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Abstract— Recently, decentralized optimization over the
Stiefel manifold has attracted tremendous attentions due to its
wide range of applications in various fields. Existing methods
rely on the gradients to update variables, which are not appli-
cable to the objective functions with non-smooth regularizers,
such as sparse PCA. In this paper, to the best of our knowledge,
we propose the first decentralized algorithm for non-smooth
optimization over Stiefel manifolds. Our algorithm approxi-
mates the non-smooth part of objective function by its Moreau
envelope, and then existing algorithms for smooth optimization
can be deployed. We establish the convergence guarantee with
the iteration complexity of O(ε�4). Numerical experiments
conducted under the decentralized setting demonstrate the
effectiveness and efficiency of our algorithm.

I. INTRODUCTION

Given a set of d agents connected by a communication
network, we focus on the optimization problem over the
Stiefel manifold Sn,p := {X ∈ Rn×p | X>X = Ip} with
non-smooth regularizers of the following form:

min
X∈Sn,p

d∑
i=1

(fi(X) + gi(X)), (1)

where fi : Rn×p → R and gi : Rn×p → R are two local
functions privately owned by agent i ∈ [d] := {1, . . . , d},
and Ip denotes the p × p identity matrix with p ≤ n. We
consider the scenario that the agents can only exchange
information with their immediate neighbors through the
network, which can be modeled as a connected undirected
graph. Under this decentralized setting, there is not a center
to aggregate the local information and coordinate the opti-
mization process. Consequently, each agent has to maintain
a local variable Xi as a copy of the common variable X .
The goal of decentralized optimization is to seek a global
consensus such that each local variable is a solution to
problem (1) through local communication.

Throughout this paper, we make the following assumptions
about problem (1).

Assumption 1: The functions fi and gi satisfy the follow-
ing conditions for any i ∈ [d].
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1) fi is first-order differentiable and its Euclidean gra-
dient ∇fi is Lipschitz continuous over Sn,p with the
corresponding Lipschitz constant Lfi ≥ 0.

2) gi is convex and Lipschitz continuous with the corre-
sponding Lipschitz constant Lgi ≥ 0.

For convenience, we denote Lf := maxi∈[d] Lfi and Lg :=
maxi∈[d] Lgi .

By virtue of its versatility, problem (1) arises naturally
in many scientific and engineering applications, such as
sparse principal component analysis (PCA) [1], [2], deep
neural networks with orthogonality constraints [3], [4], dual
principal component analysis [5], [6], and dictionary learning
[7], [8]. However, under the decentralized setting, it is quite
challenging to solve problem (1). The difficulty lies primarily
in the non-smoothness of objective function and the non-
convexity of manifold constraint.

A. Related Works

Recent years have seen the extensive development of
decentralized optimization over Stiefel manifolds. Existing
algorithms can be divided into two categories. The first
category leverages the geometric tools from Riemannian
optimization [9] to solve this problem, including DRGTA
[10] and DRNGD [11]. These algorithms directly seek a
consensus on Stiefel manifolds [12], which require multiple
rounds of communications to guarantee the convergence. As
a result, this communication bottleneck hinders the scala-
bility in large-scale networks. The second category, built
on a different framework, constructs exact penalty models
for optimization over Stiefel manifolds, which are then
solved by unconstrained decentralized algorithms. Therefore,
this category attempts to reach a consensus in the ambient
Euclidean space alternatively. Two members of this category
are DESTINY [13] and VRSGT [14]. These algorithms only
invoke a single round of communications per iteration, which
can provide a high degree of communication-efficiency in
general.

We emphasize that the above mentioned methods are
tailored for smooth optimization problems over Stiefel mani-
folds, since the gradients of objective function are computed
per iteration. To the best of our knowledge, there is no de-
centralized algorithm that can solve the non-smooth problem
(1).

