑
i=1

(
ak,ik

2
i

2φi
+
bk,i
φi

2l − 1

2l
k2li

)
.

(41)

According to lemma 5, it can be obtained that

V̇2 ≤ −ℏ

(
n∑

i=1

s2i
2

+

n∑
i=1

k̃2i
2φi

)m

− λ̄(2n)
1−l

(
n∑

i=1

s2i
2

+

n∑
i=1

k̃2i
2φi

)l

+ η

= −ℏV m
2 − ℓV l

2 + η

(42)

where ℓ = λ̄(2n)
1−l.

It can be derived from (42) and Lemma 2, the sliding
surface si and the estimation error k̃i converge to a small
set around origin within a fixed time, and the set is define
as

D2 =
{(
si, k̃i

)
|V2 ≤ V̄2

}
,

V̄2 = min

{(
η

(1− ϕ) ℏ

) 1
m

,

(
η

(1− ϕ) ℓ

) 1
l

}
(43)

where 0 < ϕ < 1, and the settling time T2 satisfies

T2 ≤ Tmax 2 =
1

ℏϕ (1−m)
+

1

ℓϕ (l − 1)
. (44)

■

Remark 4 : Define a constant ϖ =
√
2V̄2, it is obvious

that |si| ≤ ϖ and eisi ≤ ϖ |ei|.

Theorem 3 : After the sliding surface si converges to D2,
the tracking error ei satisfies

(I) If |ei| ≥ σ, ei will converge to a small neighborhood
D3 of the origin within a fixed time Tmax 3, and

D3 = {ei| |ei| ≤ Ξi} ,

Ξi = min

{(
ϖ + x̄2

(1− υ)h1,i

) 1
a

,

(
ϖ + x̄2

(1− υ)h2,i

) 1
b

}
(45)

where 0 < υ < 1.
(II) If |ei| < σ and h1,iσa−1 |ei|+ h2,i|ei|b ≥ ϖ + x̄2, ei

will converge to a neighborhood D4 of the origin and

D4 =
{
ei|h1,iσa−1 |ei|+ h2,i|ei|b ≤ ϖ + x̄2

}
. (46)

Proof: (I) |ei| ≥ σ: From Theorem 2 and (27), it can be
inferred that

si = ėi + x̃2,i + h1,i sgn (ei) |ei|a + h2,i sgn (ei) |ei|b ≤ ϖ.
(47)

Multiplying (47) by ei yields

eiėi + h1,i|ei|a+1
+ h2,i|ei|b+1 ≤ (ϖ + x̄2) |ei| . (48)

Consider the candidate Lyapunov function V3 = e2i
/
2.

Combining (48), the time derivative of V3 is

V̇3 = eiėi

≤ −h1,i|ei|a+1 − h2,i|ei|b+1
+ (ϖ + x̄2) |ei|

= −h1,i2
a+1
2

(
e2i
2

) a+1
2

− h2,i2
b+1
2

(
e2i
2

) b+1
2

+ (ϖ + x̄2) |ei|

= −h1,i2
a+1
2 (V3)

a+1
2 − h2,i2

b+1
2 (V3)

b+1
2 + (ϖ + x̄2) |ei| .

(49)
According to Lemma 2, ei will converge to D3 within the

following fixed time:

T3 ≤ Tmax 3 =
1

h1,i2
a+1
2 υ

(
1− a+1

2

)+ 1

h2,i2
b+1
2 υ

(
b+1
2 − 1

) .
(50)

(II) |ei| < σ: From Theorem 2 and (27), we have

eiėi + h1,iσ
a−1e2i + h2,i|ei|b+1 ≤ (ϖ + x̄2) |ei| (51)

then the derivative of V3 is

V̇3 = eiėi ≤ −h1,iσa−1e2i − h2,i|ei|b+1
+ (ϖ + x̄2) |ei| .

(52)
If h1,iσa−1 |ei|+ h2,i|ei|b ≥ ϖ+ x̄2, then V̇3 ≤ 0, and ei

will eventually converge to the domain D4.
■

Remark 5 : According to Theorem 1, 2 and 3, the total
time for |ei| to converge to D3 satisfies T ≤ Tmax =
Tmax 1 + Tmax 2 + Tmax 3.
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TABLE I
PARAMETERS OF EACH CONTROLLER

Controller Parameters
PID Kp = diag {65, 150, 65, 25}, KI = diag {1, 5, 1, 0.5},

KD = diag {0.5, 5, 1, 0.5}.
NFTSMC h = 2, a = 5, b = 3, ∆̄ = 400, η̄ = 1,

K1 = diag {170, 40, 190, 120}, K2 = diag {30, 5, 25, 15}.
Proposed ω0 = 200, g1 = 3, g2 = 3, g3 = 1, α = 0.95,

a = 0.9, b = 1.1, σ = 0.001, m = 0.9, l = 3,
H1 = I4, H2 = 2I4, As = diag {1, 2, 10, 1}, Bs = 2I4,
oi = 0.1, φi = 50, ak,i = 2, bk,i = 1 (i = 1, · · · , 4).

IV. EXPERIMENTAL VERIFICATION

This paper verifies the performance of the proposed con-
troller on the Quanser’s QArm manipulator, which consists
of 4-DOF joints (Q1-Q4, roll-pitch-pitch-roll configuration),
and only the motions of Q2 and Q3 are considered in this pa-
per. The control algorithm is developed in Matlab/Simulink
environment with the QUARC library. The dynamic model
of the QArm and more details can be found in [20]. The
experimental platform of QArm is shown in Fig. 4.

