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Abstract— We introduce a framework for accelerating the
computation of a backstepping controller in PDE control.
We learn the nonlinear operator from the plant parameter
and PDE solution to the boundary control with a (deep)
neural network. We provide closed-loop stability guarantees
(semiglobal exponential) under an NN-approximation of the
feedback law. While, in the existing PDE backstepping, finding a
feedback law requires the solution to multiple integral equations
and operations for both the gain and control input value, the
neural operator (NO) approach we propose learns the mapping
from the functional coefficients of the plant PDE and PDE
system state to the boundary control value by employing a
sufficiently high number of offline numerical solutions to the
analytical feedback control law. We prove the existence of a
DeepONet approximation with arbitrarily high accuracy, of
the exact nonlinear continuous operator mapping between the
PDE coefficient functions and PDE system state into a control
feedback law. Once proven to exist, learning of the NO is
standard, completed “once and for all” (never online) and the
control feedback equation doesn’t need to be solved ever again,
for both any new functional coefficient and PDE system state
that does not exceed the magnitude of the coefficients and states
used in training. Simulation illustrations are provided and the
code is available on github.

I. INTRODUCTION

ML/AI has been a disruptive force in a wide class of
engineering disciplines leading to questions about whether
ML/AI will “takeover” model-based sciences such as physics
or conventional control theory. Recently, a new framework
has emerged [21]–[24] which promises to unite the goals
of physics and learning, rather than presenting learning as
an alternative or substitute to first-principles physics. This
framework, termed neural operators (NO), is formulated
as learning mappings from function spaces into function
spaces and has achieved success in PDEs with learnable
solution/”flow” maps after enough simulations with different
initial conditions.

a) Mappings of plant parameters to control gains and
learning of those maps: It is worth asking what neural oper-
ators can contribute to control theory, namely to the design
of controllers, observers, and online parameter estimators. In
this work, we explore a first venture in this direction with
the capability for future extensions and layout a blueprint to
learn PDE control design and prove their stability.

Although learning nonlinear maps for various design
problems for nonlinear ODEs is worth studying, we focus
this initial work one stop beyond, on a benchmark PDE
control class. Particularly, we focus on an uncomplicated -
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but unstable - PDE control class. Our choice of basic PDE
control is for pedagogical reasons - combining the operator
learning with PDE backstepping is complex for even the
simplest-looking PDE stabilization problems.

b) PDE backstepping control with the gain computation
obviated using neural operators: Consider 1D hyperbolic
partial integro-differential equation systems of the general
form vt(x, t) = vx(x, t) + λ(x)v(x, t) + g(x)v(0, t) +∫ x

0
f(x, y)v(y, t)dy on the unit interval x ∈ [0, 1], which

are transformable, using an invertible backstepping “pre-
transformation” introduced in [3] into the simple PDE

ut(x, t) = ux(x, t) + β(x)u(0, t) (1)
u(1, t) = U(t). (2)

Our goal is the design of a PDE backstepping boundary
control

U(t) =

∫ 1

0

k(1− y)u(y, t)dy. (3)

Physically, (1) is a “transport process (from x = 1 towards
x = 0) with recirculation” of the outlet variable u(0, t).
Recirculation causes instability when the coefficient β(x)
is positive and large. This instability is prevented by the
backstepping boundary feedback (3) with the gain function
k(·) as a kernel in the spatial integration of the measured
state u(y, t). (The full state does not need to be measured,
as explained in Remark 1 at the end of Section V.)

Backstepping produces the control law U for a given β, u.
We learn the nonlinear continuous mapping U : (β, u) 7→ U
and once U is learned, the partial differential or integral
equation does not need to be recomputed for a new β
or u. Instead, for a new β or u, finding U is simply a
”function evaluation” of the learned mapping U . This benefits
traditional control as the integral for u, k does not need to be
recomputed at each step. Furthermore, this benefits adaptive
control where, at each timestep, both u and the gain estimate
k̂ needs to be calculated for a new parameter update β̂ and
in gain scheduling for nonlinear PDEs where the gain must
be recomputed at each current state.

Traditionally, when ML is applied in the control context
(such as RL or other approaches) it is usually a model-free
design. However, our approach, summarized in Figure 1 is
not model free. It is model-based and only the computation
portion of the model-based (PDE backstepping) design is
accelerated through ML. Additionally, we emphasize our
learning is offline; not as in adaptive control. [1], [3], [10].