It is worthy of mentioning that smoothing methods have
been introduced in Riemannian optimization to solve the
non-smooth problems. For example, [15] extends the smooth-
ing steepest descent method from Euclidean spaces to
Riemannian manifolds. Moreover, [16] and [17] propose
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a family of Riemannian gradient type methods based on
the smooth approximation of objective functions. Generally
speaking, these algorithms require some global information
that is not available under the decentralized setting. In
addition, a Riemannian ADMM algorithm is developed in
[18] to solve the smoothed problem with a favorable numer-
ical performance. The convergence is not guaranteed with
the additional consensus constraint under the decentralized
setting. In summary, the above-mentioned algorithms are
tailored for centralized optimization problems, which can not
be straightforwardly extended to the decentralized setting.

B. Contributions

In this paper, we propose the first decentralized algorithm
for the optimization problem (1) over the Stiefel manifold
with non-smooth regularizers. The smoothing technique tides
us over the obstacle to handling the combination of non-
smoothness and non-convexity. Our algorithm attempts to
solve the smoothed proxy of problem (1), where the non-
smooth regularizers are replaced by their Moreau envelopes.
Even under the centralized setting, our algorithm provides
a novel alternative for the non-smooth optimization problem
over the Stiefel manifold.

We establish the global convergence of our algorithm to a
first-order ε-stationary point in O(ε−4) iterations. Such theo-
retical guarantee matches the complexities of centralized ap-
proaches to non-smooth optimization over Stiefel manifolds,
such as Riemannian ADMM algorithm [18] and Riemannian
subgradient-type method [19]. Preliminary numerical experi-
ments validate the effectiveness of our smoothing technique.
Moreover, our algorithm has a promising performance in
sparse PCA problems.

C. Notations

The Euclidean inner product of two matrices Y1, Y2 with
the same size is defined as 〈Y1, Y2〉 = tr(Y >1 Y2), where
tr(B) stands for the trace of a square matrix B. And the
notation sym(B) = (B + B>)/2 represents the symmetric
part of B. The Frobenius norm and 2-norm of a given matrix
C are denoted by ‖C‖F and ‖C‖2, respectively. The (i, j)-
th entry of a matrix C is represented by C(i, j). Given a
differentiable function f(X) : Rn×p → R, the Euclidean
gradient of f with respect to X is represented by ∇f(X).

II. PRELIMINARIES

This section introduces several preliminaries of our algo-
rithm.

A. Stationarity Condition

We first introduce the definition of Clarke subgradient [20]
for non-smooth functions.

Definition 1: Suppose f : Rn×p → R is a Lipschitz
continuous function. The generalized directional derivative
of f at the point X ∈ Rn×p along the direction H ∈ Rn×p
is defined by:

f◦(X;H) := lim sup
Y→X, t→0+

f(Y + tH)− f(Y )

t
.

Based on generalized directional derivative of f , the (Clark)
subgradient of f is defined by:

∂f(X) := {G ∈ Rn×p | 〈G,H〉 ≤ f◦(X;H)}.
As discussed in [21] and [22], the first-order stationarity

condition of (1) can be stated as follows.
Definition 2: A point X ∈ Rn×p is called a first-order

stationary point of (1) if it satisfies the following conditions.
0 ∈ projX

(
d∑
i=1

(∇fi(X) + ∂gi(X))

)
,

X>X = Ip,

where projX(Y ) := Y −Xsym(X>Y ).
For a point X ∈ Sn,p, projX(·) is nothing but the

orthogonal projection onto the tangent space of Sn,p [9].
Based on Definition 2, we define the following notion of
first-order ε-stationary point.

Definition 3: A point X ∈ Rn×p is called a first-order ε-
stationary point of (1) if there exists {Yi ∈ Rn×p}di=1 such
that the following conditions hold.

dist

(
0,projX

(
d∑
i=1

(∇fi(X) + ∂gi(Yi))

))
≤ ε,

‖X − Yi‖F ≤ ε, i ∈ [d],∥∥X>X − Ip∥∥F
≤ ε.

One can readily check that a first-order ε-stationary point
will reduce to a first-order stationary point if ε = 0.

B. Mixing Matrix

In the context of decentralized optimization, we usually
associate the network with a mixing matrix denoted by
W = [W (i, j)] ∈ Rd×d to conform to the underlying
communication structure.

Assumption 2: The mixing matrix W ∈ Rd×d satisfies the
following conditions.

