
A Gap Penalty Method for Optimal Control of Linear
Complementarity Systems

Kangyu Lin and Toshiyuki Ohtsuka

Abstract— In this study, we propose a novel penalty refor-
mulation and numerical solution method for optimal control
problems (OCPs) of linear complementarity systems. The pro-
posed reformulation aims to construct a penalty term tailored to
the complementarity constraints using the D-gap function. The
proposed penalty term is nonconvex but exhibits a convexity
structure that can be utilized by convexity-exploiting solution
methods. To solve the reformulated OCP efficiently, we pro-
pose a solution method using the sequential convex quadratic
programming framework. The convexity of subproblems is
guaranteed by a pre-computed regularization matrix using the
parameter of the D-gap function. The proposed method is
globalized using a merit line search strategy. We confirmed
the effectiveness of the proposed method using a benchmark
test in comparison with several state-of-the-art methods.

I. INTRODUCTION

A. Background

This study considers optimal control problems (OCPs)
for a class of non-smooth dynamical systems governed by
the linear complementarity system (LCS). Briefly, the LCS
involves a linear ordinary differential equation (ODE) and a
linear complementarity problem (LCP) [4]. The theoretical
properties of the LCS, such as the existence, uniqueness,
and non-Zeno behavior of the solution trajectory, have been
intensively discussed in [1], [3], [10]. Benefiting from the
powerful modeling capability of LCPs, LCSs have been
widely applied in modeling non-smooth systems arising in
engineering and economics [1], [3], [13].

OCPs of LCSs have recently garnered significant atten-
tion. The first-order necessary optimality conditions for the
continuous-time OCP of the LCS were studied in [22] based
on the results reported in [8]. Direct methods (i.e., first
discretize then optimize) and indirect methods (i.e., first
optimize then discretize) for the OCP of LCS have also been
developed in [22]. From the perspective of practical applica-
tions, direct methods are more favored as the discretized OCP
can often be solved efficiently by well-developed nonlinear
programming (NLP) solvers. However, the discretized OCP
of LCS belongs to a class of notorious NLP problems
known as mathematical programming with complementarity
constraints (MPCCs), which violates almost all constraint
qualifications at every feasible point. The lack of constraint
regularity often leads to failure when directly using off-
the-shelf NLP solvers to solve MPCC. Nevertheless, NLP

This work was supported in part by JSPS KAKENHI (Grant Num-
ber JP22H01510). The author Kangyu Lin was supported by the CSC
scholarship (No. 201906150138). The authors are with the Department
of Systems Science, Graduate School of Informatics, Kyoto Univer-
sity, Kyoto, Japan. Email: k-lin@sys.i.kyoto-u.ac.jp and
ohtsuka@i.kyoto-u.ac.jp

solvers are still widely applied in specific methods for
solving MPCC. In these MPCC-tailored methods, the com-
plementarity constraints are first reformulated as parameter-
ized cost terms or constraints, and the MPCC solution can
then be obtained using a continuation method that solves
a sequence of parameterized NLP problems. These MPCC-
tailored methods, such as penalty methods [14], relaxation
methods [11], and smoothing methods [12], are practical for
MPCC arising in OCP of non-smooth dynamical systems and
are briefly reviewed in Subsection II-B.

Recently, researchers have focused on a subclass of
MPCCs known as linear complementarity quadratic pro-
gramming (LCQP), which is the discretized OCP of LCS. In
[9], an efficient solution method for LCQP is proposed based
on complementarity penalty reformulation and a sequential
convex quadratic programming (SCQP) framework. This
method ensures the subproblem convexity by ignoring the
constant indefinite Hessian of the penalty function.

B. Motivation and contributions

The motivation is in the nonlinear model predictive control
(MPC) of a general non-smooth dynamical system, such as
dynamical complementarity systems and differential varia-
tional inequalities. In each MPC update, the dynamics can
be linearly approximated by an LCS near the reference
trajectory [13]. Thus, a method capable of efficiently solving
the OCP of LCS during each sampling period is required to
achieve feedback control.

The contributions of this study are mainly on two aspects.
First, we propose a novel penalty reformulation for the OCP
of LCS by using the D-gap function [20]. The proposed
penalty reformulation exhibits two favorable properties:

• Its constraint system is differentiable, satisfies constraint
qualifications, and is more concise than that of the
classical MPCC-tailored methods;

• Its penalty term exhibits a convexity structure that can
be utilized by convexity-exploiting solution methods.

Second, we present an efficient SCQP-type method based
on the proposed penalty reformulation. The proposed SCQP-
type method is globalized using a dedicated merit line search
strategy. A benchmark test revealed that the proposed method
outperformed state-of-the-art MPCC-tailored methods.

C. Outline

The remainder of this study is organized as follows:
Section II provides the problem formulation and reviews
MPCC-tailored methods; Section III presents a new penalty
reformulation that uses the D-gap function; Section IV

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 880

explores the convexity of the penalty term, and proposes
a convexity-exploiting solution method; Section V presents
numerical experiments; Section VI concludes this study.

