
Few-shot Metric Adversarial Adaptation
for Cross-machine Fault Diagnosis

Qitong Chen, Hong Zhuang, Yueyuan Zhang, Liang Chen* and Qi Li

Abstract— Research interest in the area of fault diagnosis is
shifting from cross-domain to cross-machine, which is crucial
for industrial applications with variable operation conditions
and different machine configurations. This paper proposes
a method named Few-shot Metric Adversarial Adaptation
(FMAA) for cross-machine diagnosis of industrial machinery.
Firstly, FMAA reduces the data distribution differences between
few-shots belonging to the same category in the source domain
and the target domain through metric adversarial learning,
while increasing the feature distances among different cate-
gories. Secondly, the Label Self-Correcting Maximum Mean
Discrepancy (LSMMD) method is proposed to correct misclas-
sifications of the model while reducing the conditional distribu-
tion differences between the source and target domains. Fur-
thermore, a lightweight attention mechanism-based diagnosis
model is proposed to perform cross-machine fault classification
tasks. The robustness, universality, and superiority of the pro-
posed method are verified through comprehensive experiments
on two platforms for industrial robots and bearings. The code
is available on: https://github.com/CCSLab425/FMAA.

I. INTRODUCTION

In the era of intelligent manufacturing, real-time condition
monitoring and intelligent maintenance of industrial devices
are crucial to improving production efficiency and product
quality. While the research interests for real industrial ap-
plications of fault diagnosis are emerging, the shifting of
diagnosis tasks from cross-domain to cross-machine is still
challenging. The industrial production line encompasses vari-
ous types of machines with variable operation conditions and
different configurations, and there are significant differences
in data distribution among different machines. This makes it
difficult to transfer diagnostic models developed from one
machine to other machines. Therefore, it is necessary to
research a method to perform cross-machine diagnostic tasks.

Currently, pioneering scholars have developed intelligent
methods for cross-machine diagnosis. For example, Zhu et
al. proposed a multi-adversarial learning method to extract
domain-invariant features among different machines [1]. Guo
et al. [2] proposed a deep convolutional network based on
conditional recognition and domain adaptation for perform-
ing cross-machine diagnosis of bearings, which achieved
approximately 10 % higher accuracy compared to Deep
Domain Confusion (DDC [3]) and Deep Adversarial Neural
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Network (DANN [4]). Qian et al. proposed an enhanced joint
distribution adaptation technique to perform cross-machine
diagnosis [5]. This method achieved a diagnostic accuracy of
90.52 % in the transfer tasks across three bearing datasets.

The above pioneering work is remarkable except for com-
plex and cost-sensitive industrial scenarios where the target
domain (TD) data is generally unknown or the amount of
labeled data collected is limited. Therefore, some researchers
have proposed few-shot approaches for cross-machine diag-
nosis tasks in such scenarios, which only require a limited
number of labeled samples from the TD to achieve good
diagnostic results, aligning more with practical industrial
needs. Zhang et al. developed a few-shot algorithm based
on asymmetric distribution measurement for cross-machine
diagnosis of bearings [6]. This method utilizes meta-models
to learn domain-invariant knowledge and transfers the knowl-
edge to another machine to complete the diagnostic task.
Yue et al. introduced a multi-scale wavelet convolution and
meta-learner strategy for cross-machine classification tasks,
achieving satisfactory results in three bearing experiments
[7]. Additionally, Wu et al. proposed few-shot methods that
accomplished cross-machine diagnosis between bearings and
gearboxes [8].

This paper can be regarded as an inheritance and devel-
opment of the above research. The motivation is to estab-
lish a method based on few-shot learning and adversarial
adaptation to promote the robustness and universality of
cross-machine diagnosis. The main idea is to map the few-
shot features in the TD to the vicinity of the feature space
of the same category in the source domain (SD) while
increasing the feature distance among different categories.
In this way, cross-machine diagnosis can be used in more
complex scenarios and on a wider range of industrial devices
[9]. In this paper, the proposed method is called FMAA
for cross-machine diagnosis. FMAA can achieve outstanding
performance with just one labeled sample from the TD.
In order to tackle the challenge of model misclassification
caused by the scarcity of labeled samples in the TD, we
propose the LSMMD strategy to enhance the diagnostic
performance of FMAA. LSMMD utilizes CMMD (Class-
specific MMD [10]) to reduce the conditional distribution
difference between the SD and the TD, while also cor-
recting model misclassifications by reducing the feature
distance between the small samples from the TD and the
overall dataset. Furthermore, a lightweight attention module
is proposed to be integrated into the fault classification
model, which enhances diagnostic performance by focusing
on high-frequency and low-frequency information in high-
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dimensional features. The potential contributions made in
this paper are as follows:

