
Neural Operators for Hyperbolic PDE Backstepping Kernels

Luke Bhan, Yuanyuan Shi, and Miroslav Krstic

Abstract— We introduce a framework for eliminating the
computation of controller gain functions in PDE control. We
learn the nonlinear operator from the plant parameters to
the control gains with a (deep) neural network. We provide
closed-loop stability guarantees (global exponential) under an
NN-approximation of the feedback gains. While, in the existing
PDE backstepping, finding the gain kernel requires (one offline)
solution to an integral equation, the neural operator (NO)
approach we propose learns the mapping from the functional
coefficients of the plant PDE to the kernel function by employ-
ing a sufficiently high number of offline numerical solutions
to the kernel integral equation, for a large enough number of
the PDE model’s different functional coefficients. We prove the
existence of a DeepONet approximation, with arbitrarily high
accuracy, of the exact nonlinear continuous operator mapping
PDE coefficient functions into gain functions. Once proven to
exist, learning of the NO is standard, completed “once and
for all” (never online) and the kernel integral equation doesn’t
need to be solved ever again, for any new functional coefficient
not exceeding the magnitude of the functional coefficients used
for training. Simulation illustrations are provided and code
is available on github. This framework, eliminating real-time
recomputation of gains, has the potential to be game changing
for adaptive control of PDEs and gain scheduling control of
nonlinear PDEs.

I. INTRODUCTION

ML/AI has been a disruptive force in a wide class of
engineering disciplines leading to questions about whether
ML/AI will “takeover” model-based sciences such as physics
or conventional control theory. Recently, a new framework
has emerged [7], [8], [10], [11] which promises to unite the
goals of physics and learning, rather than presenting learning
as an alternative or substitute to first-principles physics.
This framework, termed neural operators (NO), is formulated
as learning mappings from function spaces into function
spaces and has achieved success in PDEs with learnable
solution/”flow” maps after enough simulations with different
initial conditions.

a) Mappings of plant parameters to control gains and
learning of those maps: It is worth asking what neural oper-
ators can contribute to control theory, namely to the design
of controllers, observers, and online parameter estimators. In
this work, we explore a first venture in this direction with
the capability for future extensions and layout a blueprint to
learn PDE control design and prove their stability.

Although learning nonlinear maps for various design
problems for nonlinear ODEs is worth studying, we focus
this initial work one step beyond, on a benchmark PDE

This work was supported by NSF Grants ECCS-2151525 and ECCS-
2210315 as well as AFOSR FA9550-22-1-0265

The authors are with the University of California, San Diego, USA,
lbhan@ucsd.edu, yyshi@eng.ucsd.edu, krstic@ucsd.edu

control class. Particularly, we focus on an uncomplicated -
but unstable - PDE control class. Our choice of basic PDE
control is for pedagogical reasons - combining the operator
learning with PDE backstepping is complex for even the
simplest-looking PDE stabilization problems.

b) PDE backstepping control with the gain computation
obviated using neural operators: Consider 1D hyperbolic
partial integro-differential equation systems of the general
form vt(x, t) = vx(x, t) + λ(x)v(x, t) + g(x)v(0, t) +∫ x

0
f(x, y)v(y, t)dy on the unit interval x ∈ [0, 1], which

are transformable, using an invertible backstepping “pre-
transformation” introduced in [1] into the simple PDE

ut(x, t) = ux(x, t) + β(x)u(0, t) (1)
u(1, t) = U(t). (2)

Our goal is the design of a PDE backstepping boundary
control

U(t) =

∫ 1

0

k(1− y)u(y, t)dy. (3)

Physically, (1) is a “transport process (from x = 1 towards
x = 0) with recirculation” of the outlet variable u(0, t).
Recirculation causes instability when the coefficient β(x)
is positive and large. This instability is prevented by the
backstepping boundary feedback (3) with the gain function
k(·) as a kernel in the spatial integration of the measured
state u(y, t). (The full state does not need to be measured,
as explained in Remark 1 at the end of Section IV.)

Backstepping produces the gain kernel k for a given β.
We learn the nonlinear continuous mapping K : β 7→ k and
once K is learned, the partial differential or integral equation
does not need to be recomputed for a new β. Instead, for a
new β, finding k is simply a ”function evaluation” of the
learned mapping K. This benefits adaptive control where, at
each timestep, the gain estimate k̂ needs to be calculated
for a new parameter update β̂ and in gain scheduling for
nonlinear PDEs where the gain must be recomputed at each
current state.

