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Abstract— In this paper, we consider the problem of general-
ized Nash equilibrium (GNE) seeking in a class of contractive
population games under a partial-decision information setup
and subject to affine equality constraints. Namely, we consider
multiple populations, each comprised of a large number of
payoff-driven decision makers, and we embed a network topol-
ogy ruling the exchange of information between the multiple
populations. Conceptually, we consider that each population has
an associated payoff provider entity, which yields the payoff
signals to the agents of its corresponding population. The
multiple payoff providers communicate through a (possibly
non-complete) network to estimate the non-local information
relevant to compute the payoff signals. As the main contribu-
tion, we formulate the dynamics of the payoff providers and
we provide sufficient conditions to guarantee the asymptotic
stability of the set of generalized Nash equilibria of the
underlying game. To the best of our knowledge, this is the first
paper to address the problem of GNE seeking in population
games under partial-decision information.

I. INTRODUCTION

Consider a society with P ∈ Z≥1 populations of decision-
making agents and let P = {1, 2, . . . , P} be the set indexing
the populations. For each population k ∈ P , let Nk ∈ Z≫1

be the total number of agents that belong to population k
(where we assume that Nk is large and constant over time),
let Sk = {1, 2, . . . , nk}, with nk ∈ Z≥2, be the set of deci-
sion strategies available to the agents of population k and, for
each i ∈ Sk, let χk

i ∈ [0, 1] denote the proportion of agents of
population k choosing strategy i, i.e., Nkχk

i yields the total
number of agents playing strategy i in population k. For the
sake of generality, we let mk ∈ R>0 represent the total mass
of agents of population k, and we let xk

i = (mkχk
i ) ∈ [0,mk]

denote the portion of agents, from the total mass mk, that are
playing strategy i in population k. Clearly, if mk = 1, then
there is no distinction between xk

i and χk
i . Under the con-

sidered framework, the strategic distribution of population k
is then captured by the vector xk = col

(
xk
i

)
i∈Sk ∈ ∆k,

where ∆k =
{
xk ∈ Rnk

≥0 : 1⊤
nkx

k = mk
}

denotes the set of
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possible strategic distributions for population k. Similarly,
the strategic distribution of the entire society is captured by
the vector x = col

(
xk

)
k∈P ∈ ∆, where ∆ = ∆1×· · ·×∆P

is the set of possible strategic distributions for the entire
society. Furthermore, each strategy i ∈ Sk is characterized
by a fitness function fk

i : Rn
≥0 → R. Namely, fk

i (x) provides
the fitness value of strategy i ∈ Sk at the strategic distri-
bution x ∈ ∆. Throughout, we let f(·) = col

(
fk(·)

)
k∈P

be the overall fitness vector, whilst fk(·) = col
(
fk
i (·)

)
i∈Sk

is the fitness vector of population k. Based on the overall
fitness vector f(·), a population game can then be defined in
normal form as the tuple G = (P,∆, f(·)), which captures
the involved populations (P), the set of possible strategic
distributions (∆), and the overall fitness vector (f(·)). The
overall fitness vector defines the strategic environment for
the population game, and it plays the role of the so-called
pseudo-gradient mapping of the game [1, Section 6].

To establish how the strategic distribution of the society
evolves over time, let t ∈ R≥0 denote the continuous-time
index, and let x(t) be the value of x at time t. Moreover,
let pki (t) ∈ R be the payoff value perceived by the agents of
population k ∈ P that are choosing strategy i ∈ Sk at time
t. Accordingly, pk(t) = col

(
pki (t)

)
i∈Sk is the payoff vector

of population k, and p(t) = col
(
pk(t)

)
k∈P is the overall

payoff vector of the entire society.
Under the considered framework, the microscopic

decision-making process of the agents is as follows. Each
agent is equipped with a Poisson alarm clock and a revision
protocol. The Poisson clocks provide independent and iden-
tically distributed strategy-revision opportunities according
to an exponential distribution with rate R ∈ R>0, while
the revision protocols are maps of the form ρkij : ∆k ×
Rnk → R≥0 which characterize the probability distributions
that agents use to update their strategies. Namely, if at
time t an agent choosing strategy i ∈ Sk in population
k ∈ P receives a revision opportunity, then such an
agent switches to strategy j ∈ Sk \ {i} with probability
ρkij