1) FMAA is proposed for conducting cross-machine di-
agnosis tasks on rotating machinery. FMAA employs
a metric adversarial approach to aggregate samples
belonging to the same category from the SD and TD,
while simultaneously increasing the feature distance
among different categories.

2) LSMMD is proposed to correct misclassifications of
the model while reducing the conditional distribution
differences between the SD and TD.

3) A lightweight attention module is proposed, which
enhances the classification performance of the model
by extracting high-frequency and low-frequency infor-
mation from the diagnostic signals.

4) We conducted cross-machine experiments using ball
screw and bearing datasets, and the proposed model
performed remarkably well in the diagnostic task.

II. PRELIMINARIES

A. Few-shot Adversarial Domain Adaptation

Few-shot Adversarial Domain Adaptation (FADA) maps
the features of few-shots belonging to the same category
from the TD to the SD through adversarial learning, which
reduces the data distribution differences between the two
domains [11]. Specifically, FADA randomly samples few-
shots from the SD and TD and divides the few-shots into four
groups, denoted as G4

i=1. Each group contains two samples,
X1 and X2. FADA inputs samples from four groups into
the model for adversarial training. The feature extractor and
discriminator are optimized using (1) and (3), respectively.

LFADA =−αE[YG1 log(D(F(G2)))+YG3 log(D(F(G4)))]

+E[lce((Fc(Xshot
s ),Yshot

s )]+E[lce(Fc(Xshot
t ),Yshot

t )]
(1)

lce =−
N∑

i=1

yi log(ŷi) (2)

LD =−E

[
4∑

i=1

YGi log
(
D
(
C(Gi)

))]
(3)

where α is a weight parameter, E is the expectation, and YGi

is the label of Gi. F and D are denoted as feature extractor
and discriminator, respectively. lce is the cross-entropy loss
[4], yi and ŷi are the true and predicted labels, respectively.
Fc is the combination of F and classifier. Xshot

s and Xshot
t

denote few-shots from the SD and TD, respectively. Yshot
s

and Yshot
t denote the labels of Xshot

s and Xshot
t , respectively.

C is the channel concatenation.

B. Class-specific MMD

CMMD can use pseudo-labels ŷt to reduce the conditional
distribution differences between SD and TD [10]. This can
decrease the feature distance among samples of the same
category in both domains, thereby improving the diagnostic
performance of the model. CMMD is computed as follows :

LCMMD =

C∑
c=1

∥∥∥∥∥∥∥
1

Mc

∑
ys

i=c

Φ(xs
i )−

1
Nc

∑
ŷt

j=c

Φ
(
xt

j
)∥∥∥∥∥∥∥

H

(4)

where C is the quantity of the health status of rotating
machinery, and Φ is the mapping function that maps fault
features to the Hilbert space. Mc and Nc represent the number
of categories c in the SD and TD, respectively.

III. PROPOSED METHOD

A. Grouping Settings for Few-shot

Step 1: A small number of samples are randomly selected
from the SD and the TD datasets, and then combined to
form the sets Dshot

s = {xs
i}C

i=1 and Dshot
t = {xt

i}C
i=1. Here, C

represents the number of healthy states of the ball screw or
bearing.

