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Abstract— The study of market equilibria is central to
economic theory, particularly in efficiently allocating scarce
resources. However, the computation of equilibrium prices at
which the supply of goods matches their demand typically
relies on having access to complete information on private
attributes of agents, e.g., suppliers’ cost functions, which are
often unavailable in practice. Motivated by this practical
consideration, we consider the problem of setting equilibrium
prices in the incomplete information setting wherein a market
operator seeks to satisfy the customer demand for a commodity
by purchasing the required amount from competing suppliers
with privately known cost functions unknown to the market
operator. In this incomplete information setting, we consider
the online learning problem of learning equilibrium prices
over time while jointly optimizing three performance metrics—
unmet demand, cost regret, and payment regret—pertinent in
the context of equilibrium pricing over a horizon of T periods.
In the general setting when suppliers’ cost functions are time-
varying, we show that no online algorithm can achieve sublinear
regret on all three metrics. Thus, we consider the setting when
suppliers’ cost functions are fixed and develop algorithms that
achieve a regret of (i) O(log log T ) when the customer demand
is constant over time and (ii) O(

√
T log log T ) when the demand

is variable over time.

I. INTRODUCTION

The study of market mechanisms for efficiently allocat-
ing scarce resources traces back to the seminal work of
Walras [2]. In his work, Walras investigated the design of
pricing schemes to mediate the allocation of scarce resources
such that the economy operates at an equilibrium, i.e., the
supply of each good matches its demand. Market equilibria
exist under mild conditions on agents’ preferences [3] and,
under convexity assumptions, can often be computed via
a centralized optimization problem. As a case in point, in
electricity markets with convex supplier cost functions, the
equilibrium prices correspond to the shadow prices of a
convex optimization problem that minimizes the sum of the
supplier costs subject to a market clearing constraint [4].

While methods such as convex programming provide
computationally tractable approaches for computing equi-
libria, the efficacy of such approaches suffers from several
limitations. First, centralized optimization methods rely on
complete information on agents’ utilities and cost functions
that are often unavailable to a market operator. For instance,
with the deregulation of electricity markets, suppliers’ cost
functions are private information, which has led to strategic
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bidding [5], [6] and has been associated with millions of
dollars of over-payments to suppliers [7]. Moreover, even if a
market operator has some information on agents’ utilities and
cost functions, such information often only provides a noisy
or imperfect estimate of their actual preferences [8]. In the
context of electricity markets, the advent of renewables and
distributed energy resources has accompanied a high degree
of uncertainty in the supply of energy at different times of the
day and year, as these energy sources are sensitive to weather
conditions. To further compound these challenges, agents’
preferences may also be time-varying, e.g., in electricity
markets, customer demands may change over time and
suppliers’ cost functions may depend on fluctuating weather
conditions. Thus, a market operator may need to periodically
collect agents’ preferences and solve a large-scale centralized
optimization at each period to set equilibrium prices, which
may be computationally challenging.

Motivated by the limitations of centralized optimization
approaches for computing market equilibria, we study the
problem of setting equilibrium prices in the incomplete
information setting where a market operator seeks to satisfy
the customer demand for a commodity by purchasing the
required amount from competing suppliers with privately
known cost functions. We investigate this problem under
several informational settings regarding the time-varying
nature of the customer demands and supplier cost functions
and develop online learning algorithms that iteratively adjust
the market prices over time for each of these settings. We
employ the observation that a market operator can effectively
learn information on suppliers’ costs and equilibrium prices
through observations of their production given different
prices. To analyze our algorithms, we combine techniques
from online learning and parametric optimization as we seek
to jointly optimize multiple, often competing, performance
metrics pertinent in the context of equilibrium pricing.

