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Abstract— Real-time automata are a widely-used class of real-
time systems. In this paper, two versions of strong detectability
are formulated for a labeled real-time automaton (LRTA) which
means after some delay (the number of observed labels or
real-time delay), along every generated infinite run, one can
determine the current and subsequent states by observing
the generated timed label sequence. By using the concurrent
composition defined and computed in one of the authors’
previous papers, necessary and sufficient conditions for the
negations of the two strong versions of detectability are given.
It is also proven that the verification problems for the two
definitions of strong detectability are both coNP-complete.

I. INTRODUCTION

A. Background

The concurrent-composition method in labeled finite-
state automata (LFSAs) proposed in [1] by characterizing
the negation of strong detectability has provided a uni-
fied method to verify almost all inference-based properties
[2] such as strong versions of detectability, diagnosability,
and predictability. Compared with the classical widely-used
methods — the detector method [3] used for verifying strong
versions of detectability, the twin-plant method [4] and the
verifier method [5], [6] used for verifying diagnosability and
predictability, the advantage of the concurrent-composition
method lies in that it does not depend on any assumption,
but the detector method, the twin-plant method, the veri-
fier method, all depend on two fundamental assumptions
of deadlock-freeness (an automaton will always run) and
divergence-freeness (the running of an automaton will always
be eventually observed), resulting in that these three methods
(and their variants) only apply to a very restrictive subclass of
LFSAs. In addition, the four methods have almost the same
complexity. Hence whenever encountering a problem related
to an inference-based property, the concurrent composition
is the tool of the first choice.

In [7], [8], the definition of concurrent composition was
nontrivially extended to labeled weighted automata over
monoids, and necessary and sufficient conditions for strong
versions of detectability were given based on the concurrent
composition; particularly, for such automata over the monoid
(Qk,+), the concurrent-composition computation problem
was proven to be NP-complete, and the strong detectabil-
ity verification problem was proven to be coNP-complete.

This work was supported by project SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded by the European Union
- NextGenerationEU.

Kuize Zhang and Alessandro Giua are with Department of Electrical
and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
(kuize.zhang@unica.it and giua@unica.it).

Later, in [9], the concurrent composition was used to verify
two strong versions of detectability of labeled unambiguous
weighted automata over rational semirings in exponential
time (but the authors wrongly claimed that their algorithms
ran in polynomial time). In [10], the concurrent composition
was extended to labeled real-time automata (LRTAs) which
are a widely-used class of real-time systems and a notion
of diagnosability using infinite runs was formulated and
verified based on the concurrent composition, the concurrent-
composition computation problem was proven to be NP-
complete and the diagnosability verification problem was
proven to be coNP-complete.

The strong detectability verification problem in general
labeled timed automata is PSPACE-complete [7], [11]. In
these two papers, the negations of two strong versions of
detectability were verified by using the combination of the
classical parallel composition of two labeled timed automata
and the region automaton [12] of a timed automaton. The
combination was used earlier in [13] to verify the negation
of diagnosability of labeled time automata.

B. Contribution

In this paper, for LRTAs, we define two versions of
strong detectability, which means there is a delay such that
along every generated infinite run, after the delay one can
determine the current and subsequent states by observing
the generated timed label sequence, where a label represents
an output. In the first version, the delay k is the number
of generated labels, that is, one observes a generated timed
label sequence with at least a number k of labels; in the
second version, the delay t is the real-time delay. Based
on the concurrent composition formulated in [10], necessary
and sufficient conditions for the negations of the two strong
versions of detectability are given. The characterization of
the first version is simpler but the characterization of the
second version is much more involved. Moreover, we prove
that both the necessary and sufficient conditions for the
negations of the two versions can be verified in NP by using
the technique of computing concurrent composition proposed
in [10].

C. Structure of the paper

In Section II, we present the background of our work,
including notation, complexity results on state estimates
in LRTAs proven in [14], and the concurrent composition
formulated and computed in [10]. In Section III, we show the
main results, including two strong versions of detectability,
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their necessary and sufficient conditions based on the con-
current composition, and the complexity results on verifying
these two versions of detectability. Section IV ends up the
paper with a short conclusion.