Step 2: Samples are respectively taken from Dshot
s and

Dshot
t and combined to form positive pairs Pp and negative

pairs Pn. In Pp, the labels of the two samples are the same,
while in Pn, the labels of the two samples are different.
The representation of Ps−t

p indicates that one sample in the
positive pair comes from the SD (s) and the other sample
comes from the TD (t). Specifically, Ps−s

p , Ps−t
p , Ps−s

n , and
Ps−t

n can be represented as follows:

Ps−s
p = {Gg}C

g=1 = {(xs
i ,x

s
i )}C

i=1,

Ps−t
p = {Gg}2C

g=C+1 = {(xs
i ,x

t
i)}C

i=1,

Ps−s
n = {Gg}3C

g=2C+1 = {(xs
i ,x

s
i+1)}C

i=1,

Ps−t
n = {Gg}4C

g=3C+1 = {(xs
i ,x

t
i+1)}C

i=1,

where 1 < i <C, and xi = xC when i+1 =C+1.
Step 3: According to metric learning theory, the few-shot

adversarial process is divided into two processes: positive
adversarial process and negative adversarial process. The
positive adversarial process reduces the feature distance
between the same categories through adversarial interactions
within the positive group, while the negative adversarial pro-
cess increases the feature distance among different categories
through adversarial interactions within the negative group, as
shown in Fig.1.

Step 4: Positive adversarial groups are created. Ps−s
p and

Ps−t
p contain the same fault categories, with Ps−t

p containing
a TD sample. Through positive adversarial interactions, the
features of the TD sample are embedded into the feature
space of the same category in the SD, continuously reducing
the data distribution difference between the SD and TD. Sim-
ilarly, Ps−s

n and Ps−t
n reduce distribution differences through

positive adversarial interactions.
Step 5: Negative adversarial groups are created. Groups

Gq are selected from Ps−s
p and Ps−s

n , and groups Gv are
selected from Ps−t

p and Ps−t
n . Gq and Gv contain completely

different fault categories, forming negative adversarial pairs.
Through negative adversarial interactions, Gq and Gv gradu-
ally increase the feature distance among different categories
to avoid confusion among different categories.
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Fig. 1. The principle of few-shot adversarial domain adaptation based on
metric learning.

B. Structural Design of the Model

The cross-machine diagnostic model mainly consists of the
feature extractor F, discriminator D, and attention module,
as shown in Fig. 2. The feature extractor consists of standard
convolutions (Conv1 and Conv2), feature extraction modules,
GC (Group convolution), and the attention module. The
detailed structure of the model and network parameters are
shown in Table I. The design of the model draws inspiration
from the residual idea and feature fusion strategy to enhance
the feature extraction capability. The number of feature ex-
traction blocks is determined by the input size of the samples.
As the sample size increases, the number of feature extrac-
tion blocks should be increased. PW (Pointwise convolution),
DW (Depthwise convolution), and GC are lightweight convo-
lutions, which reduce the model’s parameters and computa-
tional complexity [12]. PConv (Partial convolution) operates
convolution only on partial features, reducing the model’s
computational load while preserving some original features
[13]. We use PConv instead of standard convolution in the
attention module to reduce computational complexity. The
attention module enhances the diagnostic performance of the
model by extracting global and local features of the signal
to obtain low-frequency or high-frequency information [14].
Due to the lightweight design of the network structure and at-
tention module, the number of parameters and computational
cost of the model has been effectively reduced. According
to Table I, the model has 67,312 parameters (Params), a
computational cost of 2.47 MFlops, and requires 0.51 MB
of memory. The design of the lightweight model makes
training more efficient while meeting the requirements for
deployment in enterprise terminals.

C. The Method of FMAA

Firstly, the first sample in {Gg}4C
g=1 is combined into a

vector X1, and the second sample is combined into X2. X1
and X2 are respectively input into F and obtain features f1
and f2, as shown in Fig. 2. Next, f1 and f2 are fed into the
Softmax function to predict the label of Xshot

s . The cross-
entropy function is utilized to calculate the classification loss
Lshot

s for Xshot
s :

TABLE I
MODEL STRUCTURE AND NETWORK PARAMETERS.