Contributions: In this work, we study the problem of
setting equilibrium prices faced by a market operator that
seeks to satisfy a customer demand for a commodity by
purchasing the required amount from competing suppliers.
We study this problem in the incomplete information setting
when the cost functions of suppliers are private information
and thus unknown to the market operator. In this setting,
we consider the problem of learning equilibrium prices over
T periods to achieve sub-linear regret, in the number of
periods T , across three performance (regret) metrics: (i)
unmet demand, (ii) cost regret, and (iii) payment regret. Here
unmet demand refers to the cumulative difference between
the demand and the total production of the commodity
corresponding to an online pricing policy. Further, cost regret
(payment regret) refers to the difference between the total
cost of all suppliers (payment made to all suppliers) corre-
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sponding to the online allocation and that of the offline oracle
with complete information on suppliers’ cost functions. For a
detailed discussion of these regret metrics, see Section III-B.

We first consider the general setting when suppliers’ cost
functions can vary across time (Section IV) and show that
if the operator does not know the process that governs
the variation in the cost functions, no online algorithm can
achieve sub-linear regret on all three regret metrics.

Given this impossibility result, we then consider the setting
when suppliers’ cost functions are fixed over time and
develop algorithms with a regret of O(log log T ) when the
customer demand is constant over time (Section V), and
O(
√
T log log T ) when the demand is time-varying (Sec-

tion VI), for strongly convex costs. To establish these regret
guarantees for the three metrics, we leverage and combine
techniques from parametric optimization and online learning.
And in the extended version of our paper [1], we further show
through an example that if the cost functions are not strongly
convex, no online algorithm can achieve a sub-linear regret
on all metrics.

Finally, to extend the sub-linear regret guarantees obtained
in the fixed cost setting to the time-varying cost setting, we
introduce an augmented setting in Section VII where the
market operator has access to hints (contexts) that, without
revealing the complete specification of the cost functions,
reflect the change in the cost functions over time. In this
augmented problem setting, we propose an algorithm that
achieves sub-linear regret on all three regret metrics in the
extended version of our paper [1].

II. LITERATURE REVIEW

The design of mechanisms to efficiently allocate resources
under incomplete information on agents’ preferences and
costs has received considerable attention. For instance, mech-
anism design has enabled the optimal allocation of resources
even in settings when certain information is privately known
to agents [9]. Further, inverse game theory [10] and revealed
preference approaches [11] have enabled learning agents’ un-
derlying preferences given past observations of their actions.
While we also consider an incomplete information setting
wherein suppliers’ cost functions are private information, we
instead study the problem of learning equilibrium prices as
an online decision-making problem.

The paradigm of online-decision making has enabled the
allocation of resources in settings with incomplete informa-
tion and includes the well-studied problem classes of online
linear programming (OLP) and online convex optimization
(OCO). As in the works on OCO, we also consider convex
objectives; however, as opposed to the resource constraints
that need to be satisfied over the entire time horizon in the
literature on OCO [12], [13], we adopt a stronger perfor-
mance metric where we accumulate regret at each period
when the customer demand is not satisfied (see Section III-
B for more details on our performance metrics). Thus, our
algorithms are considerably different from those in [12], [13]
that involve applying dual sub-gradient descent.

Our algorithms are inspired by the multi-armed bandit
(MAB) literature and involve a trade-off between exploration
and exploitation [14]. In a typical MAB setting, a decision-
maker performs sequential trials on a set of actions, observes

the outcome of the actions, and maximizes a single reward
function. However, we consider a setting of jointly optimiz-
ing multiple regret metrics where suppliers’ cost functions
are not revealed to the market operator.

III. MODEL

In this section, we present the offline market model to
set equilibrium prices to satisfy the customer demand for a
commodity (Section III-A) and regret metrics to evaluate the
efficacy of an online pricing policy (Section III-B).