II. PRELIMINARIES

A. Notation

For an alphabet Σ, Σ∗ and Σω denote the set of finite
strings (including the empty string ϵ) and the set of infinite
strings over Σ. Elements of an alphabet are called letters.
We also denote Σ+ := Σ∗ \ {ϵ}. For a string w ∈ Σ∗,
|w| denotes its length, that is, the number of elements of
Σ, counting repetitions, occurring in w; wω denotes the
concatenation of infinitely many copies of w. For a string
s1 . . . sn, where s1, . . . , sn are letters, s1 =: init(s1 . . . sn),
sn =: last(s1 . . . sn). For a string (a1, b1) . . . (an, bn) =: s,
a1 . . . an =: s(L), b1 . . . bn =: s(R). As usual, R,Q,Z
denote the sets of real numbers, rational numbers, integers,
respectively. R≥0 and R+ denote the sets of nonnega-
tive real numbers and positive real numbers, respectively.
Q≥0,Q+,Z≥0,Z+ have analogous meanings. Jm,nK de-
notes the set of integers no less than m and no greater than
n. ⊂ denotes set inclusion and ⊊ denotes strict set inclusion.

B. Labeled real-time automata

LRTAs are a special type of labeled timed automata. In
an LRTA, there is only one clock and the clock will be reset
upon each transition’s execution.

An LRTA is a septuple

A = (Q,E,Q0,∆, µ,Σ, ℓ), (1)

where Q is a nonempty finite set of states, E is an (finite)
alphabet of events, Q0 ⊂ Q is a nonempty set of initial
states, ∆ ⊂ Q×E×Q is the transition relation and elements
of ∆ are called transitions, µ assigns to each transition
(q, e, q′) ∈ ∆ (also written as q

e−→ q′) a nonempty interval
µ(e)qq′ of R≥0 with left endpoint and right endpoint being
a and b, where a ∈ Q≥0, b ∈ Q≥0 ∪ {+∞}, a ≤ b, Σ is
an alphabet of labels, and ℓ : E → Σ ∪ {ϵ} is the labeling
function. Removing µ, A degenerates to an LFSA.

When A enters state q, the next event to occur is some e
such that (q, e, q′) ∈ ∆ and it will occur with a delay t ∈
µ(e)qq′ ; if no such event exists, q is a dead state from which
no further evolution is possible. When event e ∈ E occurs,
the label ℓ(e) of e will be observed if ℓ(e) ̸= ϵ, in this case e
is called observable; while nothing will be observed if ℓ(e) =
ϵ, in this case e is called unobservable. A transition (q, e, q′)
is called observable (resp., unobservable) if e is observable
(resp., unobservable). We denote by Eo and Euo the sets
of observable events and unobservable events, respectively.
Labeling function ℓ is extended to E × R≥0 as follows:
ℓ((e, t)) = (ℓ(e), t) if e ∈ Eo, ℓ((e, t)) = ϵ otherwise.
Then ℓ is recursively extended to E∗ ∪Eω as ℓ(e1 . . . en) =
ℓ(e1) . . . ℓ(en) and ℓ(e1 . . . en . . . ) = ℓ(e1) . . . ℓ(en) . . . and
also to (E × R≥0)

∗ ∪ (E × R≥0)
ω analogously.

A path of A is defined by a sequence q0
e1−→ q1

e2−→
· · · en−→ qn, where n ∈ Z≥0, (qi−1, ei, qi) ∈ ∆ for all i ∈

J1, nK. When n = 0, the path degenerates to a single state
q0. A path is called a cycle if its start state and terminal state
coincide. For two states q and q′, q′ is called reachable from
q if there is a path from q to q′. A state q is called reachable if
either q ∈ Q0 or q is reachable from some initial state. A run
of A is a sequence q0

e1/t1−−−→ q1
e2/t2−−−→ · · · en/tn−−−−→ qn =: π,

where n ∈ Z≥0, (qi−1, ei, qi) ∈ ∆, ti ∈ µ(ei)qi−1qi for all
i ∈ J1, nK. We say the run π is over path q0

e1−→ q1
e2−→

· · · en−→ qn. Sometimes, we write a run or a path as q0 → qn
for short if the intermediate states, events, and times are not
needed to be written explicitly. Denote q0 =: init(q0 → q)
and q =: last(q0 → q). The timed word of run π is defined
by τ(π) = (e1, t