Naturally, one can just learn the mapping K and stop.
However, in this work, we extend our analysis to investigate
whether the NN approximation of the gains k̂ will result in
a stable PDE. We find that with a large enough data set of
solved pairs (βi, ki), and a large enough trained (deep) NN,
closed-loop stability is guaranteed for a new β, not in the
training set.

c) Neural operator literature—a brief summary: Neural
operators are NN-parameterized maps for learning rela-
tionships between function spaces. They originally gained
popularity due to their success in mapping PDE solutions

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5202

Process

Derive Backstepping Kernel Condition

Learn Neural Operator

- Choose many functional
coefficients of PDE

- Solve corresponding integral
equations

- Learn the backstepping kernel
neural operator

- Start with PDE model
- Pick target system
- Formulate backstepping transform
- Derive integral equation for kernel

Implement Controller

- Evaluate backstepping kernel for
a given PDE model parameter

- Apply controller to PDE

Fig. 1. An algorithmic representation of our design paradigm of employing
neural operators in boundary control of PDEs. Three major step clusters
are performed: (1) derivation of the integral equations for the backstepping
kernels, performed only once; (2) learning of the mapping from the plant
parameter functions into the backstepping kernel functions, also performed
only once; and (3) implementation of the controller for specific plant
parameters. The task in the top box has been completed in [5]. In this
paper, the task in the middle box is introduced and stability guarantees for
the task in the bottom box are provided.

while remaining discretization-invariant. Generally, nonlin-
ear operators consist of three components: an encoder, an
approximator, and a reconstructor [6]. The encoder is an
interpolation from an infinite-dimensional function space to
a finite-dimensional vector representation. The approximator
aims to mimic the infinite map using a finite-dimensional
representation of both the domain function space and the
target function space. The reconstructor then transforms
the approximation output into the infinite-dimensional target
function space. The implementation of both the approximator
and the reconstructor is generally coupled NNs, but can take
many different forms. More details can be found in [3], [8]–
[10], [12]–[15]

d) Paper outline and contributions: After a brief intro-
duction to the backstepping design in Section II, for system
(1), (2), in Section III we prove that the backstepping kernel
operator is locally Lipschitz, between the spaces of contin-
uous functions, with which we satisfy a sufficient condition
for the existence of a neural operator approximation of a
nonlinear operator to arbitrarily high accuracy—stated at
the section’s end in a formal result and illustrated with
an example of approximating the operator k = K(β). In
Section IV we present our main results: the closed-loop
stabilization (not merely practical but exponential) with a

DeepONet-approximated backstepping gain kernel function.
In Section V we present simulations illustrate stabilization
under DeepONet-approximated gains.

Lastly, we note the stabilization results also hold for
any other neural operators with a universal approximation
property (shown for LOCA [3] and for FNO on the periodic
domain [4]).

e) Notation: We denote convolution operations as

(a ∗ b)(x) =
∫ x

0

a(x− y)b(y)dy (4)

In the sequel, we suppresses the arguments x and t wherever
clear from the context. For instance, we write (1), (2)
compactly as ut = ux + βu(0) and u(1) = U , where, from
the context, the boundary values u(0), u(1) depend on t as
well.

II. BACKSTEPPING DESIGN FOR A TRANSPORT PDE
WITH ‘RECIRCULATION’

Consider the PDE system (1), (2). We employ the follow-
ing backstepping transformation:

w = u− k ∗ u, (5)

i.e., w(x, t) = u(x, t)−
∫ x

0
k(x− y)u(y, t)dy, to convert the

plant into the target system

wt = wx (6)
w(1) = 0 (7)

with the help of feedback

U = (k ∗ u)(1), (8)

namely, U(t) =
∫ 1

0
k(1 − y)u(y, t)dy. To yield the target

system, k must satisfy the integral/convolution equation

k(x) = −β(x) +

∫ x

0

β(x− y)k(y)dy (9)

for x ∈ [0, 1]. Note that, while this integral equation is linear
in k for a given β, the mapping from β to k is actually
nonlinear, due to the product in the convolution of β with k.