A. Market Model and Equilibrium Pricing

We study a market run by an operator seeking to meet
the customer demand d for a commodity, e.g., electricity, by
purchasing the required amount from n competing suppliers.
Each supplier i ∈ [n] has a cost function ci : R≥0 → R≥0,
where ci(xi) is the cost incurred by supplier i for producing
xi units of the commodity. To meet the customer demand,
the market operator posts a price p as the payment made for
each unit of the commodity produced by a given supplier.
In particular, for producing xi units of the commodity, a
supplier i receives a payment of p xi from the operator.
Then, given a posted price p and a cost function ci(·),
each supplier individually decides on the optimal production
quantity x∗

i (p) to maximize their total profit, as described
through the following optimization problem

max
xi ≥ 0

pxi − ci(xi). (1)

The posted price that suppliers best respond to is set by a
market operator that seeks to determine an equilibrium price
p∗ that satisfies the following three desirable properties:

1) Market Clearing: The total supply equals the total
demand, i.e.,

∑n
i=1 x

∗
i (p

∗) = d.
2) Minimal Supplier Cost: The total production cost∑n

i=1 ci(x
∗
i (p

∗)) of all suppliers is minimal among all
feasible production quantities xi ≥ 0 for all i ∈ [n]
satisfying the customer demand, i.e.,

∑n
i=1 xi = d.

3) Minimal Payment: The total payment
∑n

i=1 p
∗x∗

i (p
∗)

made to all suppliers is minimal among all feasible
production quantities satisfying the customer demand.

While these properties are, in general, not possible to achieve
simultaneously, e.g., in markets where the supplier cost func-
tions are non-convex [4], in markets where the cost functions
ci(·) of all suppliers are convex, there exists an equilibrium
price p∗ that satisfies the above properties. Moreover, in
markets with convex costs, the equilibrium price can be
computed through the dual variables of the market clearing
constraint of the following convex optimization problem

min
xi≥0,∀i∈[n]

∑
i∈[n]

ci(xi) s.t.
∑
i∈[n]

xi = d, (2)

where the objective is to minimize the total supplier pro-
duction cost. While the equilibrium price p∗ has several
desirable properties, it typically cannot be directly computed
by solving Problem (2) as suppliers’ cost functions are, in
general, unknown to the market operator. Further, suppliers’
cost functions and customer demands tend to be time-varying
and thus would involve the operator periodically re-solving
Problem (2) to determine equilibrium prices at short time
intervals, which may be computationally prohibitive. To
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overcome these challenges, we propose online learning algo-
rithms to learn equilibrium prices over time in the incomplete
information setting when the suppliers’ cost functions are
unknown (or only partially known) to the market operator.

B. Performance Metrics

We now introduce the online learning setting, wherein the
market operator sets prices for the commodity over multiple
periods, and present the performance metrics to evaluate the
efficacy of an online pricing policy. In particular, we consider
the setting when the market operator seeks to satisfy the
customer demand over multiple periods t = 1, . . . , T . At
each period t ∈ [T ], the customer demand for the commodity
is given by dt and each supplier i ∈ [n] has a private cost
function cit(·) that is increasing, continuously differentiable,
strongly convex, and normalized to satisfy cit(0) = 0. We
assume that the demand at each period t lies in a bounded
interval, i.e., dt ∈ [d, d̄] for all t for some d, d̄ > 0. Further,
for ease of exposition, we normalize the set of feasible prices
corresponding to any customer demand and realization of
supplier cost functions to be such that the optimal price of
the commodity belongs to the normalized interval [0, 1]. In
addition, we note that we consider strongly convex supplier
cost functions, as opposed to general convex costs, due to
the performance limitations of any online algorithm under
the incomplete information setting studied in this work for
non-strongly convex costs (see Section V for further details).

In this work, upon observing the demand dt, the market
operator sets a price pt that depends on the realized customer
demands and past observations of supplier productions, i.e.,
revealed preference feedback [15] in response to set prices.
Over the T periods, the market operator sets prices given
by the pricing policy π = (π1, . . . , πT ), where pt =
πt({(x∗

it′)
n
1=1, dt′}t−1

t′=1, dt), where x∗
it is the optimal solution

of Problem (1) for supplier i at period t. When the pricing
policy is clear from the context, we will overload the notation
and simply write π = (p1, p2, . . . , pT ).

