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Abstract— Sparse regression deals with the problem of repre-
senting a dataset using only a few non-zero basis elements. This
work presents a recursive implementation of sparse regression,
with the dataset being processed sequentially rather than as a
batch. The algorithm, named sparse regularized fused recursive
least squares (SP-RF-RLS), uses a re-weighting technique and
a smooth approximation to deal with the discontinuous ℓ0-
norm and the non-differentiable ℓ1-norm, standard norms for
sparsity. Inspired by fused least absolute shrinkage and se-
lection operator (fused-LASSO), the algorithm aims to capture
structures in the locations of the non-zero elements by including
a term depending on the difference between the estimated
elements. Comparative experiments in both sparse and non-
sparse scenarios show that SP-RF-RLS outperforms several
state-of-the-art recursive algorithms.

I. INTRODUCTION

In many applications of data science, spanning from
computer vision to fault and structure detection [1]–[3],
it is of interest to represent data using a combination of
a few basic elements. If such few elements are able to
reconstruct the original data, a sparse model is obtained,
whose compact nature can help towards explainability and
reduction of complexity. While the ℓ0-norm is a typical
measure of sparsity, its discontinuous nature may result in
instability, and alternatives like the ℓ1-norm can be adopted
[4], [5]. The most common sparse regression algorithms are
non-recursive, i.e., they process data as a batch. Big families
of non-recursive sparse regression are relaxation algorithms
such as basis pursuit and greedy algorithms such as matching
pursuit [6], [7]. The celebrated least absolute shrinkage and
selection operator (LASSO) [8], [9] belongs to the family
of basis pursuit. Proposed non-parametric sparse regression
methods [10]–[12] are also non-recursive.

When data are collected continuously, recursive imple-
mentations of sparse regression are more appropriate. Re-
cursive sparse regression algorithms are inspired by adaptive
filtering [13], with big families falling in the least mean
square (LMS) methods and the recursive least squares (RLS)
methods. Due to the challenges of dealing with the ℓ0-norm
or ℓ1-norm in a recursive way, the first recursive sparse
regression algorithms utilized the ℓ2-norm, as in Normalized
LMS [14] and Proportionate Normalized LMS [15] algo-
rithms. The zero-attracting LMS (ZA-LMS) algorithm was
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one of the first dealing with the ℓ1-norm in a recursive way
[16]. Studies have shown that, thanks to the better effect of
the ℓ1-norm of inducing sparsity as compared to the ℓ2-norm,
zero-attracting methods have faster convergence and higher
accuracy when the system under consideration is sparse [17].
Meanwhile, the faster convergence and higher accuracy of
RLS methods as compared to LMS methods, well-known
in ℓ2 regularization [18]–[20], also applies to ℓ1-norm: this
was experienced in ℓ1-RLS and ℓ1-RRLS algorithms [21],
[22], up to variants with different regularization and weighted
terms [23]–[27]. Zero-attracting RLS (ZA-RLS) algorithms
have also been derived [28] to improve ZA-LMS.

Despite their good sparsity effects, these algorithms deal
with each element separately: this makes it hard to capture
possible structural correlations in the location of the non-zero
elements. In applications where such correlations do exist
(e.g., in time series or image data with spatial or temporal
structure [29]), one may end up estimating non-zero elements
in wrong locations. This problem has been addressed in a
non-recursive way in LASSO algorithms, leading to several
variants of the so-called fused-LASSO [30], [31], where the
term ‘fused’ refers to penalizing the differences between
the estimated coefficients to make non-zero elements cluster
together. Despite several non-recursive algorithms for fused
sparse regression, we are not aware of recursive algorithms,
which is the main contribution of this work. We achieve a
recursive implementation as follows:

• To induce sparsity, we introduce appropriate weights in
the cost, inspired by the re-weighting technique [23],
[24]. However, we use a less restrictive approach to
minimize the regression cost;

• As previously noted by the authors [32], standard re-
weighting suffers from lack of differentiability that also
arises in ZA-RLS algorithms [28]. We thus introduce a
smooth approximation of non-differentiable terms that
can be handled by the minimization.