Strcuture Kernel size Stride Padding Output channels Output size

Signals -/- -/- -/- 1 32×32
Conv1 3×3 2 1 48 16×16

PW 1×1 1 0 48 16×16
DW 3×3 2 1 48 8×8
PW 1×1 1 0 48 8×8

Avgpool 3×3 2 1 48 8×8
Block 1 channel concatenating 96 8×8

PW 1×1 1 0 96 8×8
DW 3×3 2 1 96 4×4
PW 1×1 1 0 96 4×4

Avgpool 3×3 2 1 96 4×4
Block 2 channel concatenating 192 4×4

GC 3×3 1 1 96 4×4
Attention -/- -/- -/- 96 4×4

DW 3×3 2 1 96 2×2
PW 1 2 0 4 1×1

Params: 67,312 Flops: 2.47M Memory: 0.51MB

Lshot
s = lce

(
F
(
Xshot

s ;θ f
)
,Yshot

s
)

(5)

where θ f is the parameter of F. Xshot
s is the few-shot of the

SD. Then, f1 and f2 are concatenated to obtain f1,2. Finally,
f1,2 is inputted into the D to predict the group label. Based on
the predicted group label, the loss Lpa for positive adversarial
and the loss Lna for negative adversarial are calculated. Lpa
can be calculated as follows:

Lpa = E

 2C∑
g=C+1

lce

(
D
(
C
(

f Gg
1 , f Gg

2

))
,YGg−C

)

+

4C∑
g=3C+1

lce

(
D
(
C
(

f Gg
1 , f Gg

2

))
,YGg−C

) (6)

where f Gg
1 is the feature extracted by F from sample XGg

1 .
XGg

1 represents the first sample of the g-th group. Lna can be
calculated as follows:

Lna =−E
[∑

lce

(
D
(
C
(

F(XGq
1 ),F(XGq

2 )
))

,YGv

)]
(7)

where XGq
1 ∈Gq and XGq

2 ∈Gq. Therefore, the loss for FMAA
can be computed using (8):

LFMAA = λ1Lpa +λ2Lna (8)

where λ1 is the adaptive attenuation weight [12] and λ2 is a
constant.

D. The Method of LSMMD

Firstly, the SD dataset Ds and the TD dataset Dt are
inputted into the F to obtain features fs and ft . Then,
CMMD is used to reduce the feature distance between the
same category in fs and ft . Although CMMD can reduce
the conditional distribution difference between SD and TD,
it significantly relies on the credibility of pseudo-labels.
There is poor confidence in the pseudo-labels predicted
by the model because of the huge distribution discrepancy
between the SD and TD caused by the complicated working
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Fig. 2. The overall structure of the cross-machine diagnostic model.

conditions of rotating machines. Therefore, we enhance the
credibility of pseudo-labels by reducing the feature distance
between the samall samples and complete dataset in the TD,
and combine it with CMMD to correct the model’s misclas-
sifications. The loss function of LSMMD is calculated as
follows:

LLSMMD =

∥∥∥∥∥ 1
C

C∑
c=1

Φ(xtshot
c )− 1

N

N∑
i=1

Φ(xt
j))

∥∥∥∥∥
H

+λ3

C∑
c=1

∥∥∥∥∥∥∥
1

Mc

∑
ys

i=c

Φ(xs
i )−

1

N̂c

∑
ŷt

j=c

Φ
(
xt

j
)∥∥∥∥∥∥∥

H

(9)

where xtshot
c comes from Dshot

t , xt
j comes from Dt , and λ3 is

the adaptive amplification weight [12]. The first norm indi-
cates the reduction of the data distribution difference between
the small samples from the TD and the complete dataset
of the TD through MMD. The second norm represents the
reduction of the conditional distribution difference between
each category in the SD and the TD through MMD.

E. The Process of Model Optimization
The optimization process includes pretraining the feature

extractor F, pretraining the discriminator D, and alternating

training between F and D. The specific optimization steps
are as follows:

Step1: We use the SD dataset Ds to pretrain F for strong
feature extraction capability. During this process, the loss
function Ls is used to optimize F. Ls can be calculated as
follows:

Ls = lce
(
F
(
xs;θ f

)
,ys

)
(10)

Step2: We use Xshot
s and Xshot

t to pretrain the discriminator
D for strong discriminative ability. During this process, the
loss function LG is used to optimize D. LG can be calculated
as follows:

LG = E

 4C∑
g=1

lce

(
D
(

f Gg
1,2;θd

)
,YGg

) (11)

where θd is the parameter of D, and YGg is the true labels
of the g-th data pairs.