We evaluate the efficacy of an online pricing policy π
using three regret metrics: (i) unmet demand, (ii) cost regret,
and (iii) payment regret. These regret metrics represent the
performance loss of the policy π relative to the optimal
offline algorithm with complete information on the three
desirable properties of equilibrium prices elucidated in Sec-
tion III-A. We also note that these performance metrics
naturally generalize to the augmented problem setting we
consider when suppliers’ cost functions are time-varying and
present the corresponding generalizations in the extended
version of our paper [1] for completeness.

a) Unmet Demand: We evaluate the unmet demand
through the sum of the differences between the demand and
the total supplier productions corresponding to π at each
period. Letting x∗

it(pt) be the optimal solution of Problem (1)
for supplier i at period t, the unmet demand for an online
pricing policy π is UT (π) =

∑
t∈[T ]

(
dt−

∑
i∈[n] x

∗
it(pt)

)
+
.

b) Cost Regret: We evaluate the cost regret of a pricing
policy π through the difference between its total supplier
production cost and the minimum total production cost,
given complete information on the supplier cost functions.
In particular, the cost regret CT (π) of an algorithm π
is CT (π) =

∑
t∈[T ]

∑
i∈[n] (cit(x

∗
it(pt))− cit(x

∗
it(p

∗
t ))) ,

where the price p∗t for each period t ∈ [T ] is the optimal
dual variable of the market clearing constraint of Problem (2)
given the demand dt and cost functions cit for all i ∈ [n].

c) Payment Regret: We evaluate the payment regret
through the difference between the total payment made to
all suppliers corresponding to π and the minimum total
payment, given complete information on the cost functions.
In particular, the payment regret of an algorithm π is
PT (π) =

∑
t∈[T ]

∑
i∈[n] (ptx

∗
it(pt)− p∗tx

∗
it(p

∗
t )) .

In this work, we develop algorithms that jointly optimize
and achieve a sub-linear regret, in the number of periods
T , on these three regret metrics. Note that achieving good
performance on one of these metrics is typically easy as
setting low prices will lead to low cost and payment regrets
while setting high prices will lead to no unmet demand. Thus,
the challenge is to find the equilibrium price at which all
these regret metrics are kept small.

A few comments about our regret metrics are in order.
First, our unmet demand metric aligns with real-world mar-
kets, e.g., electricity markets, where the demand needs to
be satisfied at each period, and over-production at particular
periods cannot compensate for unmet demand at subsequent
periods. Therefore, we define our unmet demand metric
as a stronger benchmark than the typical constraint vio-
lation metrics in the literature of jointly optimizing mul-
tiple regret metrics [16], [17], [18], where resource con-
straints only need to be approximately satisfied in the long
run. Formally, UT (π) =

∑T
t=1 (dt −

∑n
i=1 x

∗
it(pt))+ ≥[∑T

t=1 (dt −
∑n

i=1 x
∗
it(pt))

]
+

, where the latter term cor-
responds to the setting when the customer demand only
needs to be satisfied in the long-run. Further, since we
obtain regret guarantees for the above unmet demand metric
using techniques from parametric optimization, our regret
guarantees naturally extend for the corresponding stronger
notions of the payment and cost regret metrics as well.
However, we present our payment and cost regret metrics in
alignment with the classical regret metrics in the literature,
wherein lower payments (costs) at particular periods can
compensate for excess payments (costs) at other periods.

IV. IMPOSSIBILITY WITH TIME-VARYING COST
FUNCTIONS

In this section, we consider the general setting, where
both suppliers’ cost functions and customer demands are
time-varying and show that if the operator does not know
the process governing the variation of the cost functions,
then it is impossible to simultaneously achieve sub-linear
regret on all three regret metrics. In particular, Proposition 1
presents a counterexample establishing that even if the cost
functions are drawn i.i.d. from a known distribution, no
online algorithm can achieve sub-linear regret on all three
metrics if the operator is not informed about the outcome of
the random draws from the distribution.

Proposition 1 (Impossibility of Sub-linear Regret): There
exists an instance with time-invariant demand and a single
supplier whose cost functions are drawn i.i.d. from a known
distribution such that no online algorithm can achieve
sub-linear regret on all three regret metrics.