′
1)(e2, t

′
2) . . . (en, t

′
n), where t′i =

∑i
k=1 tk

for all i ∈ J1, nK. The length of a path/run/timed word is the
length of its event sequence. The weight/duration WTπ of
run π and the weight/duration WTτ(π) of timed word τ(π)
are both defined by t′n. A path or run is called unobservable
if ℓ(e1 . . . en) = ϵ, and called observable otherwise. A run
is called instantaneous if its weight is equal to 0. For a dead
state q ∈ Q, add an unobservable transition (q, u, q) with
µ(u)qq = [0,+∞). This modification is reasonable because
whenever A transitions to such a state q, it will always stay
there and no label will be generated, but time will still elapse.

For a run π starting from some initial state, ℓ(τ(π)) ∈
(Σ × R≥0)

∗ is called a timed label sequence generated by
A. In this case, we observe ℓ(ei) at time t′i if ei ∈ Eo,
observe nothing at time t′i if ei ∈ Euo, i ∈ J1, nK. More
generally, a sequence (σ1, t1) . . . (σn, tn) =: γ in (Σ×R≥0)

∗

is called a timed label sequence if t1 ≤ · · · ≤ tn. The weight
WTγ of timed label sequence γ is defined as tn. Particularly,
WTϵ := 0. The length of a timed label sequence is the length
of its label sequence. The timed language L(A) generated
by A is defined by the set of timed words of all runs of A
starting from initial states; L(A) is the set of timed label
sequences generated by A.

Analogously, an infinite path, an infinite run, the timed
word, weight, and the timed label sequence of an infinite
run can be defined, where such timed words are called timed
ω-words, and such timed label sequences are called timed ω-
label sequences. The weight of an infinite run can be either
a nonnegative real number or +∞. The timed ω-language
Lω(A) generated by A is defined by the set of timed ω-
words of all infinite runs of A starting from initial states;
Lω(A) is the set of timed ω-label sequences generated by
A.

Consider an LRTA A. Given a subset Q′ ⊂ Q of states
and a timed label sequence γ = (σ1, t1) . . . (σn, tn) ∈ (Σ×
R≥0)

∗, the current-state estimate of A with respect to Q′

and γ is defined by

M(A, γ|Q′) = {q ∈ Q|(∃ run π)[(init(π) ∈ Q′)∧
(last(π) = q) ∧ (ℓ(τ(π)) = γ)∧
(WTπ = WTγ)]}.

(2)

Particularly, denote

M(A, γ|Q0) =: M(A, γ).
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M(A, γ|Q′) exactly contains the set of states that can be
reached from a state in Q′ by a run π which produces timed
label sequence γ and has weight WTπ equal to WTγ .

M(A, ϵ|Q′) can be computed in P, while M(A, γ|Q′)
can be computed in NP if all t1, . . . , tn belong to Q [14,
Theorem 3.1].

Consider a timed label sequence γ =
(σ1, t1) . . . (σn, tn) ∈ (Σ × R≥0)

∗ and t ∈ R+ with
t > WTγ . Define the current-state estimate of A with
respect to γ and Q′ ⊂ Q at instant t as

M(A, γ, t|Q′) = {q ∈ Q|(∃ unobservable run π)[ (3a)
(init(π) ∈ M(A, γ|Q′))∧ (3b)
(last(π) = q)∧ (3c)
(WTπ = t−WTγ)]}∪ (3d)

{q ∈ Q|(∃ unobservable run (3e)

π
e′/t′−−−→ q′)[ (3f)

(init(π) ∈ M(A, γ|Q′))∧ (3g)
(last(π) = q)∧ (3h)
(WTπ < t−WTγ < (3i)
WTπ +t′)]}. (3j)

Similarly, denote

M(A, γ, t|Q0) =: M(A, γ, t). (4)

M(A, γ, t|Q′) exactly contains the set of states that can
be reached from a state in Q′ after exactly time interval t by
a run which produces timed label sequence γ and has weight
greater than or equal to t.

Also by [14, Theorem 3.1], M(A, γ, t|Q′) can be com-
puted in NP if all t1, . . . , tn, t belong to Q.

We summarize these complexity results on state estimates
as follows.