Step3: After the pretraining phase, F and D enter the
process of alternating adversarial training. In this process,
the loss function LF used to optimize F can be calculated as
follows:

LF = Lshot
s +LFMAA +LLSMMD (12)

The optimization of D can still be accomplished using (11).
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The model can extract domain-invariant features from both
the SD and TD when F and D achieve a Nash equilibrium
[15] in the adversarial process.

IV. EXPERIMENTS AND ANALYSIS

A. Case1: Experimental Platform of Ball Screw

This section of the experiment focuses on the diagnostic
analysis of ball screws in industrial robots. The ball screws
exhibit four different health states: normal (Norm), ball
shedding (Ball), helical nut stuck (Stuck1) and spline nut
stuck (Stuck2), as shown in Fig. 3. We collected the current
signals of the ball screw’s drive motor from two robots. The
signal’s sampling frequency and sampling length are 8kHz
and 1024, respectively.

1) Parameter Settings: Model training experiments were
conducted on a workstation equipped with an i7-9700 CPU
and RTX2080 GPU. The hyperparameter settings in the
experiment are shown in Table II, where i represents the
current epoch and w denotes warm steps. In the experiment,
warm steps are set to 40. The model’s learning rate lr is set
to 0.001, the number of training iterations is 100, and the
Batch size is 64. λ1,λ2, and λ3 are the trade-off parameters
for the loss. In the fault diagnosis task, the degree of data
distribution difference between the SD and the TD has the
greatest impact on diagnostic performance. Among these
hyperparameters, warm steps exhibit the strongest sensitivity
to the diagnostic task. For transfer tasks with significant
data distribution differences, a larger warm steps setting is
necessary to allow the model to learn more comprehensively.
However, to effectively reduce conditional distribution differ-
ences, the value of warm steps should not exceed half of the
Epochs.

2) The Results of Cross-machine Fault Diagnosis: The
diagnostic results for the robot’s ball screws are shown

① ② ③ ④ ⑤ ⑦⑥ ⑧ ⑩⑨

① J3 drive motor ② Control panel ③ Computer ④ J3 axis ⑤ Screw

⑥ Load ⑦ Helical nut ⑧ Spline nut ⑨ Push-pull gauge ⑩ Ball shedding

(a)

(b)

(c)

Fig. 3. Experimental platform for industrial robot with ball screw. (a)
Robot platform. (b) Stuck test. (c) Ball shedding.

TABLE II
HYPERPARAMETER SETTINGS FOR THE MODEL

lr Epochs Batch size λ1 λ2 λ3 p
0.001 100 64 1

(1+10p)0.75 0.2 2
1+exp(−10p) −1 i−w

E pochs

TABLE III
RESULTS OF CROSS-MACHINE DIAGNOSTICS FOR BALL SCREWS.

Methods T0-0 T0-3 T0-6 T0-9 T3-3 T6-6 T9-9 Average Time/s

ERM 25.2% 29.1% 32.2% 32.0% 27.4% 27.7% 40.2% 30.5% 13.9
DAN 25.0% 26.9% 55.5% 43.6% 34.1% 25.9% 78.4% 41.3% 41.1
ADA 25.7% 32.3% 33.5% 42.9% 25.8% 39.2% 40.9% 34.3% 26.1

DANN 26.9% 26.6% 48.0% 28.5% 25.5% 36.5% 54.6% 35.2% 43.8
DDC 36.7% 29.9% 26.0% 35.2% 28.9% 42.6% 26.4% 32.2% 33.2
FADA 90.4% 79.0% 57.1% 56.0% 61.8% 56.4% 68.3% 67.0% 35.3
FMAA 94.3% 85.1% 69.4% 63.1% 75.4% 65.6% 79.0% 76.0% 35.4