III. ACCURACY OF APPROXIMATION OF BACKSTEPPING
KERNEL OPERATOR WITH DEEPONET

An n-layer NN fN : Rd1 → Rdn is given by

fN (x, θ) := (ln ◦ ln−1 ◦ ... ◦ l2 ◦ l1)(x, θ) (10)

where layers li start with l0 = x ∈ Rd1 and continue as

li+1(li, θi+1) := σ(Wi+1li+bi+1), i = 1, . . . , n−1 (11)

σ is a nonlinear activation function, and weights Wi+1 ∈
Rdi+1×di and biases bi+1 ∈ Rdi+1 are parameters to be
learned, collected into θi ∈ Rdi+1(di+1), and then into
θ = [θT1 , . . . , θ

T
n]

T ∈ R
∑n−1

i=1 di+1(di+1). Let ϑ(k), θ(k) ∈
R

∑k−1
i=1 dk,(i+1)(dk,i+1) denote a sequence of NN weights.

An neural operator (NO) for approximating a nonlinear
operator G : U 7→ V is defined as

GN(um)(y) =

p∑

k=1

gN (um;ϑ(k))fN (y; θ(k)) (12)

5203

where U ,V are function spaces of continuous functions u ∈
U , v ∈ V . um is the evaluation of function u at points xi =
x1, ..., xm, p is the number of chosen basis components in the
target space, y ∈ Y is the location of the output function v(y)
evaluations, and gN , fN are NNs termed branch and trunk
networks. Note, gN and fN are not limited to feedforward
NNs 10, but can also be of convolutional or recurrent.

Theorem 1: (DeepONet universal approximation theorem
[2, Theorem 2.1]). Let X ⊂ Rdx and Y ⊂ Rdy be
compact sets of vectors x ∈ X and y ∈ Y , respectively.
Let U : X → U ⊂ Rdu and V : Y → V ⊂ Rdv

be sets of continuous functions u(x) and v(y), respec-
tively. Let U be also compact. Assume the operator G :
U → V is continuous. Then, for all ϵ > 0, there exist
m∗, p∗ ∈ N such that for each m ≥ m∗, p ≥ p∗, there
exist θ(k), ϑ(k), neural networks fN (·; θ(k)), gN (·;ϑ(k)), k =
1, . . . , p, and xj ∈ X, j = 1, . . . ,m, with corresponding
um = (u(x1), u(x2), · · · , u(xm))T, such that

|G(u)(y)− GN(um)(y)| < ϵ (13)

for all functions u ∈ U and all values y ∈ Y of G(u) ∈ V .
Definition 1: (backstepping kernel operator). A mapping

K : β 7→ k of C0[0, 1] into itself, where k = K(β) satisfies

K(β) = −β + β ∗ K(β), (14)

namely, in the Laplace transform notation,

k = K(β) := L−1

{
L{β}

L{β} − 1

}
(15)

is referred to as the backstepping kernel operator.
Lemma 1: (Lipschitzness of backstepping kernel operator

K). The kernel operator K : β 7→ k in Definition 1 is
Lipschitz. Specifically, for any B > 0 the operator K satisfies

||K(β1)−K(β2)||∞ ≤ C||β1 − β2||∞ (16)

with the Lipschitz constant

C = e3B (17)

for any pair of functions (β1, β2) such that ∥β1∥∞, ∥β2∥∞ ≤
B, where ∥ · ∥∞ is the supremum norm over the argument
of β and k.

Proof: Start with the iteration k0 = −β, kn+1 = k0 +
β ∗ kn, n ≥ 0 and consider the iteration

∆kn+1 = β ∗∆kn, ∆k0 = k0 = −β (18)

for the difference ∆kn = kn − kn−1, which sums to

k =
∞∑

n=1

∆kn. (19)

Next, for β̄ = ∥β∥∞ and all x ∈ [0, 1],

|∆kn(x)| ≤ β̄n+1xn

n!
, (20)

which is established by induction by postulating∣∣∆kn−1(x)
∣∣ ≤ β̄nxn−1

(n−1)! and by computing, from (18),

|∆kn(x)| =

∣∣∣∣
∫ x

0

β(x− y)∆kn−1(y)dy

∣∣∣∣

≤ β̄

∫ x

0

β̄nyn−1

(n− 1)!
|dy ≤ β̄n+1xn

n!
. (21)