Proposition 2.1: Consider an LRTA A, a subset Q′ ⊂ Q
of states, a time label sequence γ = (σ1, t1) . . . (σn, tn) ∈
(Σ × Q≥0)

+ and t, t′ ∈ Q+ with t > tn. M(A, ϵ|Q′) can
be computed in P, while M(A, γ|Q′), M(A, γ, t|Q′), and
M(A, ϵ, t′|Q′) can be computed in NP.

Remark 1: The method proposed in [15], [14] to compute
an observer of an LRTA can be slightly modified to verify the
two definitions of opacity in constant-time labeled automata
(CTLAs) studied in [16], where the CTLAs are actually spe-
cial LRTAs whose time intervals are singletons. In addition,
the main results obtained in [17] (that is, Alg. 2 and Alg. 3
therein) are special cases of Proposition 2.1.

Based on similar argument, by [14, Lemma 2.2], we have
the following result.

Proposition 2.2: Consider an LRTA A and two subsets
Q′

1, Q
′
2 ⊂ Q of states. Whether there is t ∈ Q+ such that

Q′
2 ⊂ M(A, ϵ, t|Q′

1) can be checked in NP.

C. The notion of concurrent composition

Next we introduce the main tool — concurrent com-
position. For two LFSAs, in their concurrent composition,
observable transitions are synchronized and unobservable

transitions interleave [1]. The concurrent composition of two
LRTAs [10] is a natural generalization of the concurrent com-
position of two LFSAs, and fundamentally more complex.
The concurrent composition of two LFSAs can be computed
in time polynomial in the sizes of the two LFSAs [1], but the
concurrent-composition computation problem of two LRTAs
is NP-complete [10]. We will use a variant of the concurrent
composition proposed and computed in [10].

Definition 1: For an LRTA A, the concurrent composition
of an LRTA A and itself, called the self-composition of A,
denoted as CC(A), is defined by

(Q′, E′
o, Q

′
0,∆

′, µ′,Σ, ℓ′), (5)

where
• Q′ = Q×Q;
• E′

o = {(e1, e2) ∈ Eo × Eo|ℓ(e1) = ℓ(e2)};
• Q′

0 = Q0 ×Q0 is the set of initial states;
• ∆′ ⊂ Q′ × E′ ×Q′ is the transition relation;
• ℓ′(e1, e2) = ℓ(e1) = ℓ(e2) for all (e1, e2) ∈ E′

o.
For all states (q1, q2), (q3, q4) ∈ Q′ and events (e1, e2) ∈

E′
o, ((q1, q2), (e1, e2), (q3, q4)) ∈ ∆′ if and only if there are

two runs:

π1 := q1
ē1u/t̄

1
u...ē

n
u/t̄

n
u−−−−−−−−−→ q5

e1/t1−−−→ q7
ẽ1u/0...ẽ

m
u /0−−−−−−−→ q3, (6a)

π2 := q2
ê1u/t̂

1
u...ê

r
u/t̂

r
u−−−−−−−−→ q6

e2/t2−−−→ q8
ĕ1u/0...ĕ

s
u/0−−−−−−−→ q4, (6b)

where states q5, q6, q7, q8 ∈ Q, ē1u . . . ē
n
u ∈ (Euo)

∗,
ẽ1u . . . ẽ

m
u ∈ (Euo)

∗, ê1u . . . ê
r
u ∈ (Euo)

∗, ĕ1u, . . . , ĕ
s
u ∈

(Euo)
∗, t̄1u, . . . , t̄

n
u, t1, t̂

1
u, . . . , t̂

r
u, t2 ∈ R≥0,

∑n
i=1 t̄

i
u + t1 =∑r

i=1 t̂
i
u + t2. The two runs’ weights are equal. Such π1

and π2 are called left and right admissible runs of transition
((q1, q2), (e1, e2), (q3, q4)). Define the weight of the transi-
tion as µ′(((q1, q2), (e1, e2), (q3, q4))) = + if the transition
has an admissible run with positive weight; define its weight
as µ′(((q1, q2), (e1, e2), (q3, q4))) = 0 if the transition only
has weight-0 admissible runs.

