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Abstract— For large-scale unmanned aerial vehicle (UAV)
swarms, the security of communication networks is critical.
When subjected to cyberattacks, the performance of swarm
systems will be significantly affected. This paper focuses on the
fully distributed time-varying formation (TVF) control problem
of UAV swarms under Denial-of-Service (DoS) attacks. First, the
theoretical framework of the fully distributed dynamic event-
triggering TVF control protocol is introduced. Then, sufficient
conditions and critical proofs are provided to demonstrate that
the desired formation configuration can be achieved under the
influence of DoS attacks, and Zeno behavior is eliminated.
Finally, the framework of a mixed-reality swarm flight platform
is presented, which includes virtual nodes and physical nodes
and integrates the advantages of both simulation and physical
experiments, enabling large-scale swarm experiments with less
cost and higher efficiency. The formation experiment using this
platform validates the efficacy of the proposed control protocol.

I. INTRODUCTION

With the rapid advancement of autonomous robots, un-
manned aerial vehicles (UAVs) have shown application
prospects in many fields, such as delivery logistics [1],
smart farming [2], firefighting [3], and environmental explo-
ration [4]. Compared with a single UAV, UAV swarms have
distributed sensing, computing, and execution capabilities,
which can complete tasks that cannot be accomplished by a
single UAV. As an important part of the cooperative control
problem, the formation control problem has been widely
studied, such as leaderless formation [5]–[7], leader-follower
formation [8]–[10], and formation containment [11]–[13].
Good cooperative control effects rely on stable and reli-
able communication between UAVs, especially in large-scale
UAV swarms. However, the UAV wireless network is prone
to various malicious threats, such as Denial-of-Service (DoS)
attacks [14]–[16].
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Fig. 1: Illustration of the mixed-reality swarm experiment
under DoS attacks (quadrotors in red circles are physical
ones, while those in yellow circles are virtual ones).

This paper focuses on the time-varying formation (TVF)
control problem of UAV swarms under DoS attacks, which
may block or destroy the communication channels between
UAVs, thus causing packet dropout or even the swarm system
to lose control. Some researches have been done on the coop-
erative control of swarm systems under DoS attacks. In [17],
a distributed output-feedback control approach is proposed to
solve the output consensus problem of heterogeneous multi-
agent systems (MASs) with random DoS attacks. The paper
[18] designs a state-feedback controller based on switched
time-delay system method for the connected vehicles to
follow a desired speed while maintaining a desired vehicle
spacing under aperiodic DoS attacks. The paper [19] solves
the leader-follower consensus problem of MASs suffering
from time-varying delay and DoS attacks.

UAV swarms are generally composed of multiple tiny
embedded systems. Thus, the computing capacity, commu-
nication bandwidth, and battery capacity of each UAV are
limited. In the theoretical research of formation control,
communication in a swarm system is usually assumed to
be continuous, where sufficient computing resources and
an ideal communication environment are required. Besides,
the periodic sampling communication mechanism is often
adopted. Although this mechanism is easier to implement,
it will waste communication resources, especially when the
closed-loop system tends to be stable. Moreover, a small
sampling period may cause a large number of redundant
system sampling states to be released into the commu-
nication network, which may lead to network congestion
or even the collapse of embedded systems [20]. To solve
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these problems, event-triggering communication mechanisms
are introduced into cooperative control of swarm systems
[21]–[23]. Compared with a fixed sampling period, event-
triggering mechanisms rely on a predefined event-triggering
condition (ETC). Only when the ETC is satisfied can the
UAV communicate with its neighbors, and the exchange
of information happens, which may effectively save the
communication and computing resources and prolong the life
of UAVs.

Moreover, it is worth noting that most of the current
research on the cooperative control problem of swarm sys-
tems under DoS attacks is not fully distributed. Some global
information, such as the Laplace matrix of the communica-
tion topology among UAVs or its eigenvalues, is required
in the control protocol design (e.g., [17]–[19]). However,
global information may be difficult to obtain in practical
applications, and changes may happen during the process.
In addition, the computing resources onboard are limited,
while the processing of some global information needs a
lot of computing resources, for example, the computation
of eigenvalues of the Laplace matrix for a large network.
Therefore, a fully distributed control protocol is needed
because of its stronger robustness, better flexibility, and
higher reliability.