D. Notation

Given an Euclidean n-dimensional vector space Rn, we
denote its nonnegative orthant by Rn

+. Given two variables
v, w ∈ Rn, we denote their element-wise concatenation by
ξ = ξ(v, w) = [ξT1 , · · · , ξTi , · · · , ξTn]T ∈ R2n with ξi =
[vi, wi]

T , and their element-wise product (i.e., the Hadamard
product) by u = v⊙w, where u ∈ Rn has elements given by
ui = viwi. Given a differentiable function f(x), we denote
its Jacobian as ∇xf ∈ Rm×n with f : Rn → Rm, and its
Hessian as ∇2f ∈ Rn×n with f : Rn → R.

II. PROBLEM FORMULATION

A. Optimal control of linear complementarity system

We consider the OCP of LCS in the form of:

min
x(·),u(·),λ(·)

∫ T

0

1

2
(∥x(t)∥2Qx

+ ∥u(t)∥2Qu
+ ∥λ(t)∥2Qλ

)︸ ︷︷ ︸
:=LS(x(t),u(t),λ(t))

dt

(1a)
s.t. ẋ(t) = Ax(t) +Bu(t) + Eλ(t)︸ ︷︷ ︸

:=f(x(t),u(t),λ(t))

, (1b)

η(t) = Cx(t) +Du(t) + Fλ(t)︸ ︷︷ ︸
:=g(x(t),u(t),λ(t))

, (1c)

0 ≤ λ(t) ⊥ η(t) ≥ 0, (1d)

where x : [0, T]→ Rnx is the differential state, u : [0, T]→
Rnu is the control input, λ : [0, T] → Rnλ is the algebraic
variable, and η : [0, T] → Rnλ is the auxiliary variable.
The quadratic stage cost term LS : Rnx × Rnu × Rnλ → R
in (1a) is formed by positive semidefinite diagonal matrices
Qx ∈ Rnx×nx , Qu ∈ Rnu×nu , Qλ ∈ Rnλ×nλ . We called
(1b) - (1d) a LCS, with the ODE right-hand side function
f : Rnx × Rnu × Rnλ → Rnx in (1b) formed by matrices
A ∈ Rnx×nx , B ∈ Rnx×nu , E ∈ Rnx×nλ , and the affine
function g : Rnx × Rnu × Rnλ → Rnλ in (1c) formed by
matrices C ∈ Rnλ×nx , D ∈ Rnλ×nu , F ∈ Rnλ×nλ . The
notation λ ⊥ η in the complementarity condition (1d) means
that λ⊙ η = 0. Since the algebraic trajectory λ(t) generally
does not possess continuity properties, the LCS is a nonlinear
and non-smooth dynamical system. The smoothness of the
state trajectory x(t) strongly depends on the relative degree
r, which is the number of times to differentiate η(t) (regarded
as output) w.r.t. time until λ(t) (regarded as input) exists
explicitly. The higher the relative degree, the less smooth
the system becomes, see section 2.4.1 in [3] for a qualitative
description of the influence of r on the smoothness of x(t).
The affine path constraints in x and u can be incorporated
but we ignore them to streamline the presentation.

We numerically solve the continuous-time OCP (1) using
the direct multiple shooting method [7]. Specifically, the
ODE (1b) is discretized using the implicit Euler method,

and the complementarity conditions (1d) are enforced at each
time point tn ∈ [0, T], leading to a NLP problem:

min
x,u,λ,η

N∑
n=1

LS(xn, un, λn)∆t, (2a)

s.t. xn−1 − xn + (Axn +Bun + Eλn)∆t = 0, (2b)
Cxn +Dun + Fλn − ηn = 0, (2c)
0 ≤ λn ⊥ ηn ≥ 0, n = 1, . . . , N, (2d)

with given x0, where xn ∈ Rnx , λn ∈ Rnλ , and ηn ∈ Rnλ

are the values of x(t), λ(t), and η(t) at time point tn, respec-
tively, un ∈ Rnu is the piecewise constant approximation of
u(t) in the interval (tn−1, tn], N is the number of stages, and
∆t := T/N is the time step. Vectors x = [xT1 , · · · , xTN]T ∈
RNnx , u = [uT1 , · · · , uTN]T ∈ RNnu , λ = [λT1 , · · · , λTN]T ∈
RNnλ , and η = [ηT1 , · · · , ηTN]T ∈ RNnλ are defined to
collect all states, controls, algebraic variables, and auxiliary
variables along the horizon, respectively.

B. Penalty, relaxation, and smoothing method for MPCC

The NLP problem (2) is an MPCC, which is extremely
difficult to solve because the complementarity constraint (2d)
lacks constraint regularity required by the NLP theory. Three
MPCC-tailored methods that use off-the-shelf NLP solvers
exist. The first involves penalizing the complementarity term
λ ⊥ η in the cost function rather than formulating it as a
constraint. This leads to the following parameterized NLP,
denoted by Pcomp(µ), where µ > 0 is a penalty parameter:

min
x,u,λ,ω

N∑
n=1

LS(xn, un, λn)∆t+ µ

N∑
n=1

λTnηn, (3a)

s.t. xn−1 − xn + (Axn +Bun + Eλn)∆t = 0, (3b)
Cxn +Dun + Fλn − ηn = 0, (3c)
λn ≥ 0, ηn ≥ 0, n = 1, . . . , N. (3d)