1) W is symmetric.
2) W is doubly stochastic, namely, W is nonnegative and

W1d = W>1d = 1d, where 1d ∈ Rd stands for the
d-dimensional vector of all ones.

3) W (i, j) = 0 if i and j are not connected and i 6= j.
The mixing matrix W in Assumption 2, which is standard in
the literature, always exists and can be constructed efficiently
via exchange of local degree information between the agents.
We refer interested readers to [23], [24], [25] for more
details. According to the Perron-Frobenius Theorem [26],
we know that the eigenvalues of W lie in [−1, 1] and

λ :=
∥∥W − 1d1

>
d /d

∥∥
2
< 1.

The parameter λ measures the connectedness of networks.

III. SMOOTHING TECHNIQUE

Based on the smoothing technique, we propose a novel
decentralized algorithm to solve the optimization problem
(1) with non-smooth regularizers.

127



A. Moreau Envelope

Under the decentralized setting, the combination of non-
smoothness and non-convexity makes it intractable to tackle
the problem (1). If there is only one of them, this problem
is relatively easier to solve. This motivates us to replace
the non-smooth part of objective function by its Moreau
envelope [27], [28] as a smooth approximation. Then we can
take advantage of existing algorithms for smooth problems
to solve problem (1). This kind of algorithm is usually called
smoothing algorithm [29]. The Moreau envelope and the
closely related proximal operator are defined as follows.

Definition 4: For a proper, convex and lower semi-
continuous function g : Rn×p → R, the Moreau envelope
of g with the smoothing parameter σ > 0 is given by

envσ,g(X) := min
Y ∈Rn×p

{
g(Y ) +

1

2σ
‖Y −X‖2F

}
. (2)

And the proximal operator of g is the global minimizer of
the above optimization problem, that is,

proxσ,g(X) := arg min
Y ∈Rn×p

{
g(Y ) +

1

2σ
‖Y −X‖2F

}
. (3)

The following proposition indicates that the Moreau enve-
lope envσ,g(X) can be used to approximate the non-smooth
function g, and the approximation error is controlled by the
smoothing parameter σ.

Proposition 1 ([30]): Let g : Rn×p → R be a proper,
convex and lower semi-continuous function. Suppose g is
Lipschitz continuous with the corresponding Lipschitz con-
stant L ≥ 0. Then for any σ > 0, it holds that

envσ,g(X) ≤ g(X) ≤ envσ,g(X) +
1

2
σL2.

Furthermore, the Moreau envelope envσ,g(X) is a smooth
function with the parameter σ controlling the amount of
smoothness.

Proposition 2 ([30]): Let g : Rn×p → R be a proper,
convex and lower semi-continuous function. Suppose g is
Lipschitz continuous with the corresponding Lipschitz con-
stant L ≥ 0. Then the Moreau envelope envσ,g(X) is first-
order continuously differentiable, and its Euclidean gradient
has the following form:

∇envσ,g(X) =
1

σ
(X − proxσ,g(X)).

Moreover, for any X ∈ Rn×p, we have

‖∇envσ,g(X)‖F ≤ L.

Finally, ∇envσ,g(X) is Lipschitz continuous with the corre-
sponding Lipschitz constant 1/σ.

B. Smoothed Problem

Based on Proposition 1 and Proposition 2, the Moreau
envelope offers a smooth approximation to non-smooth func-
tions. By resorting to this powerful tool, we can obtain the
following smoothed problem of (1).

min
X∈Sn,p

d∑
i=1

hi(X), (4)

where hi(X) := fi(X) + envσ,gi(X) is a local function
privately held by agent i.

According to the discussions in [31], a point X ∈ Rn×p
satisfies the first-order ε-stationarity condition of problem (4)
if and only if {

‖projX (G(X))‖F ≤ ε,∥∥X>X − Ip∥∥F
≤ ε,

where G(X) =
∑d
i=1Gi(X) with

Gi(X) := ∇hi(X) = ∇fi(X) +∇envσ,gi(X).

We have the following lemma.
Lemma 3: Suppose X ∈ Rn×p is a first-order ε-stationary

point of the smoothed problem (4) with

0 < σ ≤ ε

2Lg
.