Inspired by the above discussions, this paper focuses on
the fully distributed TVF control protocol design of UAV
swarms based on the dynamic event-triggering mechanism
under DoS attacks. The main contributions are listed as
follows:

1) A fully distributed dynamic event-triggering TVF con-
trol framework considering DoS attacks is established.
Experimental results with five physical quadrotors and
fifteen virtual quadrotors are presented to validate the
effectiveness of the proposed control protocol.

2) The duration and frequency of DoS attacks that can
be tolerated are analyzed. Critical proofs are given
to demonstrate the resilience of the protocol proposed
under DoS attacks.

3) A mixed-reality swarm flight platform is proposed,
which includes physical nodes and virtual nodes,
breaking through the limitations of experimental sites,
hardware facilities, etc., and enabling swarm algo-
rithms to be verified on large-scale swarms.

II. PROBLEM DESCRIPTION

In this section, some preliminaries related to algebraic
graph theory are introduced and mathematical models for
DoS attacks, dynamics of UAVs, and formations are estab-
lished, which lays the foundation of the subsequent analysis
of this paper.

A. Preliminaries

Consider a swarm system of N UAVs, whose communica-
tion relationship is represented by an undirected graph G =
{V ,E } with V = {1,2, · · · ,N} the node set and E ⊆ V ×V
the edge set. Denote A = [ai j]∈RN×N the adjacency matrix
of G , in which ai j = 1 if and only if (i, j) ∈ E ; otherwise,

Fig. 2: An illustration of DoS attacks launched on the
communication network.

ai j = 0. The set of neighbors of UAV i is represented by
Ni = { j ∈ V | (i, j) ∈ E }. Assume that there exists no self
loop in G , i.e., aii = 0. The Laplacian matrix of G is denoted
by L = [li j]∈RN×N with li j =−ai j, i ̸= j and lii = ∑N

j=1 ai j.
Assumption 1: The communication graph G of the UAV

swarm is undirected and connected.
Lemma 1 ( [24]): The Laplacian matrix L of an undi-

rected and connected graph G has a simple eigenvalue 0 and
N−1 positive eigenvalues, i.e., λ1 = 0 and 0< λ2 ≤ ·· · ≤ λN .

B. DoS attacks

Define the sequences {ak ≥ 0}k∈N and {τk ≥ 0}k∈N to
represent the start time instants and the durations of DoS
attacks, respectively. As shown in Fig.2, ak represents the
start time instant for the kth attack, and τk represents its
duration. For each k ∈ N, it is assumed that ak+1 > ak + τk.

Denote by Ak ≜ [ak,ak +τk] the kth attack interval, during
which all transmissions of the communication channels be-
tween the UAVs are prevented. For any time interval [t1, t2]⊂
[0,∞), A (t1, t2) is used to represent the set of times under
DoS attacks, that is, A (t1, t2)≜ ∪k∈NAk ∩ [t1, t2]. Moreover,
we use A

c
(t1, t2) to denote the complement of A (t1, t2), that

is, A
c
(t1, t2)≜ [t1, t2]\A (t1, t2), in which there is no attack.

Assumption 2 (Attack Duration): For any t2 > t1 ≥ 0,
there exists T0 ≥ 0 and 1/τa ∈ (0,1) such that the total DoS
attack duration |A (t1, t2)| satisfies:

|A (t1, t2)| ≤ T0 +
t2 − t1

τa
, (1)

where |A (t1, t2)| represents the total duration of the attacks
in the interval [t1, t2].

Assumption 3 (Attack Frequency): For any t2 > t1 ≥ 0,
denote the total number of DoS attacks in the time interval
[t1, t2] as N f (t1, t2), and there exists Ff > 0 such that

N f (t1, t2)≤ Ff · (t2 − t1). (2)

C. Problem statement

On the formation control level, the dynamics of the UAV
i can be described as the following double-integrator [12]{

ṗi(t) = vi(t),
v̇i(t) = ui(t),

(3)

where i∈ {1,2, · · · ,N}, pi(t)∈Rn, vi(t)∈Rn, and ui(t)∈Rn

denot the position vector, the velocity vector, and the control
input of UAV i at time instant t, respectively. For simplicity,
n is assumed to be 1 in the following description, if not
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otherwise specified. However, it should be noted that the
results are still available for the cases n > 1 by using the
Kronecker product. Define xi(t) = [pi(t),vi(t)]T . Then, the
dynamics (3) can be rewritten as

ẋi(t) = Axi(t)+Bui(t), (4)

where A =

[
0 1
0 0

]
and B =

[
0 1

]T .