Naturally, one can just learn the mapping U and stop.
However, in this work, we extend our analysis to investigate
whether the NN approximation of the feedback law U will
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Fig. 1. An algorithmic representation of our design paradigm of employing
neural operators in boundary control of PDEs. Three major step clusters
are performed: (1) derivation of the integral equations for the backstepping
feedback law, performed only once; (2) learning of the mapping from the
plant parameter functions and system state into the backstepping control
law, also performed only once; and (3) implementation of the controller for
specific plant parameters and system states. The task in the top box has been
completed in [17]. In this paper, the task in the middle box is introduced
and stability guarantees for the task in the bottom box are provided.

result in a stable PDE. We find that with a large enough data
set of solved pairs ((βi, ui), Ui), and a large enough trained
(deep) NN, closed-loop stability is guaranteed for a new pair
(β, u), not in the training set.

c) Neural operator literature—a brief summary: Neural
operators are NN-parameterized maps for learning rela-
tionships between function spaces. They originally gained
popularity due to their success in mapping PDE solutions
while remaining discretization-invariant. Generally, nonlin-
ear operators consist of three components: an encoder, an
approximator, and a reconstructor [20]. The encoder is an
interpolation from an infinite-dimensional function space to
a finite-dimensional vector representation. The approximator
aims to mimic the infinite map using a finite-dimensional
representation of both the domain function space and the
target function space. The reconstructor then transforms
the approximation output into the infinite-dimensional target
function space. The implementation of both the approximator
and the reconstructor is generally coupled NNs, but can take

many forms as well. More details can be found in [15], [22],
[23], [27].

d) Advances in learning-based control: Among the
first in demonstrating the stability of learning-based model
predictive controllers (MPC) were the papers [2], [26].
This was extended, for nonlinear systems, to deep learning-
based approaches consisting of jointly learning the controller
and(or) Lyapunov functions via NNs. See [7] for a recent
review. In addition, [25], [31] have explored how learning-
based control will affect nominal systems with known Lya-
punov functions, and [6], [8] studied the problem of learning
stability certificates and stable controllers directly from data.

In a separate, but related direction, many reinforcement
learning (RL) control approaches have been developed over
the past few years. On one side, model-based RL has been
studied due to its superior sample efficiency and interpretable
guarantees. The main focus has been on learning the system
dynamics and providing closed-loop guarantees in finite-time
for both linear systems [9], [18] (and references within), and
nonlinear systems [14], [19]. For model-free RL methods,
[12] first proved the convergence of policy optimization, a
popular model-free RL method, to the optimal controller
for linear time-invariant systems. Since then, convergence
results of policy optimization methods have been shown for
LQR, H∞ control, risk-sensitive control, LQG, and output
feedback synthesis. See [13] for a recent review.

Our work focus on learning-based control for PDE sys-
tems. In our previous work [28], we demonstrate the empiri-
cal success of using NOs for accelerating PDE backstepping
observers, without theoretical guarantees. The present paper,
along with its companion [5] (both submitted to CDC invited
sessions), constitutes a larger submission to TAC [4]. This
line of works represents the first step towards using neural
operators for provably bypassing both the controller gain
computations (the companion paper [5] - with exponential
stability guarantees) or directly learning the controller (the
present paper - with practical stability) in PDE backstepping
control.

e) Paper outline and contributions: After a brief in-
troduction to the backstepping design in Section II, for
system (1), (2), in Section IV we prove that the backstepping
control operator U is locally Lipschitz, between the spaces of
C0([0, 1]2) into R. In Section V we present our main results:
the guarantee of semiglobal practical exponential stability
under such a DeepONet approximation. In Section VI we
illustrate this feedback law approximation with a theory-
confirming simulation.

In summary, the paper’s contributions are the PDE sta-
bilization under DeepONet approximations of backstepping
control laws (Theorem 2) and practical simulations of a
DeepONet approximator for a hyperbolic PDE (Figure 3).
Our stabilization results also hold for any other neural
operators with a universal approximation property (shown
for LOCA [15] and for FNO on the periodic domain [16]).

f) Notation: We denote convolution operations as

(a ∗ b)(x) =
∫ x

0

a(x− y)b(y)dy (4)
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In the sequel, we suppresses the arguments x and t wherever
clear from the context. For instance, we write (1), (2)
compactly as ut = ux + βu(0) and u(1) = U , where, from
the context, the boundary values u(0), u(1) depend on t as
well.