(
xk

(
t̃
)
,pk

(
t̃
))

/R, or remains at strategy i with proba-
bility 1−(1/R)

∑
j∈Sk\{i} ρ

k
ij

(
xk

(
t̃
)
,pk

(
t̃
))

, where t̃ < t
is an arbitrary time instant between the previous revision time
of any agent of the society and time t (as in [2, Section 4.1],
it is assumed that R is large enough so that these probabilities
are well-defined for all times). Throughout, we assume that
the revision protocols of the agents are fixed/given, i.e., we
cannot design them.

On the other hand, following the ideas in [3], in this paper
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Fig. 1. Considered partial-decision information setup.

we consider that the temporal evolution of the payoff vector
p(t) is ruled by a so-called payoff dynamics model (PDM)
as defined next.

Definition 1 (Payoff dynamics model (PDM)): A PDM is
a continuous-time system of the form

q̇(t) = W (q(t),x(t))

p(t) = H (q(t),x(t)) ,

where W : Rd × ∆ → Rd is Lipschitz continuous, and
H : Rd × Rn

≥0 → Rn is continuously differentiable and
Lipschitz continuous.

In words, a PDM is a continuous-time system that takes
x(t) as input and yields p(t) as output. In fact, the PDM
abstraction can be used to describe the aggregate learning
dynamics of the society (e.g., to capture effects such as antic-
ipation, delay, and inertia), and/or to explicitly define how the
payoffs are computed in practical engineering applications
(e.g., as in resource allocation problems [4]).

In this paper, we embed the multiple populations of the
society within a network. More precisely, we assume that
agents have direct access only to the strategic distribution
of their own population, and so they must estimate any
required non-local information through network-based com-
munication. Thus, the corresponding PDM must capture the
aggregate estimation and communication dynamics of the
society. To model such a setup conceptually, we let each
population k ∈ P have an associated high-level entity
referred to as the payoff provider of population k. Namely,
the payoff providers take as input the strategic distribution
of their corresponding population, communicate with each
other through a network to estimate any required non-local
information, and yield the payoff vector to the agents of their
population (see Fig. 1). The PDM is then the mathematical
object encompassing all the payoff providers’ dynamics.

Remark 1: We highlight that the payoff providers need
not to be physical (tangible) entities. Namely, if the goal
is to describe the underlying learning dynamics associated
to the network-based estimation process, then the payoff
providers are just an abstraction to model the aggregate
exchange of information between populations. On the other

hand, in some applications payoff providers do have a prac-
tical interpretation. For instance, in the residential demand
response problem considered in [5] and [6], the role of the
payoff providers is played by the electric power utilities that
compute and broadcast the costs signals to the consumers.

Problem statement: The technical problem that we con-
sider in this paper is the convergence of the society towards
a generalized Nash equilibrium (GNE) as defined next [7].

Definition 2 (Generalized Nash equilibrium (GNE)):
Consider a set Ω ⊆ Rn, and define X = ∆ ∩ Ω. Given a
population game G, characterized by a fitness vector f(·),
the set of generalized Nash equilibria of G with respect to
Ω is defined as GNE(f) = fix

(
argmaxx∈X x⊤f(·)

)
. Thus,

we say that x∗ is a GNE if and only if x∗ ∈ GNE (f).
In Definition 2, the set Ω captures coupling constraints to

be considered in the decision making process of the society.
As such, a GNE is a strategic distribution x∗ ∈ X where no
agent can increase its fitness value by unilaterally changing
its strategy while still satisfying the coupling constraints
imposed by Ω. Throughout, we impose the Standing As-
sumptions 1 and 2, which characterize the class of games
considered in this paper, and ensure that the set GNE(f) is
nonempty and compact [1, Lemma 6].