The second involves recovering the constraint regularity
using MPCC-tailored relaxation strategies. For instance, the
Scholtes relaxation strategy [21] reformulates 0 ≤ λ ⊥ η ≥ 0
as λi, ηi ≥ 0, s−λiηi ≥ 0 in an element-wise manner, where
s ≥ 0 is a relaxation parameter. This leads to the following
parameterized NLP, denoted by Pscholtes(s):

min
x,u,λ,ω

N∑
n=1

LS(xn, un, λn)∆t, (4a)

s.t. xn−1 − xn + (Axn +Bun + Eλn)∆t = 0, (4b)
Cxn +Dun + Fλn − ηn = 0, (4c)
sInλ×1 − λn ⊙ ηn ≥ 0, (4d)
λn ≥ 0, ηn ≥ 0, n = 1, . . . , N. (4e)

The third involves reformulating the complementarity con-
straints as a system of smoothed equations using a smoothed
C-function. One popular smoothed C-function is the Fisher–
Burmeister (FB) smoothed function (Chapter 11, [6]):

ψFB(u, v, s) =
√
u2 + v2 + s2 − u− v, (5)

881

where u, v are scalar variables and s ≥ 0 is a smoothing
parameter. It has the following properties:

ψFB(u, v, s) = 0 ⇔ u ≥ 0, v ≥ 0, uv =
1

2
s2. (6)

Employing ψFB to (2d) in an element-wise manner leads to
the following parameterized NLP, denoted by PFB(s):

min
x,u,λ,ω

N∑
n=1

LS(xn, un, λn)∆t, (7a)

s.t. xn−1 − xn + (Axn +Bun + Eλn)∆t = 0, (7b)
Cxn +Dun + Fλn − ηn = 0, (7c)
ψFB(λn, ηn, s) = 0, n = 1, . . . , N. (7d)

Consequently, the solutions to the NLP problem (2) can
be obtained using a continuation method that solves a
sequence of parameterized NLP problems Pcomp(µ) (resp.
Pscholtes(s) and PFB(s)), with µ → ∞ (resp. s → 0).
Nonetheless, for Pcomp(µ), the Hessian of product λTnηn is
constant and indefinite. Thus, directly ignoring this matrix
or forcibly modifying it into a positive semidefinite matrix
severely distorts the curvature of the cost function. Fur-
thermore, such modifications often require multiple matrix
factorizations, which are expensive; Regarding Pscholtes(s),
NLP solvers may stall or fail when relaxation parameter s
is closed to zero because the feasible interior constructed by
(4d) (4e) shrinks toward an empty set as s → 0. Regarding
PFB(s), ψFB tends to be non-smooth at the origin as s→ 0;
thus, the fast-changing gradient may destabilize gradient-
based NLP solvers. These limitations highlight the need for
more efficient reformulations and methods to solve MPCCs.

III. PROPOSED PENALTY REFORMULATION

A. Motivation: D-gap function for complementarity problem

Algorithms for solving the complementarity problem, that
is, finding a pair (λ, η) that satisfies 0 ≤ λ ⊥ η ≥ 0, gener-
ally fall into two categories based on various reformulations
of the complementarity problem. One is the equation-based
algorithm, which reformulates the complementarity problem
as a system of equations using the C-function (Chapter 9,
[6]). The other is the optimization-based algorithm, which
reformulates the complementarity problem as a differentiable
optimization problem that minimizes a tailored merit func-
tion (Chapter 10, [6]). The proposed penalty reformulation
was motivated by the latter approach.

This study considers a differentiable merit function, known
as the D-gap function, which reformulates the complemen-
tarity problem as an unconstrained optimization problem.
The D-gap function was first introduced in [20] and then
extended to the solving algorithm for variational inequalities
[19], [24]. Its definition is provided below:

Definition 1 (D-gap function): Let λ, η ∈ Rnλ be two
variables, a, b be two given constants satisfying b > a > 0,
and φab : Rnλ × Rnλ → R be a function given by:

φab(λ, η) = φa(λ, η)− φb(λ, η), (8)

where φa, φb : Rnλ ×Rnλ → R are the functions defined as
follows:

φa(λ, η) =
1

2a
(∥η∥22 − ∥max(0, η − aλ)∥22), (9a)

φb(λ, η) =
1

2b
(∥η∥22 − ∥max(0, η − bλ)∥22). (9b)

We call φab(λ, η) the D-gap function for the complementar-
ity problem, where D stands for Difference.

The properties of φab on which we concentrate are sum-
marized in the following theorem (Theorem 10.3.3, [6]).

Theorem 1: The following two statements are valid for
the D-gap function φab(λ, η) given by (8):

• (Equivalence) φab(λ, η) ≥ 0,∀λ, η ∈ Rnλ . Further-
more, φab(λ, η) = 0 if and only if 0 ≤ λ ⊥ η ≥ 0.
Hence, a pair (λ, η) satisfies 0 ≤ λ ⊥ η ≥ 0 if and only
if it is the global solution to the following unconstrained
optimization problem:

min
λ,η∈Rnλ

φab(λ, η). (10)

• (Differentiability) φab(λ, η) is a continuously differen-
tiable function.