II. BACKSTEPPING DESIGN FOR A TRANSPORT PDE
WITH ‘RECIRCULATION’

Consider the PDE system (1), (2). We employ the follow-
ing backstepping transformation:

w = u− k ∗ u, (5)

i.e., w(x, t) = u(x, t)−
∫ x

0
k(x− y)u(y, t)dy, to convert the

plant into the target system

wt = wx (6)
w(1) = 0 (7)

with the help of feedback

U(t) = (k ∗ u)(1) =
∫ 1

0

k(1− y)u(y, t)dy (8)

To yield the target system, k must satisfy the inte-
gral/convolution equation

k(x) = −β(x) +

∫ x

0

β(x− y)k(y)dy (9)

for x ∈ [0, 1]. Note that, the feedback law is clearly nonlinear
requiring both the solution for integral equation k and a
convolution between k and u.

III. ACCURACY OF APPROXIMATION OF BACKSTEPPING
KERNEL OPERATOR WITH DEEPONET

An n-layer NN fN : Rd1 → Rdn is given by

fN (x, θ) := (ln ◦ ln−1 ◦ ... ◦ l2 ◦ l1)(x, θ) (10)

where layers li start with l0 = x ∈ Rd1 and continue as

li+1(li, θi+1) := σ(Wi+1li+bi+1), i = 1, . . . , n−1 (11)

σ is a nonlinear activation function, and weights Wi+1 ∈
Rdi+1×di and biases bi+1 ∈ Rdi+1 are parameters to be
learned, collected into θi ∈ Rdi+1(di+1), and then into
θ = [θT1 , . . . , θ

T
n ]

T ∈ R
∑n−1

i=1 di+1(di+1). Let ϑ(k), θ(k) ∈
R

∑k−1
i=1 dk,(i+1)(dk,i+1) denote a sequence of NN weights.

An neural operator (NO) for approximating a nonlinear
operator G : U 7→ V is defined as

GN(um)(y) =

p∑

k=1

gN (um;ϑ(k))fN (y; θ(k)) (12)

where U ,V are function spaces of continuous functions u ∈
U , v ∈ V . um is the evaluation of function u at points xi =
x1, ..., xm, p is the number of chosen basis components in the
target space, y ∈ Y is the location of the output function v(y)
evaluations, and gN , fN are NNs termed branch and trunk
networks. Note, gN and fN are not limited to feedforward
NNs 10, but can also be of convolutional or recurrent.

Theorem 1: (DeepONet universal approximation theorem
[11, Theorem 2.1]). Let X ⊂ Rdx and Y ⊂ Rdy be

compact sets of vectors x ∈ X and y ∈ Y , respectively.
Let U : X → U ⊂ Rdu and V : Y → V ⊂ Rdv

be sets of continuous functions u(x) and v(y), respec-
tively. Let U be also compact. Assume the operator G :
U → V is continuous. Then, for all ϵ > 0, there exist
m∗, p∗ ∈ N such that for each m ≥ m∗, p ≥ p∗, there
exist θ(k), ϑ(k), neural networks fN (·; θ(k)), gN (·;ϑ(k)), k =
1, . . . , p, and xj ∈ X, j = 1, . . . ,m, with corresponding
um = (u(x1), u(x2), · · · , u(xm))T, such that

|G(u)(y)− GN(um)(y)| < ϵ (13)

for all functions u ∈ U and all values y ∈ Y of G(u) ∈ V .

IV. APPROXIMATING THE FULL FEEDBACK LAW MAP
(β, u) 7→ U

We start by establishing the Lipschitzness of the backstep-
ping feedback map.

Lemma 1: Consider the feedback (8), namely,

U = (K(β) ∗ u)(1), (14)

and the associated map U : (β, u) 7→ U from C0([0, 1]2) into
R. For arbitrary Bβ , Bu > 0, the mapping U is Lipschitz on
any set of x-dependent Lipschitz functions (β, u) such that
∥β∥∞ ≤ Bβ , ∥u∥∞ ≤ Bu, with a Lipschitz constant

CU = Bβe
Bβ +Bue

3Bβ . (15)
Proof: Let U1 = U(β1, u1) = (K(β1) ∗ u1)(1) and

U2 = U(β2, u2) = (K(β2) ∗ u2)(1). A calculation gives

|U1 − U2| = |(K(β1) ∗ u1)(1)− (K(β2) ∗ u2)(1)|
≤ ∥K(β1)∥∞∥u1 − u2∥∞ + ∥u2∥∞∥K(β1)−K(β2)∥∞.