Proof: (Sketch). Consider a setting with a fixed demand
of d = 1 and a single supplier whose cost functions are
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drawn from a distribution such that its cost function is either
c1(x) = 1

8x
2 or c2(x) = 1

16x
2, each with probability 0.5,

at each period t. We suppose that the market operator has
knowledge of the distribution from which the cost function is
sampled i.i.d. but does not know the outcome of the random
draw at any period. Then, we analyze the total regret, i.e., the
sum of the unmet demand, payment regret, and cost regret
for three price ranges - (i) p < 1

8 , (ii) 1/8 ≤ p ≤ 1/4, and
(iii) p > 1/4 - and show that irrespective of the set price
at any period, the expected total regret at any period is at
least 7

64 , i.e., the total regret is at least 7
64T . Finally, since

the sum of the three regret metrics is linear in T , at least
one of them must be linear in T , establishing our claim.

For a complete proof of Proposition 1, see the extended
version of our paper [1].

Proposition 1 establishes that sub-linear regret on all three
metrics is not possible for a general sequence of time-
varying cost functions. The setting with time-varying costs
is challenging because the equilibrium prices may change
over time even if the customer demand remains constant. In
contrast to the settings in [16], [13], where online gradient
descent approaches can simultaneously achieve sub-linear
regret for multiple performance metrics, we note that our
definition of unmet demand is considerably stronger as over-
production at particular periods cannot compensate for unmet
demand at other periods (see Section III-B for more details).
Thus, Proposition 1 shows that, with the stronger unmet
demand metric, it is impossible to jointly optimize the three
regret metrics, where decreasing the payment or cost regret
must lead to an increase in the unmet demand and vice versa.

While it is not possible to achieve sub-linear regret in
the setting when suppliers’ cost functions are time-varying,
we develop algorithms with sub-linear regret in the fixed
cost function setting (see Sections V and VI). Furthermore,
in the extended version of our paper [1], we consider an
augmented setting when the market operator has additional
context on how a suppliers’ cost function varies over time
(see Section VII) and design an algorithm in this augmented
setting with sub-linear regret guarantees.

V. FIXED COST FUNCTIONS AND DEMAND

Given the impossibility of achieving sub-linear regret in
the setting with time-varying costs, we now investigate the
design of online pricing policies with sub-linear regret in
the setting with fixed costs. To this end, as a warm-up, we
first consider the setting when suppliers’ cost functions and
customer demand are fixed over time, i.e., the cost functions
satisfy cit(·) = cit′(·) for all t, t′ ∈ [T ] and i ∈ [n] and
the demands satisfy dt = dt′ for all t, t′ ∈ [T ]. For ease
of exposition, in this section, we drop the subscript t in
the notation for the demand (and cost functions) and denote
dt = d (and cit(·) = ci(·) for all i) for all periods t. In this
setting, we develop an algorithm that achieves a regret of
O(log log T ) on the three regret metrics when the suppliers’
cost functions are strongly convex.

To motivate our algorithm, we first note that since the
demand and cost functions are fixed, the optimal price p∗ ∈
[0, 1] is also fixed for all periods. Further, the cumulative
production x∗

t (p) =
∑n

i=1 x
∗
it(p) is monotonically non-

decreasing in the price p as suppliers’ cost functions are

increasing. Using this monotonicity property, note that if
x∗
t (p1) > d and x∗

t (p2) < d for two prices p1, p2, then
p1 and p2, respectively, are upper and lower bounds on the
optimal price.

Following these observations, we present Algorithm 1,
which maintains a feasible interval for the optimal price
p∗ and sets a sequence of prices for each arriving user to
continuously shrink this feasible price set. In particular, the
feasible price interval [a, b] is initialized to Sp = [0, 1] and
a precision parameter ε is set to 0.5. Then, for a given
algorithm sub-phase associated with feasible price interval
[a, b], the operator posts prices a, a + ε, a + 2ε, . . . (up to
b) at each period until the total supply exceeds the demand
at the offered price. If a + kε for some k ∈ N was the last
price such that x∗

t (a+kε) ≤ d, then [a+kε, a+(k+1)ε] is
set as the new feasible interval for the optimal price, and the
precision parameter is re-set to ε2. This process of shrinking
the feasible interval and updating the precision parameter is
repeated until the length of the feasible interval is smaller
than 1

T , following which the market operator posts the price
at the lower end of the feasible interval for the remaining
periods. This process is presented formally in Algorithm 1.