Then X is also a first-order ε-stationary point of problem (1).
Proof: Let Yi = proxσ,gi(X). Then it follows from the

optimality condition of (2) that

0 ∈ ∂gi(Yi) +
1

σ
(Yi −X),

which further yields that

∇envσ,gi(X) =
1

σ
(X − Yi) ∈ ∂gi(Yi).

Hence, we can obtain that

dist

(
0,projX

(
d∑
i=1

(∇fi(X) + ∂gi(Yi))

))
≤ ‖projX (G(X))‖F ≤ ε.

In addition, according to the definition of proximal operator,
we have

gi(Yi) +
1

2σ
‖Yi −X‖2F ≤ gi(X).

This together with the Lipschitz continuity of gi that

1

2σ
‖X − Yi‖2F ≤ gi(X)− gi(Y ) ≤ Lgi ‖X − Yi‖F ,

which implies that ‖X − Yi‖F ≤ 2σLgi ≤ ε. According to
Definition 3, we know that X is a first-order ε-stationary
point of problem (1). The proof is completed.

Lemma 3 guarantees that one can always find an ap-
proximate first-order stationary point of (1) by solving the
smoothed problem (4).

C. Algorithm Development

In this subsection, we intend to solve the smoothed prob-
lem (4). Among existing algorithms introduced in Subsection
I-A, DESTINY [13] is chosen due to its communication-
efficiency.

Let X(k)
i and D(k)

i denote the k-th iterate of local variable
and gradient tracker at agent i, respectively. In our algorithm,
the local variable is first updated by performing a descent
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step along the direction of D(k)
i and communicating with

neighbors, that is,

X
(k+1)
i :=

d∑
j=1

W (i, j)
(
X

(k)
j − ηD(k)

j

)
, (5)

where η > 0 is the stepsize. Then, the local descent direction
H

(k+1)
i can be evaluated as follows.

H
(k+1)
i := βX

(k+1)
i

(
(X

(k+1)
i )>X

(k+1)
i − Ip

)
+Ri(X

(k+1)
i ),

(6)

where β > 0 is a penalty parameter and

Ri(X) :=
1

2
Gi(X)

(
3Ip −X>X

)
−Xsym

(
X>Gi(X)

)
.

For more details about the construction of H(k+1)
i , we refer

interested readers to [13]. Finally, each agent i updates
D

(k+1)
i based on the following gradient tracking technique.

D
(k+1)
i :=

d∑
j=1

W (i, j)D
(k)
j +H

(k+1)
i −H(k)

i . (7)

We formally present the detailed algorithmic frame-
work as Algorithm 1, named “decentralized smoothing
gradient tracking over Stiefel manifolds” and abbreviated to
THANOS. In principle, one can devise an adaptive strategy
to update the smoothing parameter based on the global
objective function value, such as [29], [32], [33]. Such
information is not available under the decentralized setting.
Therefore, the smoothing parameter is fixed in THANOS.

Algorithm 1: Decentralized smoothing gradient
tracking over Stiefel manifolds (THANOS).

1 Input: initial guess Xinitial ∈ Sn,p, stepsize η > 0,
smoothing parameter σ > 0, and penalty
parameter β > 0.

2 Set k := 0.
3 For any i ∈ [d], initialize X(k)

i := Xinitial and
D

(k)
i := H

(k)
i .

4 while “not converged” do
5 for all i ∈ [d] in parallel do
6 Update X(k+1)

i by (5).
7 Compute H(k+1)

i by (6).
8 Update D(k+1)

i by (7).

9 Set k := k + 1.

10 Output: {X(k)
i }.

IV. CONVERGENCE ANALYSIS

This section is devoted to the convergence analysis of
THANOS. Towards this end, we need to impose several mild
conditions on β and η, which are stated below to facilitate
the narrative.