An observable transition (q1, q2)
(e1,e2)−−−−→ (q3, q4) in

CC(A) is interpreted as follows: at the beginning A is in
state q1 or q2 and transition to state q3 or q4 after some
common time delay when event e1 or e2 occurs. That is,
in the two cases, the two observable events e1 and e2
occur simultaneously. Therefore, after e1 and e2, we only
consider instantaneous transitions. Positive weight for the
observable transition means the transition from q1 to q3 may
cost positive time. Zero weight for the observable transition
means that the transition from q1 to q3 never costs time.
A complete procedure for computing CC(A) is referred to
Section III.B of [10].

Example 1: An LRTA A1 is depicted in Fig. 1. The
reachable part of self-composition CC(A1) is illustrated in
Fig. 2. ((q0, q0), (e1, e2), (q3, q4)) is an observable transition,

q0
u/1−−→ q1

e1/2−−−→ q3 and q0
u/0.9−−−→ q2

e2/2.1−−−−→ q4 are two of
its admissible runs, where both of them produce the timed
label sequence (σ, 3).

Theorem 2.3 ([10]): Consider an LRTA A, its self-
composition CC(A) computation problem is NP-complete.
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q0

q2

q1 q3

q4

u/
[1
, 2
]

u/[0.6, 1]

e1/[0, 1]

e2/[1, 2]

e1/[1, 2]

e2/[2.1, 3]

Fig. 1. LRTA A1, where q0 is the initial state (having an input arrow
from nowhere), u is unobservable, e1 and e2 are observable and ℓ(e1) =
ℓ(e2) = σ.

q0q0 q3q4
(e1, e2)/+

(e1, e2)/+

Fig. 2. Reachable part of self-composition CC(A1), where LRTA A1 is
shown in Fig. 1.

III. MAIN RESULTS

A. Definitions of strong label-detectability and strong time-
detectability for LRTAs

In this subsection, we define two versions of strong
detectability.

Definition 2 (SLD): An LRTA A is called strongly label-
detectable if there is k ∈ Z+ such that for every timed ω-
word w ∈ Lω(A), for each prefix γ of ℓ(w), if |γ| ≥ k, then
|M(A, γ)| = 1.

By Definition 2, if an LRTA A is strongly label-detectable,
then there is a delay k such that after observing at least k
generated labels, one can determine the current and subse-
quent states.

When the delay k in Definition 2 is changed to real-
time delay rather than the number of observed labels as
in Definition 2, the definition of strong detectability can be
reformulated as follows.

Definition 3 (STD): An LRTA A is called strongly time-
detectable if there is time delay t ∈ R≥0 such that for every
timed ω-word w ∈ Lω(A) satisfying WTw = +∞, for each
prefix w′ of w, if WTw′ > t, then |M(A, ℓ(w′))| = 1 when
WTw′ = WTℓ(w′), and |M(A, ℓ(w′),WTw′)| = 1 when
WTw′ > WTℓ(w′).

By Definition 3, if an LRTA A is strongly time-detectable,
then there is a real-time delay t such that along every
generated infinite run with weight +∞, after time t, one
can determine the current and subsequent states.

B. Necessary and sufficient conditions for strong versions of
detectability based on concurrent composition

1) A necessary and sufficient condition for strong label-
detectability (with respect to Definition 2):

Theorem 3.1: An LRTA A is not strongly label-detectable
if and only if in its self-composition CC(A),

(i) there exists a path

q′0
s′1−→ q′1

s′2−→ q′1
s′3−→ q′2 (7)

such that

q′0 ∈ Q′
0; q

′
1, q

′
2 ∈ Q′; s′1, s

′
3 ∈ (E′

o)
∗; (8a)

s′2 ∈ (E′
o)

+; q′2(L) ̸= q′2(R); (8b)

(ii) in A, there exists a cycle reachable from q′2(L).
Proof By Definition 2, A is not strongly label-detectable

if and only if for all k ∈ Z+, there exists wk ∈ Lω(A) and
γ ⊏ ℓ(wk), such that |γ| ≥ k and |M(A, γ)| > 1.