• Structural correlations are captured by including a term
depending on the difference between the estimated
elements, as inspired by fused-LASSO [30], [31]. How-
ever, such term is handled recursively in the minimiza-
tion, rather than as a batch.

We name the algorithm sparse regularized fused recursive
least squares (SP-RF-RLS). Comparative experiments in
both sparse and non-sparse scenarios show that SP-RF-
RLS outperforms, in terms of sparsity and accuracy of the
estimate, state-of-the-art recursive algorithms, including SP-
R-RLS (without fused) by some of the authors [33].

The rest of the paper is organized as follows: Sect. II
recalls basic concepts of sparse regression. The proposed SP-
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RF-RLS along with its theoretical basis is in Sect. III. The
algorithm is compared with existing algorithms in Sect. IV.
Conclusions are in Sect. V.

II. INTRODUCTION TO SPARSE REGRESSION

Given a vector w = [w1 w2 · · ·wM ]⊤, its ℓp-norm, with
p > 0, is defined as

∥w∥p = (|w1|p + |w2|p + · · ·+ |wM |p)1/p , (1)

converging, for p → 0, to the ℓ0-norm, ∥w∥0 = |w1|0 +
|w2|0 + · · ·+ |wM |0 (upon the definition 00 = 0). Let w∗ ∈
RM represent the unknown elements in a system

Y (k) = X(k)w∗ + n(k), (2)

being n observation noise, and X , Y input/output samples

Y (k) =


y(1)
y(2)

...
y(k)

 ∈ Rk, X(k) =


x⊤(1)
x⊤(2)

...
x⊤(k)

 ∈ Rk×M . (3)

Sparsity can be induced in the regression problem by a
penalty in the norm of w, being w the estimate of w∗. For
example, in ℓ1-regularization, the cost

min
w

(X(k)w − Y (k))
⊤
(X(k)w − Y (k)) + ρ

M∑
i=1

|wi| ,

(4)
describes the trade-off between minimizing the error e =
y−x⊤w, and representing Y as a combination of few non-
zero elements in w. The tradeoff is regulated by ρ > 0.

A. Re-weighting and fused techniques

The literature has shown that the sparsity induced by the
ℓ1-norm can be improved [22]–[24] by introducing positive
weights v1, v2, . . . , vM in the cost (4), that is,

(X(k)w − Y (k))
⊤
(X(k)w − Y (k)) + ρ

M∑
i=1

vi |wi|.

(5)
The rationale is that the additional weights vi should make
the re-weighted ℓ1-norm approach the ℓ0-norm [34]. With

vi =

{
1

|w∗
i |

if w∗
i ̸= 0

∞ if w∗
i = 0,

(6)

the re-weighted ℓ1-norm would coincide with the ℓ0-norm.
To avoid discontinuity and knowledge of w∗ in (6), a suitable
approximation is obtained via vi(k) = 1/(|wi(k − 1)| + ε),
with w∗ replaced by its latest estimate wi(k−1), and ε > 0
to allow continuity and avoid division by zero [34].

In fused regression, an extra penalty is included in the cost
(4) to measure the correlation between adjacent estimated
coefficients [30], [31]. For wi(k) estimated at iteration k, a
possible measure of correlation to be included in (4) is

M−1∑
i=1

|wi(k)− wi+1(k)|+
M−1∑
i=1

|wi(k) + wi+1(k)|, (7)

which can be suitably approximated as
M−1∑
i=1

∣∣r+i (k)wi(k) + r−i (k)wi+1(k)
∣∣, (8)

with

r+i (k)=σ(wi(k)+wi+1(k))+σ(wi(k)−wi+1(k))

r−i (k)=σ(wi(k)+wi+1(k))−σ(wi(k)−wi+1(k)) ,
(9)

and σ(·) is any mirrored sigmoid such as σ(x) = 1/(1+eϵx),
with ϵ > 0 a small constant regulating the transition. Then,
the re-weighting technique can be applied once more to the
ℓ1-norm in (8), in a similar fashion as in (5).