Condition 1: (i) The penalty parameter β satisfies

β > max

{
6 + 21(Mf + Lg)

5
,

72(4 + 3Mg)

5
,

1

7dp+ 6d
,

22

(
Lf +

1

σ

)2
}
,

where Mf := supi∈[d] {‖∇fi(X)‖F | ‖X‖F ≤
√

7dp/6 +√
d} and Mg := 3(Mf+Lg)(7dp+6d+3)/6 are two positive

constants.
(ii) The stepsize η satisfies

0 < η <
d(1− λ2)

48(Lr + (7dp+ 6d)β)2
,

where Lr := 7dp(Lf + 1/σ) + 6d+ 3 is a positive constant.
Proposition 4: Suppose Assumption 1 and Assumption 2

hold, and {X̄(k)} is the average sequence of local iterates
generated by Algorithm 1, where X̄(k) :=

∑d
i=1X

(k)
i /d.

Let the algorithmic parameters β and η satisfy Condition 1.
Then {X̄(k)} has at least one accumulation point, and any
accumulation point X̄∗ is a first-order stationary point of the
smoothed problem (4). Moreover, the following relationships
hold.

min
k=0,1,...,K−1

∥∥∥R(X̄(k))
∥∥∥2

F
≤ 2C

ηK
,

and

min
k=0,1,...,K−1

∥∥∥(X̄(k))>X̄(k) − Ip
∥∥∥2

F
≤ 2C

η(Lf + 1/σ)2K
,

where R(X) :=
∑d
i=1Ri(X) and C > 0 is a constant

independent of σ.
Proof: It follows from Proposition 2 that the local

function hi in (4) is first-order differentiable. Moreover, ∇hi
is Lipschitz continuous over Sn,p, and the corresponding
Lipschitz constant is Lfi +1/σ. Then according to Theorem
10 in [13], we can obtain the assertions of this proposition.
The proof is completed.

Theorem 5: Suppose all the conditions in Proposition 4
hold and

0 < σ ≤ ε

2Lg
.

Then Algorithm 1 will return a first-order ε-stationary point
of problem (1) in at most O(ε−4) iterations.

Proof: By straightforward calculations, we have∥∥∥projX̄(k)

(
G(X̄(k))

)∥∥∥
F

≤
∥∥∥R(X̄(k))

∥∥∥
F

+
1

2

∥∥∥G(X̄(k))
∥∥∥

F

∥∥∥(X̄(k))>X̄(k) − Ip
∥∥∥

F

≤
∥∥∥R(X̄(k))

∥∥∥
F

+
1

2
(Mf + Lg)

∥∥∥(X̄(k))>X̄(k) − Ip
∥∥∥

F
.

Then it can be readily verified that∥∥∥projX̄(k)

(
G(X̄(k))

)∥∥∥2

F

≤ 2
∥∥∥R(X̄(k))

∥∥∥2

F
+

1

2
(Mf + Lg)

2
∥∥∥(X̄(k))>X̄(k) − Ip

∥∥∥2

F
,
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which implies that

min
k=0,1,...,K−1

∥∥∥projX̄(k)

(
G(X̄(k))

)∥∥∥2

F

≤ 4(Lf + 1/σ)2C + (Mf + Lg)
2C

η(Lf + 1/σ)2K
.

According to Lemma 3, Algorithm 1 is guaranteed to find a
first-order ε-stationary point if

4(Lf + 1/σ)2C + (Mf + Lg)
2C

η(Lf + 1/σ)2K
≤ ε2,

2C

η(Lf + 1/σ)2K
≤ ε2,

namely,

K ≥ max

{
4(Lf + 1/σ)2C + (Mf + Lg)

2C

η(Lf + 1/σ)2ε2
,

2C

η(Lf + 1/σ)2ε2

}
= O

(
1

ε4

)
.

The proof is completed.

V. NUMERICAL EXPERIMENTS

Comprehensive numerical experiments are conducted in
this section to evaluate the numerical performance of
THANOS. We use the Python language to implement the
tested algorithms with the communication realized via the
package mpi4py. And the corresponding experiments are
performed on a workstation with two Intel Xeon Gold 6242R
CPU processors (at 3.10GHz×20× 2) and 510GB of RAM
under Ubuntu 20.04.