“if”: Arbitrarily given k ∈ Z+, consider path q′0
s′1−→

q′1
(s′2)

k

−−−→ q′1
s′3−→ q′2 =: π′, we choose an admissible run

of the path as q′0(L)
s̄1−→ q′1(L)

s̄2−→ q′1(L)
s̄3−→ q′2(L) =: πL

(in which the weights are omitted, the same below), then
ℓ(s̄1) = ℓ′(s′1), ℓ(s̄2) = ℓ′((s′2)

k), ℓ(s̄3) = ℓ′(s′3), and
M(A, γ) ⊃ {q′2(L), q′2(R)}, where γ = ℓ(τ(πL)); by
condition (ii) there also exists a run q′2(L)

s̄4−→ q3
s̄5−→ q3,

where s̄5 ∈ E+. Note that q3
s̄5−→ q3 can be repeated for

infinitely many times. Choose

wk = τ(π),

where π = q′0(L)
s̄1−→ q′1(L)

s̄2−→ q′1(L)
s̄3−→ q′2(L)

s̄4−→
q3

(
s̄5−→ q3

)ω

, one has wk ∈ Lω(A), γ ⊏ ℓ(wk), |γ| ≥ k+2,
and |M(A, γ)| > 1. That is, A is not strongly label-
detectable.

“only if”: Assume that A is not strongly label-detectable.
Choose k > |Q|2, wk ∈ Lω(A), and γ ⊏ ℓ(wk) such that
|γ| ≥ k and |M(A, γ)| > 1. Then there exist two different
runs π1 and π2 starting at initial states and ending at different
states such that τ(π1) = τ(π2) ⊏ wk, and after the last
observable events of π1 and π2, the runs are unobservable
and instantaneous, and starting at the last state of π1 there is
an infinite run. By definition of CC(A), from π1 and π2 one
can construct a path of CC(A) as in (7) by the Pigeonhole
Principle, because CC(A) has at most |Q|2 states. On the
other hand, because A has finitely many states, and based on
the infinite run starting at the last state of π1, condition (ii)
holds.

Example 2: Reconsider the LRTA A1 in Fig. 1 and
its self-composition CC(A1) in Fig. 2. One sees a path

(q0, q0)
(e1,e2)−−−−→ (q3, q4)

(e1,e2)−−−−→ (q3, q4) as in (7) in
CC(A1) and a cycle on q3 in A1, then by Theorem 3.1,
A1 is not strongly label-detectable. Directly by Definition 2,

choose run q0
u1/1−−−→ q1

e1/2−−−→ q3

(
e1/1−−−→ q3

)ω

=: π

and timed ω-word w = τ(π) = (u, 1)(e1, 3)(e1, 4) . . .∈
Lω(A1), ℓ(w) = (σ, 3)(σ, 4) . . . . For all k ∈ Z+,
M(A1, (σ, 3)(σ, 4) . . . (σ, k + 2)) = {q3, q4} which is not
a singleton, also by the cycle on q3, we conclude that A1 is
not strongly label-detectable.

2) A necessary and sufficient condition for strong time-
detectability (with respect to Definition 3): The procedure
for deriving a necessary and sufficient condition for strong
time-detectability is much more complicated. To this end, we
need to define a special class of transitions for CC(A). A

transition (q1, q2)
(e1,e2)−−−−→ (q3, q4) is called time-unbounded
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if it has two admissible runs each of which contains a
transition of A whose time interval is unbounded before the
terminating state of the observable transition (e.g., q7 and
q8 in (6)). By definition, for a time-unbounded transition,
the weight of each of its two admissible runs as in (6) can
be arbitrarily large. The two transitions with unbounded time
intervals can be two unobservable transitions in the two paths
as in (6a) and (6b) before e1 and e2, respectively, can be the
two observable transitions as in (6a) and (6b) with events
e1 and e2, respectively, can also be the observable transition
in (6a) and an unobservable transition in (6b) before e2, or
vice versa. A slight change of the proof of [10, Theorem 3.1]
implies the following result.

Proposition 3.2: Whether a transition (q1, q2)
(e1,e2)−−−−→

(q3, q4) is time-unbounded can be checked in NP.
In addition, we also need the following results.
Proposition 3.3: Consider an LRTA A and a reachable

state q ∈ Q. Starting from q there is an infinite run with
weight +∞ if and only if some cycle is reachable from q
and in the cycle there is a transition whose interval contains
a positive number.