Standing Assumption 1: For all k ∈ P , the fitness vector
fk(·) is of the form fk(x) = f̃k

(
xk

)
−Ck⊤Cx, where f̃k :

Rnk

≥0 → Rn is continuously differentiable and contractive in
the sense that ζ⊤ Dx f̃

k
(
xk

)
ζ ≤ 0, for all xk ∈ Rnk

≥0, for
all ζ ∈ Rnk

, and C =
[
C1, · · · ,CP

]
, with Cℓ ∈ Rr×nℓ

,
for some r ∈ Z≥1 and all ℓ ∈ P .

Standing Assumption 2: The set Ω in Definition 2 is of the
form Ω =

{
x ∈ Rn :

∑
k∈P Akxk =

∑
k∈P bk

}
, where

Ak ∈ Rc×nk

, bk ∈ Rc, for all k ∈ P , and c ∈ Z≥1.
Moreover, int (X ) = ∆ ∩ Ω ∩ Rn

>0 is nonempty and
Ã =

[
A⊤,A⊤

∆

]⊤ ∈ Rc+P×n is full-row rank. Here, A =[
A1, · · · ,AP

]
∈ Rc×n and A∆ ∈ RP×n is such that ∆ can

be written as ∆ = {x ∈ Rn
≥0 : A∆x = col

(
mk

)
k∈P}.

Remark 2: Standing Assumption 1 is readily satisfied in
merely contractive aggregative games with affine aggregate
terms (see [8, Examples 1 and 2] and [9, Section VI-A]).

Given that the revision protocols of the agents are assumed
fixed/given, the only way to steer the strategic distribution
of the society towards a GNE of the game G is through
the payoff signals (recall the microscopic decision-making
process described above). Therefore, the goal of this paper
is to formulate an appropriate PDM so that the resulting
payoff vector p(t) steers the society of agents towards the
set GNE(f). Note that since the fitness functions and the
set Ω in general couple the decision-making process of
different populations, the estimation of non-local information
is indeed a requirement to yield suitable payoff signals under
the partial-decision information setup of Fig. 1. In summary,
the main contributions of this paper are the following:

i) The formulation of a suitable PDM for GNE seeking in
population games under the partial-decision information
setup of Fig. 1.

ii) The deduction of sufficient conditions to guarantee the
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asymptotic stability of the set GNE(f) in the limit of
an infinite number of agents in each population1.

In addition, we illustrate our results through a numerical
simulation of a traffic congestion game considering large (yet
finite) populations of autonomous vehicles.

Related work: The problem considered in this paper is
often referred to as distributed GNE seeking (DGNES),
and it has received significant attention from the classical
perspective of N -player games. In such a context, the most
popular approaches for DGNES are the so-called primal-dual
methods. Namely, primal-dual methods exploit the connec-
tion between GNE problems, variational inequalities, and
the Karush-Kuhn-Tucker (KKT) optimality conditions (refer
for instance to [7], [10]). Under such approaches, players
compute not only their actions (primal variables) but also
some auxiliary multipliers (dual variables), which quantify
in some sense the violation of the coupled constraints. By
relying on consensus algorithms, players reach an agreement
on the optimal values of the dual variables. Some recent
approaches for DGNES in N -player games can be found
in [11]–[13]. In the context of population games, on the
other hand, to the best of our knowledge the problem of
DGNES has not been considered yet. Related approaches
in the context of distributed NE seeking (without coupling
constraints) have been reported in [8], [9]. In this paper, we
build upon [8], [9], but we explicitly consider the coupling
constraints characterized by Ω.

Notation: We use standard font for scalars, bold font
for vectors and matrices, and non-bold calligraphic font for
sets. Besides, all vectors are taken as columns by default
(including gradients). The set of real (integer) numbers is
denoted by R (Z). The set of non-negative (strictly positive)
real numbers is denoted by R≥0 (R>0). A similar notation
holds for integers. We denote the Euclidean norm by ∥ · ∥2.
The operators col(·) and diag(·) create a column vector and
a (block) diagonal matrix of the arguments, respectively.
Given a domain D ⊆ Rm and an operator T : D → D,
fix (T ) := {z ∈ D : z = T (z)} is the fixed point set of T .
The gradient of a scalar-valued function f(z) is denoted
∇zf(z), and the Jacobian of a vector-valued function f(z)
is denoted Dz f(z). Throughout, Id, 1d, and 0d, denote the
d-dimensional identity matrix, one vector, and zero vector,
respectively (we often drop the sub-index if the dimension
is clear from context). A similar notation holds for the zero
matrix. Finally, λmin(M) yields the minimum eigenvalue of
a square matrix M, and ⊗ denotes the Kronecker product.