The desired TVF configuration for UAV swarms is denoted
by ϕ(t) = [ϕ T

1 (t),ϕ T
2 (t), · · · ,ϕ T

N (t)]
T , with ϕi(t) ∈ R2 the

piecewise continuously differentiable formation vector for
UAV i. Define the following formation feasibility condition:

Aϕi(t)− ϕ̇i(t)+Bτi(t) = 0, (5)

where τi(t) is the formation compensation input for UAV i. If
there exists τi(t) satisfying (5) for all the formation vectors
ϕi(t), then the formation configuration ϕ(t) is said to be
feasible, otherwise, the expected formation is not feasible.

Definition 1: The UAV swarm (3) is said to achieve de-
sired formation configurations if for any intial value xi(t0) ∈
R2, the formation error e(t)≜ [eT

1 (t),e
T
2 (t), · · · ,eT

N(t)]
T , with

ei(t) = θi(t)− 1
N ∑N

j=1 θ j(t), converges to a set S:

S = {e(t) : ∥e(t)∥ ≤ s} , (6)

where θi(t) = xi(t)−ϕi(t) and s is a constant.
Remark 1: The Laplace matrix property in Lemma 1 is

only utilized in the proof. The control protocol design does
not rely on the global information of the communication
topology and is fully distributed. The proposed limits in As-
sumptions 2 and 3 align with real situations. If repeated and
prolonged DoS attacks occur, neighboring UAVs’ data may
become unavailable, hindering collaboration and formation.
Additionally, such attacks require continuous energy supply
from malicious adversaries, which is unrealistic.

III. MAIN RESULTS

In this section, a complete theoretical framework of the
fully distributed dynamic event-triggering TVF control pro-
tocol for UAV swarms is established (as shown in Fig.3).
Sufficient conditions are given to demonstrate that the control
protocol is resilient to DoS attacks. Zeno behavior is also
excluded, that is to say, there does not exist infinite triggers
in any finite period of time [23].

A. Dynamic Event-triggering Mechanism

The dynamic event-triggering mechanism established in
this paper is asynchronous and edge-based. Each UAV can
determine its communication instants with each of its neigh-
bors separately, and the communication instants between two
neighbors linked by an edge can also be different. Denote
by 0 ≤ t i→ j

0 < t i→ j
1 < · · · < t i→ j

s < · · · the asynchronous
triggering time sequence, in which UAV i transmits its
information to UAV j. During the time interval [t i→ j

k , t i→ j
k+1),

UAV j estimates the state information of UAV i by the
following observer:{

˙̃θ j
i (t) = Aθ̃ j

i (t), t ∈ [t i→ j
k , t i→ j

k+1),

θ̃ j
i (t) = θi(t

i→ j
k ), t = t i→ j

k .
(7)

Thus, θ̃ j
i (t) = eA(t−t i→ j

k )θi(t
i→ j
k ), for t ∈ [t i→ j

k , t i→ j
k+1). Define

the observer error from UAV i to UAV j by

e j
i (t) = θ̃ j

i (t)−θi(t), t ∈ [t i→ j
k , t i→ j

k+1). (8)

An event-triggering function H j
i (·, ·, ·) : R2 ×R2 ×R2 →

R is designed as follows

H j
i (e j

i (t),ci j(t), η̃i j(t))

= γi jai j[(1+ εi jci j(t))e
j
i

T
(t)Γ e j

i (t)− ιi jη̃T
i j (t)Γ η̃i j(t)], (9)

where η̃i j(t) = θ̃ j
i (t)− θ̃ i

j(t), εi j ≥ 1, ιi j ∈ (0, 1
4 ), γi j > 0,

and the gain matrix Γ ∈ N2×2 is to be designed later. The
adaptive coupling weight ci j(t) is updated as follows