B. Gap penalty reformulation

By replacing the complementarity constraints (2d) with
the D-gap function, we propose a new penalty reformulation
for (2), which is the following parameterized NLP problem,
denoted by Pgap(µ), where µ > 0 is the penalty parameter:

min
x,u,λ,ω

N∑
n=1

LS(xn, un, λn)∆t+ µ

N∑
n=1

φab(λn, ηn), (11a)

s.t. xn−1 − xn + (Axn +Bun + Eλn)∆t = 0, (11b)
Cxn +Dun + Fλn − ηn = 0, n = 1, . . . , N.

(11c)

We call Pgap(µ) the gap penalty reformulation. Similarly,
we can obtain the solutions to the NLP problem (2) by
solving a sequence of Pgap(µ) with µ → ∞. Furthermore,
Pgap(µ) exhibits the following two favorable properties:
First, compared with Pcomp(µ) and Pscholtes(s), it does
not involve inequality constraints λn, ηn ≥ 0 and thereby
possesses a more concise constraint system; Second, un-
like relaxation or smoothing reformulations, it possesses a
differentiable constraint system with constraint regularity
regardless of the choice of µ. The main difficulty is that
φab(λ, η) is nonconvex, and as stated in Theorem 1, we have
to globally minimize φab(λ, η) to guarantee the satisfaction
of 0 ≤ λ ⊥ η ≥ 0. Therefore, in the next section, we aim
to mitigate the nonconvexity of φab(λ, η), and then solve
Pgap(µ) efficiently with a given µ using convexity-exploiting
solution methods.

IV. PROPOSED SOLUTION METHOD

A. Convexity structure of the D-gap function

First, we discuss certain properties of the D-gap function
φab(λ, η). Note that, φab(λ, η) given by (8) exhibits partial

882

(a) a = 0.9, b = 1.1 (b) a = 0.5, b = 2 (c) a = 0.1, b = 10

Fig. 1. Contour of δab(λi, ηi) under various parameter combinations.

(a) a = 0.9, b = 1.1 (b) a = 0.5, b = 2 (c) a = 0.1, b = 10

Fig. 2. Feasible region partitioning under various parameter combinations: Hessian ∇2δab(ξi) with ξi = [λi, ηi]
T is indefinite when ξi is in the blue

region and is positive semidefinite when ξi is in the green region.

separability (Definition 7.1, [7]) and can be decomposed as
the sum of nλ scalar subfunctions:

φab(λ, η) =

nλ∑
i=1

δab(λi, ηi), (12)

where δab : R× R→ R+ is the subfunction given by:

δab(λi, ηi) =
b− a
2ab

η2i −
1

2a
{max(0, ηi − aλi)}2

+
1

2b
{max(0, ηi − bλi)}2,

(13)

which can be further expanded as a piecewise function:

δab(λi, ηi) =
b−a
2 λ2i , ηi ≥ bλi and ηi ≥ aλi,
−a

2λ
2
i + λiηi − 1

2bη
2
i , bλi > ηi > aλi,

b−a
2ab η

2
i , ηi ≤ bλi and ηi ≤ aλi,

b
2λ

2
i − λiηi + 1

2aη
2
i , bλi < ηi < aλi.

(14)

δab is also a nonnegative function, and its contour and feasi-
ble region partitioning under various parameter combinations
are shown in Fig 1 and 2, respectively.

Let I = {1, · · · , nλ} be a finite set of indices, with
two subsets Iind and Ipsd defined by: Iind = {i ∈
I | bλi > ηi > aλi} and Ipsd = I \ Iind, respectively.
Let ξ = ξ(λ, η) ∈ R2nλ be the element-wise concatenation
of λ, η with ξi = [λi, ηi]

T . From (14), we have that the
Hessian ∇2δab(ξi) is indefinite only when i ∈ Iind, and is
positive semidefinite when i ∈ Ipsd. Because the Hessian of

φab(λ, η) is block diagonal in terms of the variable ξ:

∇2φab(ξ) = diag{∇2δab(ξ1), · · · ,∇2δab(ξnλ
)}, (15)

the negative eigenvalues of ∇2φab(ξ) can only originate
from the indefinite submatrices ∇2δab(ξi), i ∈ Iind, which
are constant and parameterized by b > a > 0:

∇2δab(ξi) =

[
−a 1
1 − 1

b

]
, i ∈ Iind, (16)

with two eigenvalues κmin, κmax that can be pre-computed
as follows:

κmin = −1

2
(a+

1

b
)− 1

2

√
(
1

b
− a)2 + 4 < 0, (17a)

κmax = −1

2
(a+

1

b
) +

1

2

√
(
1

b
− a)2 + 4 > 0. (17b)

The definiteness of submatrices ∇2δab(ξi) motivates us to
explore the convexity structure of φab(ξ). Specifically, we
construct a positive semidefinite matrix B(ξ) ∈ R2nλ×2nλ

to approximate the Hessian ∇2φab(ξ) by reserving positive
semidefinite submatrices ∇2δab(ξi), i ∈ Ipsd, and regular-
izing only those indefinite submatrices ∇2δab(ξi), i ∈ Iind.
Regularization is achieved by defining a regularization matrix
Breg ∈ R2nλ×2nλ using the negative eigenvalue κmin and
indicator variable ω ∈ Rnλ :

Breg = −κmindiag{ω1I2×2, · · · , ωnλ
I2×2}, (18)

where the elements of the indicator variable ω are given by:

ωi =

{
0, if i ∈ Ipsd,
1, if i ∈ Iind.