LSMMD 99.6% 96.6% 93.8% 73.7% 81.0% 86.4% 85.8% 88.1% 68.7
Attention 97.9% 93.9% 93.8% 94.8% 97.8% 90.3% 92.9% 94.5% 90.7

in Table III. T0-9 indicates the SD of 0 kg load from
the first machine and the TD of 9 kg load from another
machine. Note that there is only one label available in the
TD. Ten repetitions are made of each transfer task, and
the average is taken to mitigate the randomness of the
results. The unsupervised methods include ERM (Experience
Risk Minimization), Deep Adaptation Network (DAN [16]),
Adversarial Domain Adaptation (ADA [12]), DANN [4], and
DDC [3]. In particular, the models of unsupervised methods
all utilized attention mechanisms, with the learning rate set
to 0.001. Unsupervised techniques don’t need human an-
notation, but because cross-machine diagnosis tasks usually
include large disparities in data distribution, they frequently
fail to produce satisfactory results.

FADA can provide superior diagnostic performance with
just one labeled sample in the TD, compared to unsupervised
approaches. FMAA adds a metric learning strategy based
on FADA, which can increase the distance among different
categories. LSMMD introduces a label self-correction strat-
egy based on FMAA, resulting in a 12.1% improvement in
diagnostic accuracy. The lightweight attention module can
extract both high-frequency and low-frequency information
from the current signals, further enhancing the diagnostic
performance of the model. Ultimately, the proposed method
achieves a diagnostic result of 94.5% in the cross-machine
task for ball screws. The computational time required for
each method to train for 100 epochs is presented in Table
III. The proposed method achieves a training completion time
of 90.7 seconds.

3) Convergence and Robustness Analysis of the Model:
The training process of the T0-0 transfer task is illustrated
in Fig. 4(a), where the primary axis represents accuracy and
the secondary axis represents loss. The testing accuracy in
the TD closely follows the training accuracy in the SD,
indicating that FMAA embeds the features of few-shots
from the TD into the feature space of the same category
in the SD, thereby reducing the data distribution difference
between the two domains. The model’s testing loss begins
to converge around 20 epochs and gradually approaches
zero. Fig. 4(b) demonstrates the interference-resistant process
of FMAA, where the secondary axis represents the MMD
distance between each category in the SD and TD. For
example, S-T-Stuck1-MMD represents the MMD distance
between the Stuck1 class in the SD and TD. Adversarial
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Fig. 4. Training process of Task T0-0. (a) Convergence process of the
model. (b) Anti-interference process of the model.

training may interfere with the model’s convergence and even
lead to training collapse [12]. The model’s accuracy starts to
decline gradually due to adversarial interference at the 30th
epoch, but after incorporating the LSMMD and Attention
strategies at the 40th epoch, the model’s accuracy begins to
improve gradually. Therefore, LSMMD and Attention strate-
gies effectively enhance the model’s robustness. Additionally,
after adding the LSMMD and Attention strategies, the MMD
distance between the same categories in the SD and TD starts
to decrease rapidly, significantly reducing the conditional
distribution difference between the SD and TD.

4) Feature Visualization: The diagnostic model’s efficacy
is illustrated using the t-SNE [12] approach. The results of
feature visualization are shown in Fig. 5. S-Stuck-1 and T-
Stuck-1 denote the stuck faults in the SD and TD, respec-
tively. ADA struggles to effectively differentiate fault cate-
gories due to significant data distribution differences between
the SD and TD. Although FADA enlarges the feature distance
among different categories by leveraging a labeled small
sample, it still results in confusion between some categories
(Stuck and Norm). FMAA alleviates the confusion of model
classification by increasing the distribution distance among
different categories through negative adversarial strategies.
While CMMD reduces the feature distance between the same
categories in the source and target domains, it still cannot dif-
ferentiate between the Norm and Stuck categories. Through a
self-correction method, LSMMD reduces the feature distance
between the same category in both domains and fixes the
model’s misclassifications. The attention module enhances
the diagnostic performance of the model while also perfectly
accomplishing the clustering task.

Fig. 5. Feature visualization results of different methods.