ċi j(t) = πi jai j[η̃T
i j (t)Γ η̃i j(t)−βi jci j(t)], (10)

where πi j = π ji > 0, βi j = β ji > 0, ci j(0) = c ji(0) > 0 for
(i, j) ∈ E , and ci j(0) = c ji(0) = 0 for (i, j) /∈ E . It is obvious
that ci j(t) = c ji(t) with t ≥ 0. The next event-triggering time
instant t i→ j

k+1 of UAV i to UAV j is updated by the following
dynamic event-triggering condition:

t i→ j
k+1 = inf

l>t i→ j
k

{l : H j
i (e j

i (t),ci j(t),η̃i j(t))> ai jδi j(t),

∀t ∈ (t i→ j
k , l]}, (11)

for ∀i ∈ V , j ∈ Ni, where δi j(t) is the dynamic threshold
determined by

δ̇i j(t) =−ai jαi jδi j(t)−
µi j

γi j
H j

i (e j
i (t),ci j(t), η̃i j(t)), (12)

with αi j >
1−µi j

γi j
, µi j ∈ (0,1), and δi j(0)>0.

B. Fully distributed TVF Controller

Under the dynamic event-triggering mechanism presented
in (9)-(12), a fully distributed TVF controller is designed as
follows

ui(t) = K
N

∑
j=1

ai jci j(t)η̃ ji(t)+ τi(t), (13)

where K ∈R1×2 is the feedback gain matrix to be determined
later, and τi(t) is the formation compensation input defined
in (5). According to (4), (5), and (13), we have

ėi(t) = Aei(t)+Būi(t), (14)

with ūi(t) = K ∑N
j=1 ai jci jη̃ ji(t), for i ∈ V . To determine gain

matrices, a positive definite matrix P is introduced by solving
the following algebraic Riccati equation:

AT P+PA−PBBT P+σ1In = 0, (15)

with σ1 > 0. Thus, Γ and K are designed as Γ = PBBT P
and K = BT P, respectively.
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Fig. 3: Theoretical framework of the fully distributed dynamic event-triggering TVF control protocol.

C. Stability Analysis

Theorem 1: Suppose that Assumptions 1-3 hold, and the
desired formation configuration satisfies the formation feasi-
bility condition (5). There exists κ∗ ∈ (0,κ1) such that the
duration and frequency of the attack satisfy

1
τa

<
κ1 −κ∗

κ1 +κ2
, (16)

and
N f (t0, t)

t − t0
≤ κ∗

(κ1 +κ2)∆
= Ff , (17)

where κ1 = min(i, j)∈E

{
βi jπi j,

αi j
2 − 1−µi j

2γi j
, σ1

λmax(P)

}
> 0, κ2 =

σ2 > 0 satisfying AT P+PA−σ2P ≤ 0, and ∆ is the time
required to recover communication. Then, under the fully
distributed dynamic event-triggering TVF control protocol
(9)-(13), the UAV swarm (3) suffering from DoS attacks
reaches the desired TVF configuration. Futhermore, Zeno
behavior is excluded.

Proof: The proof is relatively long and is included in
the appendix for clarity.

IV. MIXED-REALITY SWARM EXPERIMENT

In this section, a mixed-reality swarm flight platform is
presented, and an experiment with five physical quadrotors
and fifteen virtual quadrotors is demonstrated.

A. Platform Description

Limited by practical factors such as experimental sites,
equipment, and funds, it is difficult to carry out large-scale
swarm physical experiments. To overcome these problems,
we design a mixed-reality swarm flight platform (as shown
in Fig.4). The platform mainly includes four parts: swarm
algorithm, virtual nodes, physical nodes, and 3D visual
display engine. The swarm algorithm is implemented in the
ground control station (GCS). First, the swarm algorithm
receives the state information of physical quadrotors from
OptiTrack’s motion capture system, which is composed of
12 high-precision cameras, and that of virtual quadrotors
calculated by double-integrators. Next, the swarm algorithm

treats the states of physical quadrotors and virtual quadrotors
in the same way and calculates the control commands for
each quadrotor through the fully distributed dynamic event-
triggering control protocol proposed above. Then, the com-
mands are sent to the physical and virtual nodes. After re-
ceiving the commands, the physical quadrotors fly according
to the commands and the virtual nodes calculate their next
states. Finally, the state information of physical quadrotors
and the virtual quadrotors are sent to the 3D visual display
engine during the entire flight process.