Algorithm 1: Feasible Price Set Tracking
Initialize feasible price set Sp = [a, b]← [0, 1] and
precision parameter ε = 1

2 ;
while length of feasible price set is more than 1

T do
Offer prices a, a+ ε, . . . , a+ (k + 1)ε (all of

which are ≤ b) to each subsequent request where
a+ kε is the last price where x∗

t (a+ kε) < d ;
Set feasible interval Sp to [a+ kε, a+ (k + 1)ε]

and reduce the precision parameter to ε2 ;
end
Offer price pt = a for the remaining periods ;

While Algorithm 1 is similar to the corresponding algo-
rithm in [19] for the setting of fixed user valuations, our
market setting is considerably different than the revenue
maximization setting in [19]. First, in this work, suppliers
have a continuous rather than a binary action space as in [19].
Further, as opposed to the single regret metric in [19], we
consider three, often competing, regret metrics.

We now show that Algorithm 1 achieves an O(log log T )
regret on the three regret metrics in Section III-B.

Theorem 2 (Sub-Linear Regret Fixed Demand): The un-
met demand, cost regret, and payment regret of Algorithm 1
are O(log log T ) if the cost functions are strongly convex.

The proof of Theorem 2 relies on the following Lipschitz-
ness condition between the optimal supplier production and
the prices set by the market operator.

Lemma 3 (Lipschitzness of Production in Prices): If the
functions ci(·) are µi-strongly convex, then, at any period
t, the optimal production of supplier i given by the solution
of Problem (1) is Lipschitz in the price, i.e., for all p1, p2 ∈
[0, 1], |x∗

it(p1)− x∗
it(p2)| ≤ L|p1 − p2| for some L > 0.

Lemma 3 follows from a direct application of the inverse
function theorem. Using Lemma 3, we now present a proof
sketch of Theorem 2 and present its complete proof with that
of Lemma 3 in the extended version of our paper [1].
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Proof: (Sketch). To establish this result, we first note
that we need O(log log T ) sub-phases of repeated squaring
of the parameter ε to reduce ε from 0.5 to 1

T . Due to
the monotonicity of the optimal supplier production in the
prices, both payment and cost regret are only accumulated
when pt > p∗. Further, since pt > p∗ occurs at most once
in each sub-phase, the total payment and cost regret are
O(log log T ). Next, to bound the unmet demand, we use
Lemma 3 to map prices to productions and show that there
is a constant unmet demand accumulated in each sub-phase
in Algorithm 1, resulting in an O(log log T ) unmet demand
when the length of the feasible price interval is more than
1
T , as there are O(log log T ) sub-phases. In the final phase,
when the length of the feasible price interval is less than 1

T
and the price is fixed, we again use Lemma 3 to show that
the unmet demand through this phase is constant. Thus, the
unmet demand is O(log log T ), establishing our claim.

We reiterate that the proof of Theorem 2 crucially relies
on the strong convexity of the cost functions of the suppliers,
which was necessary to establish Lemma 3. We also note that
the O(log log T ) regret obtained in Theorem 2 indicates that
in the setting with fixed demands and supplier cost functions,
Algorithm 1’s prices converge to the equilibrium price p∗

super-exponentially and the pricing policy corresponding
to Algorithm 1 incurs little performance loss on all three
regret metrics as compared to when equilibrium prices are
set with complete knowledge of suppliers’ cost functions.
Furthermore, the obtained regret guarantee of Algorithm 1
compares favorably to the Ω(log log T ) regret lower bound
for any online algorithm in the revenue maximization setting
with fixed user valuations studied in [19].