III. PROPOSED RECURSIVE SPARSE REGRESSION

When calculating the gradient for minimization of the cost,
existing re-weighting algorithms like [23], [24] and zero-
attracting algorithms like [28] neglect that the ℓ1-norm and
the re-weighted ℓ1-norm are non-differentiable. To cope with
this issue, we propose a smooth approximation by replacing
|x| with x2/

√
x2(k − 1) + εd, with εd > 0. Note that this

approximation is consistent with the use of the latest estimate
in re-weighting and fused techniques [22]–[24], [30], [31].

A new cost to be minimized is then proposed as

J = (X(k)w − Y (k))
⊤
(X(k)w − Y (k)) (10)

+ ρ

M∑
i=1

w2
i

(|wi(k − 1)|+ ε)
√

w2
i (k − 1) + εd

+ γ

M−1∑
i=1

r2i (k)

(|ri(k − 1)|+ ε)
√

r2i (k − 1) + εd

= (X(k)w − Y (k))
⊤
(X(k)w − Y (k))

+ ρw⊤V (k)w + γw⊤F⊤(k)S(k)F (k)w,

where

V (k) = diag (v1(k), . . . , vM−1(k))

vi(k) =
1

(|wi(k − 1)|+ ε)
√

w2
i (k − 1) + εd

S(k) = diag (s1(k), . . . , sM−1(k))

si(k) =
1

(|ri(k − 1)|+ ε)
√

r2i (k − 1) + εd

ri(k − 1) = r+i (k − 1)wi(k − 1) + r−i (k − 1)wi+1(k − 1)

F (k) =


r+1 (k − 1) r−1 (k − 1) 0

0 r+2 (k − 1) r−2 (k − 1)
...

. . . . . .
0 · · · 0

· · · 0

0
...

. . . 0
r+M−1(k − 1) r−M−1(k − 1)

 .

(11)
The next step is to minimize the proposed cost to get a

sparse estimate of w∗. The following result holds.
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Theorem 1: The minimization of cost (10) can be per-
formed in a recursive way along the steps in Algorithm 1.

Proof: The partial derivative of (10) wrt w is

∇J = −X⊤(k) (Y (k)−X(k)w) + ρV (k)w

+ γF⊤(k)S(k)F (k)w = 0,
(12)

from which we get

w(k) = P (k)X⊤(k)Y (k) (13)

P (k) =
(
X⊤(k)X(k) + ρV (k) + γF⊤(k)S(k)F (k)

)−1

.

To obtain a recursive implementation processing only the
sample x(k), y(k) instead of the whole input/output batch
X(k), Y (k), consider analogously to (13), that

w(k − 1) = P (k − 1)X⊤(k − 1)Y (k − 1), (14)

where a recursive formula for P−1(k) is

P−1(k) = P−1(k − 1) + x(k)x⊤(k) (15)

+ ρ (V (k)− V (k − 1)) + γ
(
F⊤(k)S(k)F (k)

−F⊤(k − 1)S(k − 1)F (k − 1)
)
.

Sequential processing arises from manipulating as follows:

X⊤(k)Y (k)

= X⊤(k − 1)Y (k − 1) + x(k)y(k)

= P−1(k − 1)w(k − 1) + x(k)y(k)

=
(
P−1(k)−x(k)x⊤(k)−ρ (V (k)−V (k−1))

)
w(k−1)

− γ
(
F⊤(k)S(k)F (k)− F⊤(k − 1)S(k − 1)

F (k − 1)
)
w(k − 1) + x(k)y(k)

= P−1(k)w(k − 1)− ρ (V (k)− V (k − 1))w(k − 1)

− γ
(
F⊤(k)S(k)F (k)− F⊤(k − 1)S(k − 1)

F (k − 1)
)
w(k − 1) + x(k)e(k),

(16)
resulting in a recursive formula for w(k)

w(k) = w(k − 1) + P (k)x(k)e(k)

− ρP (k) (V (k)− V (k − 1))w(k − 1)

− γP (k)
(
F⊤(k)S(k)F (k)

−F⊤(k − 1)S(k − 1)F (k − 1)
)
w(k − 1).