II. PROPOSED PAYOFF DYNAMICS MODEL (PDM)
To formulate our proposed PDM under the partial-decision

information setup of Fig. 1, we first define the graph that
characterizes the communication network between the mul-
tiple payoff providers. Namely, let G = (P,L,W) be the
directed graph (digraph) characterizing the communication
network. Namely, P is the set of nodes corresponding to

1All the proofs of our theoretical results can be found at the
following link: https://drive.google.com/drive/folders/
1wS6L1-MivRaQkNV_JkV8oQdkuyH-lo6r?usp=sharing

the payoff providers/populations, L ⊆ P × P is the set
of links of possible communication, and W ∈ RP×P

≥0 is
the weighted adjacency matrix that captures the topology of
the digraph. We say that (ℓ, k) ∈ L if and only if node k
can receive information from node ℓ and, for simplicity we
adopt the convention that (k, k) /∈ L. Besides, wkℓ > 0
for all (ℓ, k) ∈ L, and wkℓ = 0, otherwise. Here, wkℓ

denotes the (k, ℓ)-th element of W. Furthermore, we let
N k

in = {ℓ ∈ P : wkℓ > 0} denote the set of in-neighbors of
node k, for all k ∈ P , and we let L = diag (W1P ) − W
be the Laplacian matrix associated to G.

Standing Assumption 3: The digraph G is strongly con-
nected and weight-balanced.

Remark 3: Overall, Standing Assumption 3 implies that
rank (L) = P − 1, 1⊤

PL = 0⊤
P , λmin

(
L+ L⊤) = 0, and

that Lζ = 0P ⇔ ζ ∈ span(1P ) [14].
According to Definition 1, the PDM yields the overall pay-

off vector p(t) as a causal map from the strategic distribution
x(t). To cope with the partial-decision information setup of
Fig. 1, in this paper we propose the PDM given by

q̇k
1(t) = −qk

1(t)−
∑
ℓ∈P

wkℓ

(
qk
1(t)− qℓ

1(t)
)

−
∑
ℓ∈P

wℓk

(
qk
2(t)− qℓ

2(t)
)
+Ck⊤xk(t) (1a)

q̇k
2(t) =

∑
ℓ∈P

wkℓ

(
qk
1(t)− qℓ

1(t)
)

(1b)

q̇k
3(t) = −

∑
ℓ∈P

wkℓ

(
qk
3(t)− qℓ

3(t)
)

−
∑
ℓ∈P

wℓk

(
qk
4(t)− qℓ

4(t)
)
+Akxk(t)− bk (1c)

q̇k
4(t) =

∑
ℓ∈P

wkℓ

(
qk
3(t)− qℓ

3(t)
)

(1d)

pk(t) = f̃k
(
xk(t)

)
− PCk⊤qk

1(t)−Ak⊤qk
3(t), (1e)

for all k ∈ P . Our proposed PDM (1) is inspired by the
so-called proportional integral consensus algorithm [15] and
its interpretation is as follows. On one hand, qk

1 is used to
estimate, in a distributed fashion, the non-local aggregate
term (1/P )Cx, i.e., qk

1(t) → (1/P )Cx(t) as t → ∞, for
all k ∈ P . On the other hand, qk

3 represents the estimation
held by the k-th payoff provider regarding the Lagrange
multipliers associated to the equality constraints of Ω. In
contrast, qk

2 and qk
4 are auxiliary state variables used to

eliminate steady-state errors, i.e., qk
2 and qk

4 provide an
integral action to ensure the consensus of qk

1 and qk
3 over

all k ∈ P , respectively. Finally, the payoff vector of each
population k is computed based on the fitness vector, yet
considering the non-local information estimated by qk

1 , and
on the marginal cost associated to the violation of the coupled
equality constraints (captured by Ak⊤qk

3). In addition, we
highlight the following properties of our proposed PDM (1).