A. The Performance of Fault Tolerance and Disturbance
Rejection

Different actuator partial LOE faults and external distur-
bances are imposed on Q2 and Q3, the desired trajectory
is qd,2 = qd,3 = sin (2πt/15) rad, and the duration of all
experiments is 105 s. In 20-30 s, the joint Q2 is subjected
to an external disturbance of τd,2 = 1.06 sin (πt) N·m. In
40-50 s, the joint Q3 is subjected to an external disturbance
of τd,3 = 0.53 sin (πt) N·m. In addition, Q2 and Q3 undergo
actuator partial LOE faults with λ2 = 0.5 at 60 s and
λ3 = 0.6 at 70 s respectively. The initial values of the
FxTESO and controller are zero.

The experimental results of the PID controller and the
NFTSMC controller [6] are also compared to further demon-
strate the superiority of the proposed controller. The sliding
surface of the NFTSMC controller is

sN = e+K1Sig
h (e) +K2Sig

a
b (ė) (53)

where K1 and K2 are two gain matrices, a and b are positive
odd numbers and satisfy 1 < a/b < 2 and h > a/b.

The NFTSMC controller is designed as

τ = τeq + τre,

τeq = M

 b

a
K−1

2 Sig(2−
a
b ) (ė)−M−1 (−Cq̇−G)+

q̈d +
b

a
hK−1

2 K1diag
{
|ei|h−1

}
Sig(2−

a
b ) (ė)

 ,

τre = M
(
∆̄ + η̄

)
tanh (sN )

(54)
where η̄ is a small positive constant, ∆̄ is an upper bound and
∆̄ ≥

∥∥M−1 ((Λ− I4) τ − F− τd −∆)
∥∥. The parameters

of all controllers are given in Table I.
The tracking trajectories and corresponding errors of joints

Q2 and Q3 are shown in Fig. 2, and the estimations of
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Fig. 2. Tracking trajectories and corresponding errors of Q1 and Q2 with
different controllers. (a) Tracking trajectories of Q2. (b) Tracking trajectories
of Q3. (c) Tracking errors of Q2. (d) Tracking errors of Q3.
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Fig. 3. (a) Estimate of d2(t). (b) Estimate of d3(t).

Fig. 4. Experimental scene and real-time signal display. (a) After Q2
disturbance and before Q3 disturbance. (b) After Q3 disturbance and before
Q2 fault. (c) After Q2 fault and before Q3 fault. (d) After Q3 fault.

uncertainties d2(t) and d3(t) are shown in Fig. 3. As can
be seen from Fig. 2, the proposed fixed-time fault-tolerant
controller based on FxTESO has the highest tracking ac-
curacy under any conditions. After Q2 and Q3 are subject
to external disturbances, FxTESO can estimate them in real
time as shown in Fig. 3, and their negative effects on the
system are compensated. However, the performance of both
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Fig. 5. Tracking trajectories and corresponding errors of Q1 and Q2 under
five different initial conditions. (a) Tracking trajectories of Q2. (b) Tracking
trajectories of Q3. (c) Tracking errors of Q2. (d) Tracking errors of Q3.

the PID controller and the NFTSMC controller becomes
significantly worse after external disturbances. In addition,
from Fig. 3, after the actuator faults occur in Q2 at 60 s and
in Q3 at 70 s, due to the appearance of fault components
M−1 (q) (Λ− I4) τ in the lumped uncertainty d(t), the
estimated values of d2(t) and d3(t) increased accordingly to
compensate for the faults. We can also see from Fig. 2 that
after the occurrence of faults, the proposed controller still
has the minimum tracking error, and the performance after
the faults remains similar to that before the faults. However,
the performance of the PID and NFTSMC controllers signif-
icantly deteriorate after the faults, with tracking errors much
larger than those of the proposed controller. The experimental
scene and the real-time signal display of d̂2 (t) and d̂3 (t) are
shown in Fig. 4.

B. The Performance of Fixed-Time Convergence

To verify the fixed-time convergence performance of the
proposed controller, experiments are conducted with Q2 and
Q3 at five different initial positions, defined as state1-state5
(0.1, 0.05, 0, -0.05, -0.1) rad. The tracking trajectories and
corresponding errors of all states are shown in Fig. 5. It can
be seen that the tracking errors of the manipulator joints Q2
and Q3 can achieve fixed-time convergence, with the settling
time independent of the initial conditions.

V. CONCLUSION

In this paper, a fixed-time fault-tolerant controller based on
FxTESO is proposed for n-DOF manipulators, which con-
siders the existence of actuator partial LOE faults, external
disturbances, and unknown nonlinearities. The tracking error
of each joint can converge to a neighborhood of zero within
a fixed time, and the settling time is independent of the initial
conditions. A FxTESO is designed to estimate joint velocities
and lumped uncertainty, and an adaptive law is designed to
estimate an upper bound associated with the FxTESO error
to enhance the controller robustness. The proposed controller
requires no prior knowledge about lumped uncertainty, and
the estimated velocities is used in controller design, which
avoids the significant noise caused by differentiating the

position signal. The comparative experimental results with
PID and NFTSMC controllers demonstrate the excellence of
the proposed controller.
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