A. Test Problem

In the numerical experiments, we test the performance of
THANOS on the following sparse PCA problems.

min
X∈Sn,p

− 1

2

d∑
i=1

tr
(
X>AiA

>
i X
)

+ µr(X), (8)

where Ai ∈ Rn×mi is the local data matrix privately
owned by agent i ∈ [d] that consists of mi samples with
n features, the non-smooth regularizer r(X) is imposed to
promote specific sparsity structures in X , and µ > 0 is
the parameter used to control the amount of sparseness.
We use A = [A1 A2 · · · Ad] ∈ Rn×m to denote the
global data matrix such that each agent possesses a subset of
samples, where m = m1 +m2 + · · ·+md. This is a natural
setting under the distributed circumstance [34]. One can
readily verify that (8) is a special case of (1) by identifying
fi(X) = −tr(X>AiA

>
i X)/2 and gi(X) = µr(X)/d for

any i ∈ [d].

We consider two different regularizers. The first one is
`l-norm regularizer [1]:

r(X) = ‖X‖1 :=

n∑
i=1

p∑
j=1

|X(i, j)| . (9)

The second one is `2,1-norm regularizer [35]:

r(X) = ‖X‖2,1 :=

n∑
i=1

‖X(i, ·)‖2 , (10)

where X(i, ·) denotes the i-th row of X .

B. Numerical Results

In the following experiments, we randomly generate the
test matrix A with n = 10 and m = 320. The columns
of A are uniformly distributed into d = 32 agents. Other
parameters in problem (8) as set as p = 3 and µ = 0.1.
We construct an Erdos-Renyi network, where two agents
are connected with a fixed probability 0.5. This network is
associated with the Metropolis constant matrix [24] as the
mixing matrix W .

After the construction of A, we employ the SLPG [36]
algorithm to generate a high-precision solution X∗ ∈ Sn,p
to problem (8) under the centralized environment. Then
we test the performance of THANOS on problem (8) for
different values of smoothing parameter σ with fixed penalty
parameter β = 1. We use the BB stepsize proposed in
[13] to accelerate the convergence. The initial point X(0)

i

is constructed from the leading p left singular vectors of A,
which can be computed efficiently by DESTINY [13] under
the decentralized setting.

In each iteration of THANOS, we compute and record the
error term defined by

dist(k) :=
1

d

d∑
i=1

∥∥∥X(k)
i −X∗

∥∥∥
F
,

and the feasibility violation defined by

feas(k) :=
1

d

d∑
i=1

∥∥∥(X
(k)
i )>X

(k)
i − Ip

∥∥∥
F
,

as the performance measurements.
Figure 1 and Figure 2 depict the numerical performance of

THANOS for two regularizers (9) and (10), respectively. In
both figures, we plot dist(k) and feas(k) against the iteration
count k corresponding to different values of σ, which are
distinguished by colors. We can observe that, the smaller
the value of σ is, the worse the performance of THANOS
becomes. The reason is that the smoothed problem (4) is
ill-conditioned for small values of σ. Moreover, increasing
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Fig. 1. Numerical performance of THANOS for different values of σ on
sparse PCA problems with r(X) = ‖X‖1.

the value of σ will give rise to large approximation errors.
In order to remedy this dilemma, we propose an updating
scheme that gradually reduces the smoothing parameter, that
is,

σ(k) = k−1/3,

where σ(k) is the smoothing parameter at iteration k. The
above updating scheme has a favorable numerical perfor-
mance in practice, which is also shown in Figure 1 and
Figure 2.

VI. CONCLUSIONS
This paper considers a class of decentralized optimization

problems over the Stiefel manifold with non-smooth regular-
izers. There is currently no algorithm in the literature that is
capable of solving this problem. To overcome the difficulty of
non-smoothness, we use the Moreau envelope to approximate
the non-smooth regularizers in the objective function. Then
we apply an existing algorithm to solve the obtained smooth
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Fig. 2. Numerical performance of THANOS for different values of σ on
sparse PCA problems with r(X) = ‖X‖2,1.

proxy of the original problem. The resulting algorithm is
called THANOS. We prove that THANOS will return a
first-order ε-stationary point in at most O(ε−4) iterations.
Preliminary numerical results illustrate that THANOS is of
great potential.
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