Proposition 3.4: An LRTA A is not strongly time-
detectable if and only if for all t ∈ R≥0, there exists
wt ∈ Lω(A) satisfying WTwt

= +∞ and w′ ⊏ wt such that
WTw′ > t, |M(A, ℓ(w′))| > 1 when WTw′ = WTℓ(w′),
and |M(A, ℓ(w′),WTw′)| > 1 when WTw′ > WTℓ(w′).

Theorem 3.5: An LRTA A is not strongly time-detectable
if and only if at least one of the following six conditions
holds.
(A) In the self-composition CC(A), there exists a path

q′0
s′1−→ q′1, (9)

where q′0 ∈ Q′
0, s′1 ∈ (E′

o)
+, q′1(L) ̸= q′1(R), q′0

s′1−→ q′1
contains at least one time-unbounded transition, and in
A starting from q′1(L) there is an infinite run with weight
+∞.

(B) In CC(A), there exists a path

q′0
s′1−→ q′1

s′2−→ q′1
s′3−→ q′2, (10)

where q′0 ∈ Q′
0, s′1, s

′
3 ∈ (E′

o)
∗, s′2 ∈ (E′

o)
+, q′2(L) ̸=

q′2(R), q′1
s′2−→ q′1 contains at least one transition with

weight +, and in A starting from q′2(L) there is an
infinite run with weight +∞.

(C) In CC(A), there exists a path

q′0
s′1−→ q′1, (11)

where q′0 ∈ Q′
0, s′1 ∈ (E′

o)
+, q′0

s′1−→ q′1 contains
at least one time-unbounded transition, there are two
distinct states q̂, q̄ of A such that for some s ∈ Q+,
M(A, ϵ, s|{q′1(L), q′1(R)}) ⊃ {q̂, q̄}, and either

a) there is an unobservable run q′1(L) → q̂ with weight
s and starting from q̂ there is an infinite run with
weight +∞, or

b) there is an unobservable run q′1(L) → q̂ → q̃
satisfying WTq′1(L)→q̂ < s < WTq′1(L)→q̂→q̃ , q̂ → q̃
is of length 1, and starting from q̃ there is an infinite
run with weight +∞.

(D) In CC(A), there exists a path

q′0
s′1−→ q′1

s′2−→ q′1
s′3−→ q′2, (12)

where q′0 ∈ Q′
0, s′1, s

′
3 ∈ (E′

o)
∗, s′2 ∈ (E′

o)
+, q′1

s′2−→ q′1
contains at least one transition with weight +, there are
two distinct states q̂, q̄ of A such that for some s ∈ Q+,
M(A, ϵ, s|{q′2(L), q′2(R)}) ⊃ {q̂, q̄}, and either

a) there is an unobservable run q′2(L) → q̂ with weight
s and starting from q̂ there is an infinite run with
weight +∞, or

b) there is an unobservable run q′2(L) → q̂ → q̃
satisfying WTq′2(L)→q̂ < s < WTq′2(L)→q̂→q̃ , q̂ → q̃
is of length 1, and starting from q̃ there is an infinite
run with weight +∞.

(E) In CC(A), there exists a path

q′0
s′1−→ q′1, (13)

where q′0 ∈ Q′
0, s′1 ∈ (E′

o)
∗, there are two distinct states

q̂, q̄ of A and two unobservable paths

q′1(L) → q̂, (14a)
q′1(R) → q̄, (14b)

such that one of (14a) and (14b) has a transition with
unbounded time interval, the other has either a transition
with unbounded time interval or a cycle containing
a transition whose time interval contains at least one
positive number, and starting from q̂ there is an infinite
run with weight +∞.

(F) In CC(A), there exists a path

q′0
s′1−→ q′1, (15)

where q′0 ∈ Q′
0, s′1 ∈ (E′

o)
∗, there are two distinct states

q̂, q̄ of A, either
a) there are two unobservable runs

q′1(L) → q̂, (16a)
q′1(R) → q̄, (16b)

such that WTq′1(L)→q̂ = WTq′1(R)→q̄ , each of
q′1(L) → q̂ and q′1(R) → q̄ has a cycle with positive
weight, and starting from q̂ there is an infinite run
with weight +∞, or

b) there are two unobservable runs

q′1(L) → q̂, (17a)
q′1(R) → q̄ → q̃, (17b)