(16)

Let ∥β1∥∞, ∥β2∥∞ ≤ Bβ and ∥u1∥∞, ∥u2∥∞ ≤ Bu.
Recall that ∥K(β)∥∞ ≤ Bβe

Bβ and ∥K(β1) − K(β2)∥∞ ≤
e3Bβ∥β1 − β2∥∞. Then we get

|U(β1, u1)− U(β2, u2)|
≤

(
Bβe

Bβ +Bue
3Bβ

)
∥(β1 − β2, u1 − u2)∥∞.(17)

Taking the backstepping transformation w = u − k ∗ u,
where k = K(β) is the exact backstepping kernel for β, we
get

wt = wx (18)
w(1) = U − (K(β) ∗ u)(1) (19)

Let now Û be the NO version of the mapping U(β, u) =
(K(β) ∗ u)(1). Taking the NO control U = Û(β, u), we
obtain the boundary condition w(1) = Û(β, u) − (K(β) ∗
u)(1), namely, the target system

wt = wx (20)
w(1) = Û(β, u)− U(β, u) (21)

Due to the Lipschitzness of U , based on the DeepONet
approximation accuracy theorem, we get the following.
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Lemma 2: For all Bβ , Bu > 0 and ϵ, there exists an NO
Û such that

|U(β, u)− Û(β, u)| < ϵ (22)

for all β, u ∈ C0[0, 1] that are Lipschitz in x and such that
∥β∥∞ ≤ Bβ , ∥u∥∞ ≤ Bu.

V. STABILITY UNDER FEEDBACK LAW APPROXIMATION
WITH DEEPONET

Theorem 2: (Semiglobal practical stability under Deep-
ONet approximation of backstepping feedback law). If ϵ <
ϵ∗, where

ϵ∗(Bβ , Bu, c) :=

√
cBu

ec/2 (1 +Bβ)
> 0, (23)

and ∥u(0)∥ ≤ B0
u, where

B0
u(ϵ, Bβ , Bu, c) :=

1

1 +BβeBβ

(
Bu

ec/2 (1 +Bβ)
− ϵ√

c

)
> 0,

(24)
the closed-loop solutions under the NO approximation of the
PDE backstepping feedback law, i.e.,

ut(x, t) = ux(x, t) + β(x)u(0, t) (25)
u(1, t) = Û(β, u)(t) (26)

satisfy the semiglobal practical exponential stability estimate

∥u(t)∥ ≤ (1 +Bβ)
(
1 +Bβe

Bβ
)
ec/2e−ct/2∥u(0)∥

+(1 +Bβ)
ec/2√

c
ϵ, ∀t ≥ 0. (27)

The estimate (27) is semiglobal because the radius B0
u of

the ball of initial conditions in L2[0, 1] is made arbitrarily
large by increasing Bu, and by increasing, in accordance
with the increase of Bu, the training set size and the number
of NN nodes. Nevertheless, though semiglobal, the attraction
radius B0

u in (24) is much smaller than the magnitude Bu

of the samples of u in the training set.
The residual value,

lim sup
t→

∥u(t)∥ ≤ (1 +Bβ)
ec/2√

c
ϵ (28)

is made arbitrarily small by decreasing ϵ, and by increasing,
in accordance with the decrease of ϵ, the training set size
and the number of NN nodes. As the magnitude Bβ of the
(potentially destabilizing) gain samples β used for training
grows, the residual error grows.

Proof: (of Theorem 2) To make the notation concise,
denote Ũ = U − Û and note that this mapping satisfies
|Ũ(β, u)| = |w(1)| ≤ ϵ for all ∥β∥∞ ≤ Bβ , ∥u∥∞ ≤ Bu.
Note also that Ũ depends on ϵ, Bβ , Bu through the number
of training data and NO size. Consider now the Lyapunov
functional V (t) =

∫ 1

0
ecxw2(x, t)dx. Its derivative is

V̇ = ecw2(1)− w2(0)− c

∫ 1

0

ecxw2(x, t)dx

≤ −cV + ecw2(1) (29)

which yields

V (t) ≤ V (0)e−ct +
ec

c
sup

0≤τ≤t
w2(1, τ)

≤ V (0)e−ct +
ec

c
sup

0≤τ≤t

(
Ũ(β, u)(τ)

)2

. (30)

Using the facts that

1

(1 + ∥l∥∞)
2 ∥u∥2 ≤ V ≤ ec (1 + ∥k∥∞)

2 ∥u∥2. (31)

and ∥k∥∞, ∥l∥∞ ≤ Bβe
Bβ , ∥l∥∞ ≤ Bβ we get

∥u(t)∥ ≤ (1 +Bβ)
(
1 +Bβe

Bβ
)
ec/2e−ct/2∥u(0)∥

+(1 +Bβ)
ec/2√

c
sup

0≤τ≤t

∣∣∣Ũ(β, u)(τ)
∣∣∣ . (32)

The conclusions of the theorem are directly deduced from
this estimate and the bound |Ũ | < ϵ in Lemma 2.