(19)

883

Then, the Hessian approximation matrix B(ξ) is given by:

B(ξ) = ∇2φab(ξ) +Breg. (20)

This Hessian modification strategy (20) is practical for the
convexity-exploiting solution method of Pgap(µ). On the one
hand, if set Iind is empty, then B(ξ) equals to the exact Hes-
sian ∇2φab(ξ) which is positive semidefinite; On the other
hand, if set Iind is nonempty, then Breg ensures B(ξ) ⪰ 0 by
employing the diagonal modification strategy (Section 3.4,
[17]) to regularize indefinite submatrices ∇2δab(ξi), i ∈ Iind
to be positive semidefinite. Here, the modification strategy
uses only a pre-computed regularization matrix −κminI2×2

and does not require matrix factorization of ∇2φab(ξ). These
advantages can improve the computation efficiency of the
solution methods that use this Hessian modification strategy.

B. Algorithm overview

By employing the Hessian modification strategy (20) in
a convexity-exploiting method known as sequential convex
quadratic programming [16], we propose an efficient method
for solving the NLP problem Pgap(µ) with a given µ. For
brevity, we first rewrite the problem Pgap(µ) as a general
NLP problem. We collect all decision variables into a vector
z = [zT1 , · · · zTn , · · · zTN]T with zn = [xTn , u

T
n , ξ

T
n]

T , and
ξn = ξ(λn, ηn) ∈ R2nλ is the element-wise concatenation
of λn, ηn. We collect all equality constraints into a vector
h(z) = [hT1 , · · ·hTn , · · ·hTN]T with

hn =

[
xn−1 − xn + (Axn +Bun + Eλn)∆t

Cxn +Dun + Fλn − ηn

]
.

We define the shorthand JS(z) =
∑N

n=1 LS(xn, un, λn)∆t,
JP (z, µ) = µ

∑N
n=1 φ

ab(λn, ηn), and J(z, µ) = JS(z) +
JP (z, µ), then Pgap(µ) can be rewritten as the following
general NLP problem:

min
z

J(z, µ), (21a)

s.t. h(z) = 0. (21b)

Let the Lagrangian of the NLP problem (21) be:

L(z,γh, µ) = J(z, µ) + γT
hh(z), (22)

where γh ∈ Rnh is the Lagrangian multipliers for constraints
h. The Karush–Kuhn–Tucker (KKT) conditions associated
with the NLP problem (21) are defined as follows:

∇zL(z,γh, µ) = 0, (23a)
h(z) = 0. (23b)

The pair (z∗,γ∗
h) satisfying (23) is referred to as the KKT

point of the NLP problem (21). The SCQP-type method is
an iterative method that solves a sequence of convex QP
approximations for an NLP problem (21). It terminates at an
iterate (zk,γk

h) which is a KKT point of the NLP problem
(21) with the given tolerance:

∥∇zL(zk,γk
h, µ)∥∞ ≤ ϵD, (24a)

∥h(zk)∥∞ ≤ ϵP , (24b)

Algorithm 1 Proposed SCQP-type method to solve the
penalty problem (21) with a given µ > 0

Input: µ, z0

Output: z∗

1: Initialization: zk ← z0,γk
h ← 0.

2: Initialization: pre-compute κmin,HS ,∇zh
3: for k = 1 to kmax do
4: Step 1. evaluate functions and derivatives:
5: Jk,hk,∇zJ

k,Hk
P ← zk, µ, κmin.

6: Step 2. check termination condition:
7: if (24) is satisfied then
8: z∗ ← zk, and break iteration routine.
9: end if

10: Step 3. evaluate search direction and multiplier:
11: ∆z, γ̂k+1

h ← solve a sparse convex QP (25).
12: Step 4. merit line search globalization:
13: β ← using (30)
14: α← νDα until (31) is satisfied
15: if α = αmin but still fails to satisfy (31) then
16: α← αopt using (35)
17: end if
18: Step 5. update iterate:
19: zk+1 ← zk + α∆z, γk+1

h ← γk
h + α(γ̂k+1

h − γk
h)

20: end for

where ϵP , ϵD > 0 are the primal and dual residual tolerance,
respectively. Algorithm 1 summarizes the proposed SCQP-
type method and the details are presented below.