While Algorithm 1 achieved sub-linear regret on all three
metrics for strongly convex costs, we note that this result
does not generalize to the setting of general convex costs. In
particular, in the extended version of our paper [1], we show
that sub-linear regret cannot be achieved simultaneously on
all three regret metrics for linear cost functions.

VI. FIXED COSTS AND TIME-VARYING DEMAND

In this section, we investigate a more general setting
where the suppliers’ cost functions are static over time while
customer demands can vary in a continuous but bounded
interval, i.e., dt ∈ [d, d]. In this setting, we extend the
algorithm developed for fixed supplier cost functions and
customer demands (Algorithm 1) and show that it achieves
a regret of O(

√
T log log T ) on all three regret metrics for

strongly convex cost functions.
To motivate our algorithmic approach and address the

challenge that the demands can vary between the interval
[d, d̄], we first consider a direct extension of Algorithm 1,
wherein a feasible price set is maintained for each realized
demand. However, as there may be up to O(T ) different de-
mand realizations, the worst-case regret of such an algorithm
is O(T ). To resolve this issue, we leverage the intuition that
customer demands that are close to each other correspond
to equilibrium prices that are also close together. Thus,
we uniformly partition the demand interval [d, d̄] into sub-
intervals of width γ and consider any demand in the same
sub-interval the same. In particular, any demand lying in a
given sub-interval, i.e., dt ∈ [d+ kγ, d+(k+1)γ] for some

k ∈ N, is considered as a demand equal to the lower bound
of that interval. Then, for these O( 1γ ) distinct demands,
corresponding to the lower bounds of the O( 1γ ) sub-intervals,
we apply the aforementioned direct extension of Algorithm 1.
Our approach is formally presented in Algorithm 2.

Algorithm 2: Feasible Price Set Tracking for Time-
Varying Demands

Input : Discretized demand intervals I1, . . . , IK
where K = ⌈(d− d)/γ⌉ and
Ik = {d+ (k − 1)γ, d+ kγ}

Initialize feasible price set Sk = (0, 1], current price
pk = 0, and price precision εk = 1/2 for each Ik;

for t = 1, . . . , T do
Determine kt such that dt ∈ Ikt

=: [akt
, bkt

];
Offer price pkt

to the supplier;
if width of feasible price set |Skt

| ≥ 1√
T

then
if
∑n

i=1 x
∗
it(pkt) ≥ akt then

Set Skt
← (pkt

− εkt
, pkt

];
Set next price pkt

← pkt
− εkt

;
Re-set the precision to εkt

← ε2kt
;

else
Set next price pkt

← pkt
+ εkt

end
end

We now show that Algorithm 2 achieves a regret of
O(
√
T log log T ) if the sub-interval width γ = 1√

T
for

strongly convex cost functions of suppliers. We note that
choosing γ = 1√

T
optimally balances between two different

sources of regret in the time-varying demand setting, as is
elucidated through the proof sketch of the following theorem.

Theorem 4 (Sub-Linear Regret Varying Demand): Let
γ = 1√

T
. Then, the unmet demand, cost regret, and payment

regret of Algorithm 2 are O(
√
T log log T ) if the cost

functions of the suppliers are strongly convex.
Proof: (Sketch) For each regret metric, the regret

incurred by Algorithm 2 can be divided into two parts: (i) the
regret incurred by the Algorithm 1 sub-routine for each de-
mand sub-interval, and (ii) the inaccuracies of considering all
demands in a given sub-interval to be the lower bound of that
sub-interval. By Theorem 2, the first part is O(K log log T )
for each regret metric, where K := ⌈(d − d)/γ⌉. Next,
since all demands in a given sub-interval are treated as a
demand equal to the lower bound of that sub-interval and
the suppliers’ optimal production is monotonic in the price,
every price pt in Algorithm 2 is an under-estimate to the
equilibrium price for demand dt. Thus, the second part of
the regret is only positive for the unmet demand and is at
most O(γT ), as the width of each sub-interval is γ, and
there are T periods. Finally, choosing γ = 1√

T
achieves

an optimal balance (up to logarithmic terms) between the
two quantities, i.e., O(γ−1 log log T ) and O(γT ), which
establishes the O(

√
T log log T ) regret bound.