Lemma 1: Consider the PDM (1) and suppose that
q̇k
1(t) = q̇k

2(t) = 0r, and q̇k
3(t) = q̇k

4(t) = 0c, for all
k ∈ P . Then, it holds that

i) qk
1(t) = (1/P )Cx(t), for all k ∈ P .
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Fig. 2. Closed-loop system formed by an EDM-PDM pair.

ii) qk
3(t) = q̂3(t), for some q̂3(t) ∈ Rc, for all k ∈ P .

iii) x(t) ∈ Ω.
iv) p(t) = f (x(t))−A⊤q̂3(t), for some q̂3(t) ∈ Rc.

We remark that the proposed PDM (1) indeed reflects
the partial-decision information setup of Fig. 1. Namely,
each payoff provider is ruled by the dynamics (1) for the
corresponding super-index k, and the information exchange
between payoff providers regards the state vectors qk

1 , qk
2 ,

qk
3 , and qk

4 . We now proceed to formally analyze the stability
properties of the set GNE(f) under the proposed PDM.

III. STABILITY ANALYSIS

Following the framework of [2] and [3], to analyze the
stability properties of GNE(f), we consider the limiting
case where Nk → ∞, for all k ∈ P . Namely, when the
number of agents within each population is large enough,
the expected temporal evolution of the strategic distribution
of the society is arbitrarily well-modeled by a so-called
evolutionary dynamics model (EDM) as defined next.

Definition 3 (Evolutionary dynamics model (EDM)): An
EDM is a continuous-time system of the form

ẋ(t) = V (x(t),p(t)) , (2)

where V : ∆×Rn → Rn is Lipschitz continuous and satisfies
that V (x,p) ∈ T∆(x), for every x ∈ ∆ and every p ∈ Rn.
Here, T∆(x) denotes the tangent cone of ∆ at x.

As depicted in Fig. 2, an EDM-PDM pair form a closed-
loop system where the EDM takes p(t) as input and yields
x(t) as output, while the PDM takes x(t) as input and yields
p(t) as output. Depending on the revision protocols of the
agents, different EDMs might arise. Some examples include
the Brown-von Neumann-Nash (BNN) dynamics [16], the
replicator dynamics [17], the Smith dynamics [18], and the
logit and regularized logit EDMs [19], among many others.
Instead of assuming a particular form of revision protocol, in
this paper we focus on the class of δ-passive EDMs, which
encompasses several revision protocols at once [3].

Definition 4 (δ-passive EDM): An EDM is said to be δ-
passive if there exist a continuously differentiable non-
negative δ-storage function SEDM : Rn

≥0 × Rn → R≥0,
and a non-negative function σEDM : ∆× Rn → R≥0, such
that SEDM (x,p) = 0 ⇔ V(x,p) = 0n and

ṠEDM (x,p,v) ≤ −σEDM (x,p,v) + v⊤V (x,p) ,

for all x ∈ ∆ and all p,v ∈ Rn. Here, we define

ṠEDM (x,p,v) =

[
∇xSEDM (x,p)
∇pSEDM (x,p)

]⊤ [
V(x,p)

v

]
.

Moreover, the function σEDM (·, ·, ·) is said to be informative
if it satisfies that σEDM (x,p,0n) = 0 ⇔ V (x,p) = 0n.

The class of δ-passive EDMs is particularly important
when considered together with a δ-antipassive PDM [3].