C. Evaluation of the search direction
Let the current iterate be zk and γkh , then a new search

direction ∆z and an estimate of the new multiplier γ̂k+1
h can

be obtained by solving a structured sparse convex QP:

min
∆z

1

2
∆zTHk∆z +∇zJ

k∆z, (25a)

s.t. hk +∇zh∆z = 0. (25b)

Here, the constraint Jacobian ∇zh is constant and structured
sparse, and Hk is the Lagrangian Hessian at the current
iterate. Because the constraints incorporated in the NLP
problem (21) are affine, Hk involves only the curvature of
the cost function and can be further split into two parts:

Hk = HS +Hk
P , (26)

where HS is the exact Hessian of JS and Hk
P approx-

imates the Hessian of JP at the current iterate zk. Both
matrices HS and Hk

P are positive semidefinite and have
a block diagonal sparse structure, where HS is formed by
Qx, Qu, Qλ and is thereby constant throughout the iterations,
whereas Hk

P is formed by B(ξkn) and must be updated at
each iteration. The sparse convex QP (25) can be solved very
efficiently, either by the state-of-the-art sparse QP solvers or
by solving the following sparse linear system using the sparse
linear algebraic routine:[

Hk ∇zh
T

∇zh 0

] [
∆z

γ̂k+1
h

]
= −

[
(∇zJ

k)T

hk

]
. (27)

884

D. Globalization strategy

After obtaining the search direction ∆z, we use the merit
line search globalization method to find a new iterate zk+1 =
zk+α∆z with stepsize α. We define an ℓ1 non-differentiable
exact penalty function Θ(z, µ) to simultaneously measure the
cost and constraint violation (Chapter 18, [17]):

Θ(z, µ) = J(z, µ) + β∥h(z)∥1, (28)

where β > 0 is a weighting parameter. We need to specify β
such that a stepsize α ∈ (0, 1] exists and step α∆z provides
a sufficient decrease in the merit function. Specifically, let
DΘk be the directional derivative of the merit function (28)
at zk along ∆z. We expect the choice of β can enforce DΘk

to be sufficiently negative:

DΘk = ∇zJ
k∆z − β∥hk∥1 ≤ −ρβ∥hk∥1, (29)

with parameter ρ ∈ (0, 1), where the equality in (29) is
the explicit expression of DΘk (Theorem 18.2, [17]). This
suggests that an appropriate candidate β should satisfy the
following conditions:

β ≥ βtrail :=
∇zJ

k∆z

(1− ρ)∥hk∥1
. (30)

We can then apply a backtracking line search strategy to
evaluate a new iterate zk+1 = zk + α∆z. The trail stepsize
α ← ναα is gradually reduced from αmax = 1 with να ∈
(0, 1) until the Armijo condition is satisfied:

Θ(zk + α∆z, µ) ≤ Θ(zk, µ) + νDαDΘk, (31)

where νD ∈ (0, 1) is the desired reduction in Θ. In our
setting ρ = 0.1, να = 0.5, and νD = 10−4.

Occasionally, the backtracking strategy may stall or fail
to find an appropriate new iterate if the acceptable stepsize
for the Armijo condition (31) is arbitrarily small. Thus, if
a trail stepsize α = αmin (e.g., αmin = 10−4) still fails to
satisfy (31), we switch to computing an optimal stepsize αopt

using an approximate model of the merit function Θ(z, µ).
Specifically, we define the (piecewise) quadratic model of
Θ(z, µ) at zk as:

qβ(α) =Jk + α∇zJ
k∆z +

1

2
α2∆zTHk∆z

+ β∥hk + α∇zh∆z∥1.
(32)

The optimal stepsize is then computed to maximize the
decrease in the quadratic model:

max
α∈(0,1]

∆qβ(α) := qβ(0)− qβ(α), (33)

where ∆qβ(α) can be explicitly written down as:

∆qβ(α) = −
1

2
α2∆zTHk∆z − α (∇zJ

k∆z − β∥hk∥1)︸ ︷︷ ︸
DΘk<0

.

(34)
Thus, the analytic solution to the problem (33) is:

α̂opt = −
DΘk

∆zTHk∆z
> 0, (35)

and we select αopt = min(1, α̂opt).

V. NUMERICAL SIMULATION

A. Benchmark problems

We define a benchmark problem set including 11 different
continuous-time OCPs of the LCS in the form of (1), which
are taken from [22] and listed in Table I. We discretize
each continuous-time OCP using six different discretization
stages: N = {50, 80, 100, 200, 250, 400}. Thus, the problem
set includes 66 different MPCCs in the form of (2). Problem
details and solutions are available at https://github.
com/KY-Lin22/Penalty-Gap-OCP-LCS.

B. Implementation details

The proposed SCQP-type method is implemented in MAT-
LAB R2023b using the CasADi symbolic framework [2]. All
experiments were performed on a laptop with a 1.80 GHz
Intel Core i7-8550U. We solve the sparse QP (25) by using
the Matlab built-in sparse linear algebraic routine to solve
(27). We specify the termination tolerance as ϵP = 10−8,
ϵD = 10−6, and kmax = 500. The proposed method is
referred to as the penalty (gap) method and is compared
with the four other MPCC-tailored methods listed below:

• penalty (complementarity) method: solving Pcomp(µ),
that is, the parameterized NLP problem (3);

• relaxation (Scholtes) method: solving PScholtes(s), that
is, the parameterized NLP problem (4);

• relaxation (Lin-Fukushima) method: solving the pa-
rameterized NLP problem that reformulates the com-
plementarity constraints (2d) using the Lin-Fukushima
relaxation strategy [15]. This strategy reformulates 0 ≤
λ ⊥ η ≥ 0 as s2 − λiηi ≥ 0, (λi + s)(ηi + s)− s2 ≥ 0
in an element-wise manner with s ≥ 0 the relaxation
parameter;

• smoothing (FB) method: solving PFB(s), that is, the
parameterized NLP problem (7).