For a complete proof of Theorem 4, see the extended ver-
sion of our paper [1]. We reiterate that Theorem 4 applies to
strongly convex costs as with Theorem 2 and that extending
this result to general convex costs, e.g., linear costs, is, in
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general, not possible (see Section V). Further, compared to
Theorem 2 for fixed demands, Theorem 4 shows that time-
varying demands result in an additional factor of O(

√
T ) in

the regret. However, we do note that if the set of demand
realizations D is known a priori to be o(

√
T ), then the

guarantee in Theorem 2 can be improved to O(|D| log log T )
by running the direct extension of Algorithm 1, wherein a
feasible price interval is maintained for each demand. Finally,
we note that the regret guarantee obtained in Theorem 4
compares favorably to classical O(

√
T ) regret guarantees in

the OCO or MAB literature [20].

VII. AUGMENTED SETTING FOR TIME-VARYING COSTS

Thus far, we have developed algorithms with sub-linear
regret in the settings when the suppliers’ cost functions
are fixed and demonstrated the impossibility of achieving
sub-linear regret in the setting with time-varying supplier
cost functions. Given the performance limitations in the
setting with time-varying costs, we now propose a natural
augmented problem setting wherein the market operator,
without knowing the complete specification of cost functions
of suppliers, additionally has access to a hint (i.e., context)
that reflects the variation in cost functions of suppliers over
time. Such a setting aligns with real-world markets, e.g.,
electricity markets, wherein the cost functions of suppliers
are private information yet will typically vary over time based
on observed quantities, such as the weather conditions.

In this augmented setting, we assume that each supplier’s
cost function has two parts: (i) an unknown time-invariant
component, and (ii) a time-varying component revealed as a
hint to the market operator. More precisely, the cost function
of each supplier i is parameterized as cit(·) = ci(·;ϕi, θit),
where ϕi is private information and θit is the time-varying
component given to the operator as a context. Note that
for any fixed ϕi, the context θit uniquely determines the
cost function of supplier i at period t. We stress that we
do not assume any structure on the parameterization of the
cost functions and so the time-varying and time-invariant
components of the cost functions need not be separable.
Further, since ϕi’s are unknown, the market operator cannot
directly solve Problem (2) to obtain equilibrium prices.

In this augmented setting, at each period t, in addition
to receiving the demand dt, the market operator observes a
context θt, which it can use along with the prior history of
supplier production quantities, demands, and contexts, to set
a price pt. In particular, the market operator sets a sequence
of prices given by the pricing policy π = (π1, . . . , πT ),
where pt = πt({(x∗

t′)
n
1=1, dt′ , θt′}t−1

t′=1, dt, θt), where x∗
t

represents the sum of optimal production quantity given by
the solution of Problem (1) for each supplier at period t. The
performance of this class of pricing policies can be evaluated
by the three regret metrics in Section III-B. Note that we can
naturally extend these three metrics to the augmented setting
with contexts by plugging in cit(·) = ci(·;ϕi, θit).

This augmented problem naturally leads to a formulation
based on ideas from the contextual bandit literature. In
the extended version of our paper [1], we present a more
precise problem statement and propose an algorithm which
can simultaneously achieve sublinear regret on all three
performance metrics.

VIII. CONCLUSION AND FUTURE WORK

We studied the problem of equilibrium pricing in mar-
kets where suppliers’ cost functions are unknown to the
operator. There are several directions for future research.
First, it would be interesting to investigate the design of
algorithms whose memory does not scale with T but still
achieves similar guarantees to Algorithm 2. Next, it would
be worthwhile to study the design of algorithms under a
more relaxed unmet demand notion with the possibility of
using excess supply at earlier periods to satisfy the demand
at subsequent periods. Further, there is a scope to generalize
the model to the setting when suppliers’ cost functions are
non-convex, in which case the operator may need different
pricing strategies for each supplier [4].
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