And then, (20) and (19) yield

|k(x)| ≤ β̄eβ̄x. (22)

Next, for k1 = K(β1) and k2 = K(β2) it is easily verified
that

k1 − k2 = β1 ∗ (k1 − k2)− δβ + δβ ∗ k2 (23)

where δβ = β1 − β2. Define the iteration

δkn+1 = β1 ∗ δkn (24)
δk0 = −δβ + δβ ∗ k2 (25)

which verifies k1−k2 =
∑∞

n=1 δk
n. Noting that (22) ensures

that k2 = K(β2) verifies |k2(x)| ≤ β̄2e
β̄2x, from (25),

|δk0(x)| ≤
(
1 + β̄2e

β̄2x
)
δβ ≤ µ2δβ (26)

where µ2 := 1 + β̄2e
β̄2 and δβ = ∥β1 − β2∥∞, it can be

shown by induction, by mimicking the chain of inequalities
(21), that, for all x ∈ [0, 1],

|δkn(x)| ≤ µ2δβ
β̄n
1 x

n

n!
(27)

and therefore it follows that, for all x ∈ [0, 1],

|k1(x)− k2(x)| ≤
(
1 + β̄2e

β̄2

)
eβ̄1x∥β1 − β2∥∞

≤ e3B∥β1 − β2∥∞. (28)

Hence, local Lipschitzness is proven with (17).
Corollary 1: (to Theorem 1). Consider the backstepping

kernel operator K in Definition 1. For all B > 0 and
ϵ > 0, there exist p∗(B, ϵ),m∗(B, ϵ) ∈ N, with an in-
creasing dependence on B and 1/ϵ, such that for each
p ≥ p∗ and m ≥ m∗ there exist θ(k), ϑ(k), neu-
ral networks fN (·; θ(k)), gN (·;ϑ(k)), k = 1, . . . , p, and
xj ∈ K1, j = 1, . . . ,m, with corresponding βm =
(β(x1), β(x2), · · · , β(xm))T, such that

|K(β)(x)−KN(βm)(x)| < ϵ (29)

holds for all Lipschitz β with the property that ∥β∥∞ ≤ B.
So the backstepping kernel is approximable, qualitatively,

but how many neurons and how much data are needed for a
given ϵ? We recall a result on the minimum-sized DeepONet.

Proposition 1: (DeepONet size for kernel operator ap-
proximation [2, Theorem 3.3 and Remark 3.4]). If the kernel
operator defined in (14) is Lipschitz (or at least Hölder)
continuous, a DeepONet that approximates it to a required
error tolerance ϵ > 0 indicated by (29) employs the number
of data point evaluations for β on the order of

m ∼ ϵ−1, (30)

5204

0.0 0.2 0.4 0.6 0.8 1.0

x

-10.0

0.0

10.0

20.0
β
k̂

β (x) and k̂(x)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.04

0.07

0.11

0.15

|k(
x)
−

k̂(
x)
|

Error Between k and k̂

Fig. 2. Examples of β, k̂ for Chebyshev polynomials defined as β =
6 cos(γ cos−1(x)) with γ = 7.35. The γ parameter controls the wave
frequency of β and therefore affects the resulting kernel. Additionally, the
DeepONet absolute approximation error of k̂ and k is shown.

the number of basis components in the interpolation when
reconstructing into C0[0, 1] on the order of

p ∼ ϵ−
1
2 , (31)

the numbers of layers LgN in the branch network and of
neurons NgN in each layer of the branch network on the
order given, respectively, by

NgN · LgN ∼
(
1

ϵ

) 1
ϵ

, (32)

and the total size of the trunk network on the order of

|θ(k)| ∼
(
3

2
log

1

ϵ

)2

. (33)

Example 1: In Figure 2 we present two examples of
approximation of k using a DeepONet approximation of
K(β) for given β1 and β2, which are taken as Chebyshev
polynomials β(x) = 6 cos(γ cos−1(x)). They are trained
on approximating kernels from 900 samples with γ ∈
uniform[2, 8].

IV. STABILITY UNDER KERNEL APPROXIMATION WITH
DEEPONET

For our stability study under an approximate (imperfect)
kernel, we begin with a derivation of the target PDE system
under a backstepping transformation employing a DeepONet
approximation of the backstepping kernel.