The aforementioned comparison methods all utilize a well-
developed NLP solver IPOPT [23] with default settings, and
are employed through the CasADi interface. Overall, the
selected comparison methods are among the most commonly
used and effective MPCC-tailored methods currently avail-
able, based on the existing benchmark test [11], [18].

All methods are performed using the continuation method
with the same initial guess (unit vector). Regarding penalty-
type methods, we increase the penalty parameter by µj+1 =
min(1.2µj , µ∗) from µ0 = 10 to µ∗ = 105. For the
relaxation- and smoothing-type methods, we set the param-
eter sequence to sj = 1

µj . Given a pair (λ, η), we measure
the violation of the complementarity condition using the
natural residual function Φ(λ, η) := λ−min(0, λ− η). We
have Φ = 0 if and only if λ, η satisfy 0 ≤ λ ⊥ η ≥ 0.
The continuation step is terminated when the subproblem
finds a solution whose natural residual falls below the given
tolerance ϵnat = 10−2. Performances are compared in
terms of the cost function value and computation time using
the Dolan-Moré performance profiles [5]. Specifically, for
the benchmark results obtained by running ns solvers on
np problems, let tp,s be the performance measure (e.g.,

885

TABLE I
DETAILS OF THE BENCHMARK PROBLEMS

No. Name Brief Introduction Source

1 Vieira-LCS-Analytic-1 Analytical 1D example Example 1 in [22], with x0 = 1
2 Vieira-LCS-Analytic-2 Analytical 1D example Example 1 in [22], with x0 = −1
3 Vieira-LCS-Rel-Deg-One Relative degree one example Example 2 in [22]
4 Vieira-LCS-High-Dim Higher dimensional example Example 3 in [22]
5 Vieira-LCS-Without-Penalty Stage cost does not penalize λ Example 4 in [22]
6 Vieira-LCS-With-Penalty-1 Stage cost penalizes λ Example 5 in [22], with α = 10
7 Vieira-LCS-With-Penalty-2 Stage cost penalizes λ Example 5 in [22], with α = 1
8 Vieira-LCS-With-Penalty-3 Stage cost penalizes λ Example 5 in [22], with α = 0.1
9 Vieira-LCS-Control-Jump Optimal control admitting jumps Example 6 in [22]
10 Vieira-LCS-State-Jump-1 State admitting jumps Example 7 in [22], with α = 10
11 Vieira-LCS-State-Jump-2 State admitting jumps Example 7 in [22], with α = 1

computation time) of solver s on problem p, and let rp,s be
the performance ratio between tp,s and the best performance
measure of any solver on problem p:

rp,s =
tp,s

min{tp,i, i = 1, · · · , ns}
. (36)

The performance profile of solver s is defined as the (cumu-
lative) distribution function ρs(τ):

ρs(τ) =
number of problem that rp,s ≤ τ

np
, (37)

with τ ≥ 1 the time factor. Intuitively, ρs(1) is the probability
that the solver s is the best.

C. Comparison between various penalty (gap) methods

From (14), it can be inferred that parameters a and b
determine not only the curvature of the D-gap function but
also the region where the D-gap function exhibits convexity.
Therefore, we first compare the performance of the penalty
(gap) method for different parameter combinations.

As demonstrated in Fig. 3(a), solutions obtained by the
penalty (gap) method under various parameter combinations
have very similar cost function values. Therefore, the primal
focus of the comparison is the computation time. From Fig.
3(b), we can conclude that setting the values of a, b closer
can speed up the computation, because these combinations,
e.g., a = 0.9, b = 1.1, can expand the region where the
D-gap function exhibits convexity and the exact Hessian
can thus be used. However, in principle, they should not
be set infinitely close, because the curvature of the D-gap
function will be weakened. By contrast, setting a close to
zero and b close to infinity, e.g., a = 0.1, b = 10, can
achieve a larger curvature, but the function tends to be non-
smooth. Furthermore, these combinations reduce the region
where the D-gap function exhibits convexity, which may lead
to extensive Hessian modifications during iteration. Fig. 1
and 2 provide an intuitive geometric interpretation for these
conclusions. Overall, we specify a = 0.9, b = 1.1 as the
default values of the proposed method.

D. Comparison between various MPCC-tailored methods

Finally, we compare the penalty (gap) method with four
other MPCC-tailored methods. As demonstrated in Fig.

4(a), almost all methods converge to solutions with similar
cost function values. Among them, the relaxation (Lin-
Fukushima) method exhibits a slight advantage, whereas the
penalty (gap) method appears to be trapped in solutions
with slightly higher cost function values in certain prob-
lems. Similarly, the focus of the comparison is still on the
computation time. As demonstrated in Fig. 4(b), the penalty
(gap) method demonstrates a significant advantage: with the
highest probability, which is 72.7%, of being the fastest
solver to find an optimal solution. This is a promising result,
primarily benefiting from a more concise constraint system
and the utilization of second-order information on the penalty
term.