Remark 1: Full-state measurement u(x, t) is employed in
the feedback law (14) but can be avoided by employing only
the measurement of the outlet signal, u(0, t), from which the
full state u(x, t) is observable, the observer

ŭt = ŭx + βu(0) (33)
û(1) = U (34)

and the observer-based controller

Û = (k ∗ ŭ)(1), (35)

which can avoid solving the PDE (33), (34) online by em-
ploying its explicit solution as an arbitrary function ŭ(x, t) =
ŭ0(x) for t+ x ∈ [0, 1) and

ŭ(x, t) = Û(t+x−1)+

∫ t

t+x−1

β(t+x−τ)u(0, τ)dτ (36)

for t + x ≥ 1. A closed-loop stability result as in Theorem
2 can be established for this observer-based controller.

VI. SIMULATIONS: PRACTICAL STABILIZATION WITH
NO-APPROXIMATED FEEDBACK LAW (β, u) → U

Learning the map (β, u) 7→ U is challenging due to
the combination of two functions, β, and u. The network
architecture, as presented in Figure 2 requires significant
enhancement over a traditional DeepONet. To learn this map-
ping, we emulate the operator structure where the map (β, u)
requires two DeepONet layers for the integral operators
adjoined with linear layers for the multiplicative operation.

We can learn the mapping using a training set de-
fined by β as in Figure 3 (Chebyshev Polynomials β =
6 cos(γ cos−1(x))) with γ ∈ uniform(2, 6) and completely
random values of u. We present results with the learned
mapping in Figure 3 of the open-loop unstable system. We
can see that the learned control contains a significant error.
Due to this, the PDE in the right of Figure 3 contains
a significant ripple past the time T = 1 whereas the
analytically controlled PDE is stabilized, as stipulated by the
target system, by T = 1. Additionally, to make the network
feasible, we use a spatial resolution of dx = 0.01 and a
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Fig. 2. Network architecture for the map (β, u) 7→ U presented in Section V. The network first solves the kernel function using a DeepONet layer, then
utilizes linear layers to multiply k with the PDE state u, and concludes by learning a second neural operator layer for the nonlinear integral operation
yielding the final control output U .

larger dataset. The dataset requires a combination of both
β and u and thus consists of 50000 instances. Therefore
a network of approximately 415 thousand parameters takes
approximately 20 minutes to train. We achieved a training
relative L2 error of 7.2e − 3 and a testing relative L2

error of 3.3e − 2. This demonstrates, to the practical user,
that although the map (β, u) requires more training data
and significant architectural enhancements, it is possible to
learn the entire control feedback law. In the future, we
plan to study network architecture and data construction
enhancements to improve the learning of this challenging
feedback map.

VII. CONCLUSIONS

We introduce a novel framework for approximating solu-
tion maps for the feedback law U (9) in control of PDEs.
We provide the guarantees that (i) any desired level of
accuracy of NO approximation of the backstepping feedback
law is achieved for any (β, u) that satisfies ∥β∥∞ ≤ Bβ ,
∥u∥∞ ≤ Bu for arbitrarily large given Bβ , Bu > 0, and (ii)
the PDE is stabilized with an NO-approximated control for
any ∥β∥∞ ≤ Bβ , ∥u∥∞ ≤ Bu.

For any given pair Bβ , Bu > 0 and any chosen positive
ϵ < ϵ∗(Bβ , Bu), the determination of the NO approximate
operator U(·) is done offline, once only, and such a Û(·),
which depends on Bβ , Bu and ϵ, is usable “forever,” so to
speak, for any recirculation kernel and system state that does
not violate ∥β∥∞ ≤ Bβ , ∥u∥∞ ≤ Bu.

Our achievement of semi-global exponential stability (not
“practical”/approximate, but with an actual convergence of
the state to zero) relies crucially—in each of the lemmas
and theorems that we state—on the theoretical steps from
the PDE backstepping toolkit (backstepping transform, target
system, integral equation for kernel, successive infinite-series
approximation, Lyapunov analysis). It is only by assigning

the NO a service role in an otherwise model-based design
that stability is assured. As future work, we plan to extend the
results to feedback laws for parabolic PDEs in [29] as well
as to observers [30] with guarantees of observer convergence
and with observer-based stabilization (separation principle).
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