For a given β, let k̂ = K̂(β), where K̂ = KN, denote an
NO approximation of the exact backstepping kernel k whose
existence is established in Corollary 1 for DeepONet. Let

k̃ = k − k̂ (34)

denote the approximation error. Finally, let the backstepping
transformation with the approximate kernel k̂ be

ŵ = u− k̂ ∗ u. (35)

With routine calculations, employing the approximate
backstepping transformation and the feedback

U = (k̂ ∗ u)(1) (36)

we arrive at the target system

ŵt = ŵx + δŵ(0) (37)
ŵ(1) = 0, (38)

where the function δ(x) is defined as

δ = −k̃ + β ∗ k̃. (39)

Next, we proceed with a Lyapunov analysis.
Lemma 2: (a Lyapunov estimate). Given arbitrarily large

B > 0, for all Lipschitz β with ∥β∥∞ ≤ B, and for all
neural operators K̂ with ϵ ∈ (0, ϵ∗), where

ϵ∗(B) =
ce−c/2

1 +B
(40)

the Lyapunov functional

V (t) =

∫ 1

0

ecxŵ2(x, t)dx, c > 0. (41)

satisfies the following estimate along the solutions of the
target system (37), (38),

V (t) ≤ V (0)e−c∗t, (42)

for
c∗ = c− ec

c
ϵ2 (1 +B)

2
> 0. (43)

The accuracy required of the NO K̂, and given by (40), is
maximized with c = 2 and has the value ϵ∗(B) = 2

e(1+B) .
Proof: Several steps of calculation (chain rule, substi-

tution, integration by parts) result in

V̇ = −ŵ2(0)− c

∫ 1

0

ecxŵ2(x, t)dx

+ŵ(0)

∫ 1

0

δ(x)ecxŵ(x)dx

≤ −1

2
w2(0)− c

∫ 1

0

ecxŵ2(x, t)dx

+

(∫ 1

0

δ(x)ecxŵ(x)dx

)2

(44)

With the Cauchy-Schwartz inequality
(∫ 1

0

δ(x)ecxŵ(x)dx

)2

≤
∫ 1

0

δ2(x)ecxdx

∫ 1

0

ecxŵ(x)2dx (45)

5205

we get

V̇ ≤ −1

2
w2(0)−

(
c−

∫ 1

0

δ2(x)ecxdx

)
V (46)

The function δ in (39) is bounded by |δ(x)| ≤
(1 + ||β||∞) ||k̃||∞ which, in turn, using (29), yields

|δ(x)| ≤ (1 + β̄)ϵ =: δ̄. (47)

Then, substituting this into (37), we obtain:

V̇ ≤ −1

2
w2(0)−

(
c− ϵ2

(
1 + β̄

)2 ∫ 1

0

ecxdx

)
V

≤ −1

2
w2(0)−

(
c− ec

c
ϵ2

(
1 + β̄

)2
)
V

≤ −1

2
w2(0)−

(
c− ec

c
ϵ2 (1 +B)

2

)
V (48)

For 0 ≤ ϵ ≤ ϵ∗, where ϵ∗ is defined in (40), we have

V̇ ≤ −1

2
w2(0)− c∗V (49)

for some c∗ > 0 in (43).
The size of the NO and of the dataset needs to increase

with β̄, i.e., with the potential instability in the open-loop
system.

Lemma 3: (bound on inverse approximate kernel). The
kernel l̂ of the inverse to the backstepping transformation
(35),

u = ŵ + l̂ ∗ ŵ, (50)

satisfies, for all x ∈ [0, 1], the estimate

|l̂(x)| ≤
(
β̄ + (1 + β̄)ϵ

)
e(1+β̄)ϵx. (51)

Proof: It is easily shown that l̂ obeys the integral
equation

l̂ = −β + δ + δ ∗ l̂. (52)

Using the successive approximation approach, we get that
the following bound holds for all x ∈ [0, 1]:

|l̂(x)| ≤
(
β̄ + δ̄

)
eδ̄x. (53)

With (47), we get (51).
Theorem 2: (Closed-loop stability robust to DeepONet

approximation of backstepping kernel). Let B > 0 be arbi-
trarily large and consider the closed-loop system consisting
of (1), (2) with any Lipschitz β such that ∥β∥∞ ≤ B, and the
feedback (36) with the NO gain kernel k̂ = K̂(β) of arbitrary
desired accuracy of approximation ϵ ∈ (0, ϵ∗) in relation to
the exact backstepping kernel k, where ϵ∗(B) is defined in
(40). This closed-loop system obeys the exponential stability
estimate