Definition 5 (δ-antipassive PDM): A PDM is said to be
δ-antipassive if there exist a continuously differentiable non-
negative δ-storage function SPDM : Rd ×Rn

≥0 → R≥0, and
a non-negative function σPDM : Rd ×∆ → R≥0, such that
SPDM (q,x) = 0 ⇔ W(q,x) = 0d and

ṠPDM (q,x,w) ≤ −σPDM (q,x,w)−w⊤Ḣ (q,x,w) ,

for all q ∈ Rd, all x ∈ ∆ and all w ∈ Rn. Here, we define

ṠPDM (q,x,w) =

[
∇qSPDM (q,x)
∇xSPDM (q,x)

]⊤ [
W(q,x)

w

]
Ḣ(q,x,w) = Dq H(q,x)W(q,x) + Dx H(q,x)w.

Moreover, the function σPDM (·, ·, ·) is said to be informative
if it satisfies that σPDM (q,x,0n) = 0 ⇔ W (q,x) = 0d.

Based on Definitions 1-5, we now provide our main
supporting result to characterize the stability properties of
the set GNE(f).

Proposition 1: Consider an arbitrary EDM-PDM pair in-
terconnected as in Fig. 2 and define

E =

{
(x,q) ∈ ∆× Rd :

V (x,H(q,x)) = 0n

W (q,x) = 0d

}
,

i.e., E is the set of equilibria of the closed-loop system.
Suppose that the following conditions hold:
C1) The EDM is δ-passive.
C2) The PDM is δ-antipassive.
C3) E is nonempty and bounded.

Then, E is Lyapunov stable under the EDM-PDM pair.
Moreover, let

R =

{
(x,q) ∈ ∆× Rd :

σEDM (x,H(q,x),0n) = 0
σPDM (q,x,0n) = 0

}
,

and suppose that, in addition to C1)-C3), it also holds that
C4) E is the largest invariant set of the EDM-PDM pair

within R.
Then, E is asymptotically stable under the EDM-PDM pair.

Proposition 2: Consider an arbitrary EDM-PDM pair in-
terconnected as in Fig. 2, and let E be defined as in
Proposition 1. Suppose that the following conditions hold:
C5) For every (x∗,p∗) ∈ ∆× Rn, the EDM satisfies that

V (x∗,p∗) = 0n ⇔ x∗ ∈ argmax
x∈∆

x⊤p∗. (3)

C6) For every (q∗,x∗) ∈ Rd ×∆, the PDM satisfies that

W (q∗,x∗) = 0d ⇒
{

H (q∗,x∗) = f (x∗)−A⊤q̂∗

x∗ ∈ Ω,
(4)
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where q̂∗ = Mq∗, for some M ∈ Rc×d.
Then, every (x∗,q∗) ∈ E implies that x∗ ∈ GNE(f).

Propositions 1 and 2 yield sufficient conditions to assert
the Lyapunov and asymptotic stability of GNE(f) under an
arbitrary EDM-PDM pair. In particular, note that Condition
C4) is readily satisfied if both σEDM (·, ·, ·) and σPDM (·, ·, ·)
are informative in the sense of Definitions 4 and 5, respec-
tively. To analyze our proposed PDM under the light of
Propositions 1 and 2, we first rewrite (1) in an equivalent
reduced-order form.

Consider the dynamics (with state z = col (z1, z2), input
x, and output y) given by

ż1(t) = −Q(α)z1(t)− L
⊤
z2(t) +Dx(t)− βb (5a)

ż2(t) = Lz1(t) (5b)

y(t) = αf̃ (x(t))− γD
⊤
z1(t), (5c)

where Q(α) = αIPe + L
⊤

, L = L⊗ Ie, b = col
(
bk

)
k∈P ,

D ∈ RPe×n, f̃(·) = col
(
f̃k(·)

)
k∈P

, α ∈ {0, 1}, β = 1 −
α, γ ∈ R, and e ∈ Z≥1. Now, Let u = (1/

√
P )1P and

U =
[
Ũ,u

]
∈ RP×P be an orthonormal matrix. Moreover,

consider the change of variables z2 = (U⊗ Ir)
[
z̃⊤2 , ẑ

⊤
2

]⊤
,

with z̃2 ∈ RPe−e and ẑ2 ∈ Re. Applying such change of
variables to (5) with the fact that L⊤u = 0P , yields the
reduced-order dynamics (with state z̃ = col (z1, z̃2), input
x, and output y) given by