VI. CONCLUSION

To solve the OCP of LCS efficiently, we propose a novel
penalty reformulation for the complementarity constraint
using the D-gap function. The proposed penalty reformula-
tion exhibits a concise, differentiable constraint system with
constraint regularity. Furthermore, the penalty term has a
convexity structure that can be exploited using convexity-
exploiting solution methods. We solve the reformulated OCP
efficiently using an SCQP-type method. The benchmark test
demonstrated the proposed SCQP-type method outperforms
all other MPCC-tailored methods in terms of computation
time. Future studies focus on two aspects: we aim to analyze
the MPCC-tailored stationarity properties of the limit point
of the proposed method, and extend the proposed gap penalty
method to the more general non-smooth dynamical system.

REFERENCES

[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynam-
ical Systems: Applications in Mechanics and Electronics. Springer
Science & Business Media, 2008.

[2] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “CasADi:
a software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36,
2019.

[3] B. Brogliato and A. Tanwani, “Dynamical systems coupled with mono-
tone set-valued operators: Formalisms, applications, well-posedness,
and stability,” SIAM Review, vol. 62, no. 1, pp. 3–129, 2020.

[4] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity
Problem. SIAM, 2009.

[5] E. D. Dolan and J. J. Moré, “Benchmarking optimization software
with performance profiles,” Mathematical programming, vol. 91, pp.
201–213, 2002.

886

(a) Comparison of cost function value. (b) Comparison of computation time.

Fig. 3. Performance profiles of various penalty (gap) methods for the benchmark test in terms of the cost function value and computation time.

(a) Comparison of cost function value. (b) Comparison of computation time.

Fig. 4. Performance profiles of various methods for the benchmark test in terms of the cost function value and computation time.

[6] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequali-
ties and Complementarity Problems. Springer, 2003.

[7] S. Gros and M. Diehl, “Numerical optimal control (draft),” 2020.
[8] L. Guo and J. Ye, “Necessary optimality conditions for optimal control

problems with equilibrium constraints,” SIAM Journal on Control and
Optimization, vol. 54, no. 5, pp. 2710–2733, 2016.

[9] J. Hall, A. Nurkanović, F. Messerer, and M. Diehl, “A sequential
convex programming approach to solving quadratic programs and
optimal control problems with linear complementarity constraints,”
IEEE Control Systems Letters, vol. 6, pp. 536–541, 2021.

[10] W. Heemels, J. M. Schumacher, and S. Weiland, “Linear complemen-
tarity systems,” SIAM Journal on Applied Mathematics, vol. 60, no. 4,
pp. 1234–1269, 2000.

[11] T. Hoheisel, C. Kanzow, and A. Schwartz, “Theoretical and numerical
comparison of relaxation methods for mathematical programs with
complementarity constraints,” Mathematical Programming, vol. 137,
pp. 257–288, 2013.

[12] H. Jiang and D. Ralph, “Smooth SQP methods for mathematical
programs with nonlinear complementarity constraints,” SIAM Journal
on Optimization, vol. 10, no. 3, pp. 779–808, 2000.

[13] S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model pre-
dictive control,” IEEE Transactions on Robotics, 2024.

[14] S. Leyffer, G. López-Calva, and J. Nocedal, “Interior methods for
mathematical programs with complementarity constraints,” SIAM
Journal on Optimization, vol. 17, no. 1, pp. 52–77, 2006.

[15] G.-H. Lin and M. Fukushima, “A modified relaxation scheme for
mathematical programs with complementarity constraints,” Annals of
Operations Research, vol. 133, no. 1, pp. 63–84, 2005.

[16] F. Messerer, K. Baumgärtner, and M. Diehl, “Survey of sequential

convex programming and generalized gauss-newton methods,” ESAIM:
Proceedings and Surveys, vol. 71, pp. 64–88, 2021.

[17] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.
[18] A. Nurkanović, A. Pozharskiy, and M. Diehl, “Solving mathematical

programs with complementarity constraints arising in nonsmooth
optimal control,” arXiv preprint arXiv:2312.11022, 2023.

[19] J.-M. Peng, “Equivalence of variational inequality problems to uncon-
strained minimization,” Mathematical Programming, vol. 78, no. 3,
pp. 347–355, 1997.

[20] J.-M. Peng and Y. Yuan, “Unconstrained methods for generalized
complementarity problems,” Journal of Computational Mathematics,
pp. 253–264, 1997.

[21] S. Scholtes, “Convergence properties of a regularization scheme
for mathematical programs with complementarity constraints,” SIAM
Journal on Optimization, vol. 11, no. 4, pp. 918–936, 2001.

[22] A. Vieira, B. Brogliato, and C. Prieur. (2018) Quadratic optimal
control of linear complementarity systems: First order necessary
conditions and numerical analysis. [Online]. Available: https:
//inria.hal.science/hal-01690400

[23] A. Wächter and L. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[24] N. Yamashita, K. Taji, and M. Fukushima, “Unconstrained optimiza-
tion reformulations of variational inequality problems,” Journal of
Optimization Theory and Applications, vol. 92, pp. 439–456, 1997.

887