∥u(t)∥ ≤ Me−c∗t/2∥u(0)∥, ∀t ≥ 0 (54)

with the overshoot coefficient

M =
(
1 +

(
β̄ + (1 + β̄)ϵ

)
e(1+β̄)ϵ

)(
1 + β̄eβ̄

)
ec/2. (55)

Proof: First, we note that Lemma 2 satisfies
1

(
1 + ∥l̂∥∞

)2 ∥u∥2 ≤ V ≤ ec
(
1 + ∥k̂∥∞

)2

∥u∥2. (56)

Since, by Lemma 2, V (t) ≤ V (0)e−c∗t, we get, for all t ≥ 0,

∥u(t)∥ ≤
(
1 + ∥l̂∥∞

)(
1 + ∥k̂∥∞

)
ec/2

×e−c∗t/2∥u(0)∥. (57)

Then, noting, with Theorem 1, (22), and Lemma 3 that

∥k̂∥∞ ≤ ∥k∥∞ + ϵ ≤ β̄eβ̄ + ϵ (58)

∥l̂∥∞ ≤
(
β̄ + (1 + β̄)ϵ

)
e(1+β̄)ϵ (59)

we finally arrive at the exponential stability estimate (54).
Remark 1: Full-state measurement u(x, t) is employed in

the feedback law (36) but can be avoided by employing only
the measurement of the outlet signal, u(0, t), from which the
full state u(x, t) is observable, the observer

ŭt = ŭx + βu(0) (60)
û(1) = U (61)

and the observer-based controller

U = (k̂ ∗ ŭ)(1), (62)

which can avoid solving the PDE (60), (61) online by em-
ploying its explicit solution as an arbitrary function ŭ(x, t) =
ŭ0(x) for t+ x ∈ [0, 1) and

ŭ(x, t) = U(t+x−1)+

∫ t

t+x−1

β(t+x−τ)u(0, τ)dτ (63)

for t + x ≥ 1. A closed-loop stability result as in Theorem
2 can be established for this observer-based controller.

V. SIMULATIONS: STABILIZATION WITH
NO-APPROXIMATED GAIN KERNEL β 7→ K(β)

Continuing Example 1, in Figure 3 we show that the
system is open-loop unstable for both βs and we present
tests with the learned kernels in closed-loop simulations up
to t = 2. In both cases, the PDE settles (nearly perfectly) by
t = 1, as expected from the target system with the perfect
kernel k. The small ripple in the right simulation is due
to the use of the approximated kernel k̂. The simulations
confirm the theoretical guarantee that an NO-approximated
kernel can successfully emulate a backstepping kernel while
maintaining stability.

The NO architecture in K̂ consists of about 680 thousand
parameters with a training time of 1 minute (using an Nvidia
RTX 3090Ti GPU) on a dataset of 900 different β defined
as the Chebyshev polynomials β = 6 cos(γ cos−1(x)) where
γ ∼ uniform(2, 10). We choose β of this form due to the
rich set of PDEs and kernel functions constructed by varying
only a single parameter. The resulting training relative L2

error 4e−3 and the testing relative L2 loss on 100 instances
sampled from the same distribution was 5e − 3. If a wider
distribution of γ is chosen, the mapping can be learned but
requires both a larger network and more data for the same
accuracy.

5206

x

0.0
0.5

1.0

Time

0.0 1.0 2.0 3.0 4.0 5.0

û(x, t)

−3000

−2000

−1000

0

1000

2000

Openloop u(x, t) for γ = 7.35

x

0.0
0.5

1.0

Time

0.0 0.5 1.0 1.5 2.0

û(x, t)

−15.0

−9.6

−4.2

1.2

6.6

12.0

û for PDE solutions using k̂

0.0 0.5 1.0 1.5 2.0

Time

0.000

0.075

0.150

0.225

0.300

√
∑

nx i=
0(

u[
i]
−

û[
i])

2
∗d

x

PDE Error (L2 Norm over x)

Fig. 3. Top row showcases open-loop instability for the recirculation
function β that are the same as in Fig. 2, with γ = 7.35. Additionally,
the bottom two rows highlight examples of PDE closed-loop state response
and errors between the response with “perfect gain” k and “approximate
gain” k̂. β corresponds to the same values in Figure 2.