(17)

Let G−1(k) = P−1(k) − ρV (k) − γF⊤(k)S(k)F (k). We
obtain a recursive formula for G−1(k) as

G−1(k) = G−1(k − 1) + x(k)x⊤(k). (18)

The matrix inversion lemma1, applied to (18), allows to

1The inversion lemma states that for non-singular a ∈ RN×N , c ∈
RM×M and b ∈ RN×M , d ∈ RM×N , the following equality holds

(a+ bcd)−1 = a−1 − a−1b(da−1b+ c−1)−1da−1 (19)

Algorithm 1: Proposed SP-RF-RLS algorithm

Input: Samples x⊤(k), y(k) (collected sequentially)
Init: w(0) = OM×1, G(0) = δ−1I , V (0) = OM×M,

S(0) = O(M−1)×(M−1), parameters ρ, γ, ε, εd, δ
Output: Weight matrix w
for Step k = 1; k ≤ N do

e(k) = y(k)− x⊤(k)w(k − 1)
if k > 1 then

V (k) = diag

(
(|w1(k − 1)|+ ε)

−1√
w2

1(k − 1) + εd
,

· · · , (|wM (k − 1)|+ ε)
−1√

w2
M (k − 1) + εd

)
for Step i = 1; i ≤ M do

r+i (k−1)=σ (wi(k−1)+wi+1(k−1))
+σ (wi(k−1)−wi+1(k−1))
r−i (k−1)=σ (wi(k−1)+wi+1(k−1))
−σ (wi(k−1)−wi+1(k−1))
ri(k−1)=
r+i (k−1)wi(k−1)+r−i (k−1)wi+1(k−1)

end

S(k) = diag

(
(|r1(k − 1)|+ ε)

−1√
r21(k − 1) + εd

,

· · · , (|rM−1(k − 1)|+ ε)
−1√

r2M−1(k − 1) + εd

)
F (k) in (11)

end

U(k) =
(
ρV (k) + γF⊤(k)S(k)F (k)

)−1

G(k) = G(k − 1)− G(k − 1)x(k)x⊤(k)G(k − 1)

1 + x⊤(k)G(k − 1)x(k)
P (k) = U(k)−U(k) (U(k) +G(k))

−1
U(k)

w(k) = w(k − 1) + P (k)x(k)e(k)−
ρP (k) (V (k)− V (k − 1))w(k−1)−γP (k)

(
F⊤(k)

S(k)F (k)−F⊤(k−1)S(k−1)F (k−1)
)
w(k−1)

end

obtain a recursive formula for G(k) as

G(k) = G(k − 1)− G(k − 1)x(k)x⊤(k)G(k − 1)

1 + x⊤(k)G(k − 1)x(k)
. (20)

Then, using the fact that

P−1(k) = G−1(k) + ρV (k) + γF⊤(k)S(k)F (k), (21)

we apply again the matrix inversion lemma to (21) to get a
recursive formula for P (k):

P (k) = U(k)−U(k) (U(k) +G(k))
−1

U(k), (22)

with U(k) =
(
ρV (k) + γF⊤(k)S(k)F (k)

)−1

. Thus, all
recursions in Algorithm 1 have been derived.

Theorem 1 can be extended in the presence of a forgetting
factor 0 < λ < 1, used in re-weighted algorithms like ℓ1-
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RLS and ℓ1-RRLS [22]–[24]. However, these re-weighted
algorithms use a different minimization procedure that makes
the ℓ1 term disappear for λ = 1 [32], [33]. The minimization
procedure in Theorem 1 is such that its ℓ1 term does not
disappear for λ = 1.

It is worth remarking that, due to the approximations
involved, SP-RF-RLS cannot be regarded as an exact solution
to sparse regression: yet, no extra approximations or assump-
tions have been adopted other than those in the literature
(e.g., re-weighting and fused techniques in Sect. II.A). Yet,
we now validate numerically that SP-RF-RLS outperforms
state-of-the-art algorithms employing similar approximations
and assumptions as those used to develop SP-RF-RLS.