ż1(t) = −Q(α)z1(t)− L
⊤
Ũz̃2(t) +Dx(t)− βb (6a)

˙̃z2(t) = LŨz1(t) (6b)

y(t) = αf̃ (x(t))− γD
⊤
z1(t), (6c)

where LŨ =
(
Ũ⊤L

)
⊗ Ie. Here, ẑ2 has been eliminated as

it corresponds to an uncontrollable state vector that does not
affect the remaining state variables or the output. As argued
in [9, Remark 5], under matching initial conditions, the
dynamics (5) and (6) have the same input-output trajectories.
Thus, to analyze (5), it suffices to consider (6).

For the forthcoming analyses we define two instances of
(5) referred to as systems Σa and Σb, respectively. Namely,
Σa has the form (5) with e = r, α = 1 β = 0, γ = P ,
D = diag

(
Ck

)
k∈P , and z1 and z2 play the roles of q1 =

col
(
qk
1

)
k∈P and q2 = col

(
qk
2

)
k∈P , respectively. On the

other hand, Σb has the form (5) with e = c, α = 0, β = 1,
γ = 1, D = diag

(
Ak

)
k∈P , and z1 and z2 play the roles

of q3 = col
(
qk
3

)
k∈P and q4 = col

(
qk
4

)
k∈P , respectively.

Under such formulations, it follows that our proposed PDM
(1) is equivalent to the parallel interconnection of systems
Σa and Σb. More precisely, Σa captures the dynamics (1a)
and (1b), while Σb captures the dynamics (1c) and (1d), for
all k ∈ P . The output (1e) is given by the sum of the outputs
of Σa and Σb. Consequently, to analyze (1) we can consider
the equivalent-reduced order forms (6) of Σa and Σb.

Based on the former discussion and without loss of
generality, to analyze our proposed PDM (1) we consider

its equivalent reduced-order PDM given by

q̇1(t) = −
(
IPr + La

)
q1(t)− L

⊤
Ũaq̃2(t) +Cx(t) (7a)

˙̃q2(t) = LŨaq1(t) (7b)

q̇3(t) = −Lbq3(t)− L
⊤
Ũbq̃4(t) +Ax(t)− b (7c)

˙̃q4(t) = LŨbq3(t) (7d)

p(t) = αf̃ (x(t))− PC
⊤
q1(t)−A

⊤
q3(t), (7e)

where La, LŨa, and Lb, LŨb, are defined as L, LŨ, but
with the corresponding dimension e ∈ {r, c}, respectively.
In addition, C = diag

(
Ck

)
k∈P , and A = diag

(
Ak

)
k∈P .

Moreover, we define q̃ = col (q1, q̃2,q3, q̃4) ∈ Rd, with
d = 2Pr + 2Pc− r − c.

Next, we characterize some key properties of the reduced-
order PDM (7) and the resulting EDM-PDM pair.

Lemma 2: The reduced-order PDM (7) satisfies Condi-
tions C2) and C6) of Propositions 1 and 2, respectively.

Lemma 3: Consider an EDM-PDM pair interconnected as
in Fig. 2. Suppose that the EDM satisfies Condition C5)
of Proposition 2, and that the PDM is given by (7). Then,
Condition C3) of Proposition 1 holds.

Lemma 4: Consider an EDM-PDM pair interconnected
as in Fig. 2. Suppose that the EDM is δ-passive with
informative σEDM (·, ·, ·), and that it satisfies Condition C5)
of Proposition 2. Also, suppose that the PDM is given by
(7). Then, Condition C4) of Proposition 1 holds.

Theorem 1: Consider an EDM-PDM pair interconnected
as in Fig. 2, where the EDM is δ-passive with informative
σEDM (·, ·, ·) and satisfies Condition C5) of Proposition 2,
and the PDM is given by (1). Then, the set GNE(f) is
asymptotically stable under the EDM-PDM pair.