VI. CONCLUSION

We introduce a novel framework for approximating solu-
tion maps for the feedback gain functions k (9) in control of
PDEs. We provide the guarantees that (i) any desired level
of accuracy of NO approximation of the backstepping gain
kernel is achieved for any β that satisfies ∥β∥∞ ≤ B for
arbitrarily large given B > 0, and (ii) the PDE is stabilized
with an NO-approximated gain kernel for any ∥β∥∞ ≤ B.

For a given B > 0 and any chosen positive ϵ < ϵ∗(B), the
determination of the NO approximate operator K̂(·) is done
offline, once only, and such a K̂(·), which depends on B

and ϵ, is usable “forever,” so to speak, for any recirculation
kernel that does not violate ∥β∥∞ ≤ B.

Our achievement of global exponential stability (not “prac-
tical”/approximate, but with an actual convergence of the
state to zero) relies crucially—in each of the lemmas and
theorems that we state—on the theoretical steps from the
PDE backstepping toolkit (backstepping transform, target
system, integral equation for kernel, successive infinite-series
approximation, Lyapunov analysis). It is only by assigning
the NO a service role in an otherwise model-based design
that stability is assured wheras in other approaches such as
RL [16], assurance is absent.

REFERENCES

[1] P. Bernard and M. Krstic. Adaptive output-feedback stabilization of
non-local hyperbolic PDEs. Automatica, 50:2692–2699, 2014.

[2] B. Deng, Y. Shin, L. Lu, Z. Zhang, and G. E. Karniadakis. Ap-
proximation rates of deeponets for learning operators arising from
advection–diffusion equations. Neural Networks, 153:411–426, 2022.

[3] G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J. Pappas,
and P. Perdikaris. Learning operators with coupled attention. Journal
of Machine Learning Research, 23(215):1–63, 2022.

[4] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation
and error bounds for fourier neural operators. The Journal of Machine
Learning Research, 22(1):13237–13312, 2021.

[5] M. Krstic and A. Smyshlyaev. Backstepping boundary control for
first-order hyperbolic PDEs and application to systems with actuator
and sensor delays. Systems & Control Letters, 57(9):750–758, 2008.

[6] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates
for DeepONets: a deep learning framework in infinite dimensions.
Transactions of Mathematics and Its Applications, 6(1), 03 2022.
tnac001.

[7] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar. Neural operator: Graph kernel network
for partial differential equations. arXiv preprint arXiv:2003.03485,
2020.

[8] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar. Fourier neural operator for parametric
partial differential equations. In International Conference on Learning
Representations, 2021.

[9] Z. Li, M. Liu-Schiaffini, N. Kovachki, B. Liu, K. Azizzadenesheli,
K. Bhattacharya, A. Stuart, and A. Anandkumar. Learning dissipative
dynamics in chaotic systems, 2021.

[10] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear
operators for identifying differential equations based on the universal
approximation theorem of operators. arXiv:1910.03193, 2019.

[11] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation
theorem of operators. Nature Machine Intelligence, 3(3):218–229,
2021.

[12] E. Pickering, S. Guth, G. E. Karniadakis, and T. P. Sapsis. Discovering
and forecasting extreme events via active learning in neural operators.
Nature Computational Science, 2(12):823–833, Dec 2022.

[13] J. H. Seidman, G. Kissas, P. Perdikaris, and G. J. Pappas. NOMAD:
Nonlinear manifold decoders for operator learning. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[14] Y. Shi, Z. Li, H. Yu, D. Steeves, A. Anandkumar, and M. Krstic.
Machine learning accelerated pde backstepping observers. In 2022
IEEE 61st Conference on Decision and Control (CDC), pages 5423–
5428, 2022.

[15] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator
of parametric partial differential equations with physics-informed
deeponets. Science Advances, 7(40):eabi8605, 2021.

[16] H. Yu, S. Park, A. Bayen, S. Moura, and M. Krstic. Reinforcement
learning versus pde backstepping and pi control for congested freeway
traffic. IEEE Trans. Control Systems Technology, 30:1595–1611, 2022.

5207