IV. NUMERICAL VALIDATION

We conduct extensive numerical experiments to verify the
effectiveness of SP-RF-RLS. The system under considera-
tion has the same form as (2), where the unknown vector
w∗ has 64 elements. To simulate sparsity, we let only K
elements be non-zero, and we set K = 5, 10, 30, 50 to
test different degrees of sparsity. The locations of the non-
zero elements in w∗ are random, and their magnitude is
random but normalized so that ∥w∗∥1 = 1. The input X is
taken as 1000 white samples, corrupted by white Gaussian
noise n. We select different values of signal-to-noise ratio
(SNR) between the input X and the observation noise n,
namely, SNR=1, 3, 5, 10dB, to test different degrees of noisy
observations. The performance is measured in terms of mean
square deviation (MSD):

MSD = E(||wend −w∗||22), (23)

where wend is the estimated w at the end of the 1000
iterations, one for each sample. To obtain an average per-
formance, we perform 100 random trials and average the
MSD results.

A. State-of-the-art methods

The state-of-the-art methods used for comparisons are:
RLS, ℓ1-RLS [23], ℓ1-RRLS [22], ZA-RLS [28], VFF-
SMMS [24], SP-R-RLS [33]. To validate the improvements
of SP-RF-RLS under the same conditions as proposed in the
state of the art, the numerical settings are the same as in
[33]. We refer to the literature for the algorithms of these
state-of-the-art methods.

Initial conditions and common parameters have been cho-
sen consistently in all algorithms to make the comparisons
as fair as possible, e.g., initial estimate w(0) = 0, initial
covariance P (0) = δ−1IN with δ = 10−3, transition
constants ε = 10−1, εd = 10−7. For SP-RF-RLS, we select
γ = ρ.

B. Analysis of the results

We consider the following experimental scenarios:
1) Different levels of sparsity;
2) Different levels of signal-to-noise ratio;
3) Different levels of regularization;
4) Convergence rate.

TABLE I: Effect of sparsity on MSD(10−4)

(SNR=5) K = 5 K = 10 K = 30 K = 50

SP-RF-RLS 3.56 3.79 4.15 4.43
SP-R-RLS 3.78 3.94 4.23 4.40

RLS 4.53 4.53 4.53 4.53
ℓ1-RLS 4.52 4.51 4.51 4.51
ℓ1-RRLS 4.44 4.54 4.58 4.59
ZA-RLS 4.34 4.35 4.47 4.62

VFF-SMMS 4.49 4.49 4.49 4.49

(SNR=10) K = 5 K = 10 K = 30 K = 50

SP-RF-RLS 0.91 1.03 1.23 1.39
SP-R-RLS 1.03 1.12 1.28 1.38

RLS 1.43 1.43 1.43 1.43
ℓ1-RLS 1.43 1.43 1.43 1.43
ℓ1-RRLS 1.37 1.43 1.44 1.45
ZA-RLS 1.34 1.34 1.41 1.52

VFF-SMMS 1.42 1.42 1.42 1.42

TABLE II: Effect of SNR on MSD(10−4)

(K = 10) SNR=1 SNR=3 SNR=5 SNR=10

SP-RF-RLS 10.21 6.25 3.79 1.03
SP-R-RLS 10.45 6.43 3.94 1.12

RLS 11.39 7.19 4.53 1.43
ℓ1-RLS 11.32 7.15 4.51 1.43
ℓ1-RRLS 11.46 7.22 4.54 1.43
ZA-RLS 11.09 6.95 4.35 1.34

VFF-SMMS 11.28 7.12 4.49 1.42

(K = 30) SNR=1 SNR=3 SNR=5 SNR=10

SP-RF-RLS 10.79 6.71 4.15 1.23
SP-R-RLS 10.92 6.81 4.23 1.28

RLS 11.39 7.19 4.53 1.43
ℓ1-RLS 11.32 7.14 4.51 1.43
ℓ1-RRLS 11.51 7.26 4.58 1.44
ZA-RLS 11.27 7.10 4.47 1.41

VFF-SMMS 11.28 7.11 4.49 1.42

1) Different levels of sparsity
While changing the number K of non-zero elements in

w∗, we consider two values of signal-to-noise ratio (SNR),
namely, 5 and 10dB. For a fair comparison, we consider
the same regularization parameter ρ = 1 for all algorithms,
except VFF-SMMS that autonomously updates its regular-
ization parameter. Table I demonstrates that SP-RF-RLS
outperforms all the other algorithms, except with the non-
sparse scenario K = 50 where SP-RF-RLS is the second
best, very close to SP-R-RLS.
2) Different levels of signal-to-noise ratio