IV. AN ILLUSTRATIVE EXAMPLE

As illustration, we consider an application of our devel-
oped theory in the context of congestion games [20]. Namely,
consider P = 4 populations of autonomous vehicles, and
suppose that each population k ∈ P seeks to travel from
an origin Ok to a destination Dk using the available routes
connecting Ok to Dk. It is assumed that the routes are shared
with the other populations, and so the goal for the agents
is to minimize the congestion of the routes. Without loss
of generality, we assume that there is a total of r = 3
routes, and for simplicity we allow all populations to use
all routes, i.e., nk = r, for all k ∈ P . As such, we let
Ck ∈ Rr×nk

define a bipartite graph between population k
and the routes in Sk, which for our case is Ck = Ir, for all
k ∈ P . Consequently, the sum

∑
ℓ∈P Cℓxℓ = Cx yields the

overall society’s allocation over all routes (here, C ∈ Rr×n

is constructed as in Standing Assumption 1).
Based on the considered framework, we let the fitness

vector of each population k ∈ P be of the form fk (x) =

−Θkxk − PCk⊤Cx, where Θk ∈ Rnk×nk

≥0 is a diagonal
matrix encoding the preferences of population k over their
available routes. Moreover, since each population k may
have a different origin Ok, and the multiple origins might
be spatially distributed over some geographical region, we

2323



0 10 20 30 40 50 60 70
10-4

10-2

100
d
x
¤
(t
)

0 10 20 30 40 50 60 70
t [s]

10-4

10-2

100

d
x
¤
(t
)

Fig. 3. Temporal evolution of dx∗ (t) = ∥x(t)− x∗∥2 / ∥x(0)− x∗∥2,
where x∗ ∈ GNE(f) is the achieved GNE. The top plot depicts the limiting
case with infinite populations, i.e., the EDM, while the bottom plot regards
the considered scenario with finite populations.

embed a non-complete communication network topology
among the populations. Without loss of generality, we let
the digraph G be a directed cycle with unitary weights.

Regarding the constraint set Ω, we assume that certain
routes must be used at specific congestion levels, compelling
autonomous vehicles to follow these routes and limit their
use of others. Such a setup can enhance traffic network effi-
ciency, especially when routes are shared with unpredictable
non-autonomous vehicles. For simplicity, we set c = 2 and
randomly sample the constraint set Ω, ensuring compliance
with Standing Assumption 2.

For all k ∈ P , we let Nk be randomly drawn so that
each population has between 1000 and 2000 agents, and
we let mk = 1. In addition, we randomly sample the
diagonal elements of Θk from the interval [0, 1]. Regarding
the decision-making process of the agents, we consider the
revision protocol ρkij

(
pk

)
= min

(
max

(
pkj − pki , 0

)
, νk

)
,

for all i, j ∈ Sk. Here, νk ∈ R>0 satisfies νk ≤ R/(nk−1).
Namely, νk is a saturation parameter to ensure that the
switching probabilities of the microscopic decision-making
process are well defined for any R (see Section I). Without
loss of generality, we let R = 1 and νk = 1/(nk − 1). The
resulting evolutionary dynamics are the so-called Smith dy-
namics [18] with an added saturation. Following [9, Section
II-C], it is straightforward to show that the corresponding
EDM is δ-passive with informative σEDM (·, ·, ·) and that it
satisfies Condition C5) of Proposition 2. Hence, the result of
Theorem 1 holds. Figure 3 depicts a numerical simulation of
our considered setup, which validates our theoretical results.

V. CONCLUDING REMARKS

In this paper, we have considered the problem of gen-
eralized Nash equilibrium seeking in a class of merely
contractive population games, subject to affine equality
constraints and under a partial-decision information setup.
More precisely, we have explicitly considered a network
topology that rules the information exchange between the
multiple populations of decision-making agents, and we have
formulated a suitable payoff dynamics model that guarantees
the asymptotic stability (in the limiting case with infinite
populations) of the set of generalized Nash equilibria of

the underlying population game. The provided results are
applicable to a broad class of decision-making protocols (i.e.,
those yielding δ-passive evolutionary dynamics models), and
have been validated numerically on a large-scale congestion
game. Future research should explore extensions to more
general games and coupled convex inequality constraints.
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