such that WTq′1(R)→q̄ < WTq′1(L)→q̂ <
WTq′1(R)→q̄→q̃ , q̄ → q̃ is of length 1, each of
q′1(L) → q̂ and q′1(R) → q̄ has a cycle with positive
weight, and starting from q̂ there is an infinite run
with weight +∞, or
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c) there are two unobservable runs

q′1(L) → q̂ → q̃, (18a)
q′1(R) → q̄, (18b)

such that WTq′1(L)→q̂ < WTq′1(R)→q̄ <
WTq′1(L)→q̂→q̃ , q̂ → q̃ is of length 1, each of
q′1(L) → q̂ and q′1(R) → q̄ has a cycle with positive
weight, and starting from q̄ there is an infinite run
with weight +∞,

Example 3: Reconsider the LRTA A1 in Fig. 1 and its
self-composition CC(A1) in Fig. 2. In CCA(A1), there
is no time-unbounded transition, so neither (A) nor (C)
in Theorem 3.5 holds. The path (q0, q0)

(e1,e2)/+−−−−−−→
(q3, q4)

(e1,e2)/+−−−−−−→ (q3, q4)
(e1,e2)/+−−−−−−→ (q3, q4) is

as in (10), so (B) in Theorem 3.5 holds, and we
have A1 is not strongly time-detectable. Directly by
Definition 3, for each t ∈ R≥0, we choose infinite run

q0
u1/1−−−→ q1

e1/2−−−→ q3

(
e1/1−−−→ q3

)ω

=: π, and timed ω-word

wt = τ(π) = (u, 1)(e1, 3)(e1, 4) . . .∈ Lω(A1) which
is actually independent of t, ℓ(wt) = (σ, 3)(σ, 4) . . . .
Choose prefix (u, 1)(e1, 3)(e1, 4) . . . (e1, n) =:
w′

t of τ(π) such that WTw′
t

= n > t,
then M(A1, ℓ((u, 1)(e1, 3)(e1, 4) . . . (e1, n))) =
M(A1, (σ, 3)(σ, 4) . . . (σ, n)) = {q3, q4} which is not
a singleton, we also have A1 is not strongly time-detectable.

C. Complexity results on verifying strong label-detectability
and strong time-detectability of LRTAs

In this subsection, we give complexity results on verifying
the two strong versions of detectability of LRTAs.

Theorem 3.6: The verification problems for Definition 2
and Definition 3 both belong to coNP.

Proof Consider an LRTA A. By Theorem 2.3, CC(A)
can be computed in NP. After CC(A) has been computed,
both condition (i) and condition (ii) of Theorem 3.1 can be
verified in P. Hence the negation of Definition 2 can be
verified in NP.

Now we consider Definition 3, we need to prove each of
the six conditions in Theorem 3.5 can be verified in NP.
By Proposition 3.2, whether (9) contains a time-unbounded
transition can be checked in NP. By Proposition 3.3, whether
starting from q′1(L) there is an infinite run with weight +∞
can be checked in P. Hence condition (A) (of Theorem 3.5)
can be checked in NP. Similarly, condition (B) can also
be checked in NP. Additionally by Theorem 2.3 and the
technique proposed in [10] to compute concurrent composi-
tion, condition (C), condition (D), and condition (F) can be
checked in NP. Condition (E) can be checked in P.

The reduction (illustrated in [10, Fig. 6]) constructed
to prove the coNP-hardness of verifying diagnosability of
LRTAs (shown in [10, Thm. 3.5]) implies the following
result.

Theorem 3.7: The problems of verifying Definition 2 and
Definition 3 are both coNP-hard.

IV. CONCLUSION

In this paper, we formulated two versions of strong de-
tectability for LRTAs called strong label-detectability and
strong time-detectability. Based on the concurrent compo-
sition formulated and computed in [10], we gave necessary
and sufficient conditions for the two versions and also proved
that their verification problems are both coNP-complete. All
results obtained in the current paper can be extended to a
more general class of automata in which the intervals of
transitions are intervals of real numbers whose endpoints are
rational numbers, −∞, or +∞ by extending the definition
of concurrent composition from LRTAs to this more general
class of automata. We believe that the use of the concurrent-
composition operator will enable the extension to extent to
LRTAs of many other decidable results obtained in the past
3 decades for discrete-event systems modeled by LFSAs.
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