While changing the values of SNR, we consider two
degrees of sparsity, K = 10 and K = 30. As before, we
select a common regularization parameter ρ = 1. Table
II shows that, although the performance of all algorithms
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TABLE III: Effect of regularization on MSD(10−4)

(K=10, SNR=5) ρ = 0.01 ρ = 0.1 ρ = 1 ρ = 2

SP-RF-RLS 4.49 4.44 3.79 3.47
SP-R-RLS 4.51 4.45 3.94 3.49
ℓ1-RRLS 4.60 4.59 4.54 4.49
ZA-RLS 4.52 4.50 4.35 4.21

(K=10, SNR=10) ρ = 0.01 ρ = 0.1 ρ = 1 ρ = 2

SP-RF-RLS 1.35 1.31 1.03 0.88
SP-R-RLS 1.43 1.39 1.12 0.94
ℓ1-RRLS 1.45 1.45 1.43 1.40
ZA-RLS 1.43 1.42 1.34 1.26

(K=30, SNR=5) ρ = 0.01 ρ = 0.1 ρ = 1 ρ = 2

SP-RF-RLS 4.46 4.43 4.15 3.91
SP-R-RLS 4.55 4.53 4.23 4.00
ℓ1-RRLS 4.60 4.59 4.58 4.56
ZA-RLS 4.56 4.55 4.47 4.39

naturally decreases as the observations are more and more
noisy, the proposed SP-RF-RLS gives the smallest MSD in
all scenarios.
3) Different levels of regularization

While changing the regularization parameter ρ, we con-
sider two degrees of sparsity, K = 10 and K = 30,
and two values of signal-to-noise ratio (SNR), 5 and 10dB.
We do not report VFF-SMMS because its regularization
parameter is updated autonomously, RLS because it has
no ℓ1-regularization, and ℓ1-RLS because it has similar
performance as the reported ℓ1-RRLS. When changing the
regularization parameter, ZA-RLS is the most interesting
algorithm for comparison, because changing this parameter
changes the zero-attracting effect: a large ρ increases the at-
traction of the estimate towards zero. The results in Table III
show that, although decreasing ρ decreases the performance
of all algorithms a bit, the proposed SP-RF-RLS outperforms
all methods in all scenarios.
4) Convergence rate

The learning curves for different sparsity and SNR are
reported in Figs. 1-2. We only compare SP-R-RLS and
the proposed SP-RF-RLS, because it was already shown in
[33] that SP-R-RLS converges faster than the state-of-the-art
methods used in this study. Figs. 1-2 show that the proposed
SP-RF-RLS converges even faster than SP-R-RLS. From Fig.
1, one can notice that the benefits of SP-RF-RLS are greater
as the sparsity increases. From Fig. 2, one can notice that
the benefits of SP-RF-RLS are greater as the observations
are less noisy.

V. CONCLUSIONS

This work has presented a recursive implementation of
fused sparse regression, with the dataset being processed
sequentially rather than as a batch. The proposed algorithm
uses a re-weighting technique to deal with the discontinuous
nature of ℓ0-norm, a smooth approximation to deal with the

non-differentiable nature of ℓ1-norm, and a term depending
on the difference between the estimated elements to capture
structural correlations in the non-zero elements of the sparse
model. Comparative experiments have shown that the pro-
posed algorithm outperforms state-of-the-art ones in noisy
and sparse scenarios. A performance degradation is noticed
only when the scenario is extremely non-sparse.

Interesting future work is to dynamically adjust the reg-
ularization parameters according to the estimated level of
sparsity, similar to the mechanisms in the VFF-SMMS al-
gorithm [24]. Another interesting direction for future work
is to study real-world applications embedding spatial and
temporal structure, such as traffic prediction [35].
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