B. Case2: Experimental Platform of Bearing

The experiments for cross-machine diagnosis of bearings
were conducted using the CWRU (Case Western Reserve
University) dataset [5] and the SCU (Soochow University)
dataset [12], as shown in Fig. 6. Both datasets consist of four
different health conditions: normal (Norm), inner race fault
(Inner), ball fault (Ball), and outer race fault (Outer). The
sampling frequency of the vibration signals in the CWRU
and SCU datasets is 12 kHz and 10 kHz. The CWRU dataset
includes four operating conditions: 0hp, 1hp, 2hp, and 3hp.
The SCU dataset includes four operating conditions: 0kN,
1kN, 2kN, and 3kN.

1) The Results of Cross-machine Fault Diagnosis: The
hyperparameter settings were the same as in Case 1, and
the diagnostic results are shown in Table IV. Among them,
the T0-1 task represents training the model using the 0hp
data from the CWRU dataset and testing the model using
the 1kN data from the SCU dataset. The diagnostic results
of ERM indicate that there is a huge distribution difference
between the CWRU and SCU datasets. DDC achieved the
best diagnostic results in the unsupervised method, but it
does not meet the requirements of industrial applications.
Compared to FADA, the proposed FMAA method shows
improved diagnostic performance after incorporating metric
learning strategies. LSMMD can improve the accuracy by

Bearing 

running end
Accelerometer

Testing

Bearing

Fan end 

bearing
Dynamometer

Torque

transducer

Transfer

(a) (b)

Fig. 6. Bearing experimental platform for CWRU and SCU. (a) CWRU
dataset. (b) SCU dataset.
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TABLE IV
RESULTS OF CROSS-MACHINE DIAGNOSTICS FOR BEARINGS.

Methods T0-0 T0-1 T0-2 T0-3 T1-1 T2-2 T3-3 Average

ERM 43.7% 32.8% 34.5% 34.5% 25.0% 25.0% 25.0% 31.5%
DAN 25.0% 25.0% 55.7% 25.0% 25.0% 25.0% 25.0% 29.4%
ADA 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 25.0%

DANN 25.0% 25.0% 27.5% 25.0% 25.0% 25.0% 47.5% 28.6%
DDC 25.6% 38.2% 43.7% 27.7% 44.8% 34.9% 33.6% 35.5%
FADA 81.0% 96.0% 92.6% 88.8% 94.7% 71.6% 79.5% 86.3%
FMAA 88.2% 91.7% 89.0% 93.8% 85.9% 85.2% 95.0% 89.8%

LSMMD 99.0% 94.3% 93.5% 97.5% 91.9% 97.4% 98.5% 96.0%
Attention 98.5% 97.4% 98.7% 98.2% 99.9% 97.3% 99.8% 98.6%

6.2% through its label self-correction strategy. Furthermore,
the diagnostic performance can be further enhanced by
incorporating the attention module into the model.

2) The Analysis of the Model’s Classification Perfor-
mance: The confusion matrix of the few-shot methods for
the T3-3 task is shown in Fig. 7. FADA only correctly
identifies the Outer category. There is confusion between
some Norm and Inner samples due to the small feature
distance. Some samples from Norm and Ball are predicted
as Outer, indicating that it is necessary to increase the
feature distance among the three categories to avoid con-
fusion. FMAA eliminates the confusion between Norm and
Inner after incorporating metric learning strategies, and the
classification performance of Ball improves by 34.5%. The
LSMMD strategy further enhances the classification perfor-
mance of Ball. Finally, the attention module improves the
classification performance of Ball to 99.5% by extracting
global and local features of the model.

V. CONCLUSIONS

The objective of this study is to develop a robust and
versatile method for cross-machine diagnosis of rotating
machinery. Firstly, FMAA uses metric learning method to
increase the feature distance among different categories,

Fig. 7. The confusion matrix of few-shot methods in the T3-3 task.

while employing adversarial learning methods to reduce the
data distribution difference between the SD and TD. Then,
LSMMD further enhances the diagnostic performance of the
model by correcting its misclassification. Additionally, we
incorporate a lightweight attention module into the model
to extract local and global features of signals, thereby en-
hancing the diagnostic performance of the FMAA. Finally,
the effectiveness of the cross-machine diagnostic method is
validated using ball screw and bearing datasets.
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