B. Experimental Results

Consider a swarm system containing twenty quadrotors,
five of which are physical ones and fifteen are virtual ones.
The movements of quadrotors are set in the X-Y plane. The
communication relationship among quadrotors are presented
in Fig.5. Choose σ1 = 16 and σ2 = 2.5. By solving (15),

we get the gain matrices Γ = I2 ⊗
[

196.00 209.53
209.53 224.00

]
and

K = I2 ⊗
[
14.00 14.97

]
.

The desired TVF configuration ϕi(t) for UAV i is described
as 

rcos(ωt +d1i)
b2dωsin(2dωt+d2i)cos(ωt+d1i)−ωrsin(ωt+d1i)

rsin(ωt +d1i)
b2dωsin(2dωt+d2i)sin(ωt+d1i)+ωrcos(ωt+d1i)

 ,

where i ∈ {1,2, · · · ,20}, r = a − 0.5b2 − 0.5cos(2dωt +
d2i), d1i = 0.2π −0.1π[(i−1)mod4]+0.4π⌊ i−1

4 ⌋, d2i = π −
0.5π[(i−1)mod4], a = 1, b = 0.6, ω = 0.15, and d = 2.5.

The triggering sequence {t i→ j
k }k∈N is determined by the

asynchronous dynamic event-triggering mechanism (9)-(12)
with γi j = 1, εi j = 1, ιi j = 0.24, αi j = 1.5, µi j = 0.6, πi j =
0.2, and βi j = 2. DoS attacks are random and satisfy the
conditions in Assumptions 2-3, where the limitations of τa
and N f are given in Theorem 1 with ∆ = 0.01. The step size
of the program is set to be 0.01s.

In Fig.6 and Fig.7, the pink area denotes the time in-
tervals under DoS attacks. Fig.6 shows the change curves
of dynamic thresholds, adaptive coupling weights, and the
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Fig. 4: Overall architecture of the mixed-reality swarm flight platform.

Fig. 5: Communication topology.

Fig. 6: The curves for parameter change within 60s in mixed-
reality experiment.

formation error within 60s, where the formation error is de-
noted by e(t) =∑20

i=1 ∥ei(t)∥ with ei(t) = θi(t)− 1
20 ∑20

j=1 θ j(t)
and θi(t) = xi(t)− ϕi(t). Fig.7 presents the triggering time
instants of information transmission among quadrotors, from
which we can see that the number of communications is
greatly reduced. Fig.8 shows the position snapshots from
an overhead view of both the 3D virtual display engine
and the real experimental scene at t = 0s, t = 15s, t = 30s,
and t = 60s, where the quadrotors in red circles represent
the physical ones. At t = 0s, the initial positions of virtual
quadrotors are set to zero. It is noticed that the desired TVF
configuration is achieved. The video of the experiment is
available at https://youtu.be/gYDhr4eLeiY.

C. Analysis and Summary

In this section, the effectiveness of the proposed fully
distributed dynamic event-triggering TVF control protocol

Fig. 7: Triggering time instants within 60s in mixed-reality
experiment.

for UAV swarms under DoS attacks is validated by an exper-
iment on twenty quadrotors using the mixed reality swarm
flight platform. Compared with pure physical experiments,
this mixed-reality swarm flight platform takes advantage of
simulation, which facilitates algorithm verification on large-
scale UAV swarms with less experimental cost and higher
efficiency. Moreover, some physical nodes are introduced
such that the effectiveness of swarm algorithms on physical
UAVs can be verified compared to pure simulation. In this
platform, the dynamics of the virtual UAVs are now double-
integrators. In the next step, the parameters of the UAV
dynamics will be obtained through system identification,
which is more meaningful for the verification of algorithms.

V. CONCLUSION

This paper focuses on the fully distributed TVF control
problem of UAV swarms under DoS attacks. To reduce the
consumption of communication resources, an asynchronous
dynamic event-triggering mechanism is integrated into the
design of the fully distributed TVF control protocol, which
increases its potential to be applied to large-scale swarm
systems. In the end, a mixed-reality swarm flight platform is

3170



(a) t = 0s (b) t = 15s

(c) t = 30s (d) t = 60s

Fig. 8: Position snapshots of the 3D virtual display engine
and the real experimental scene (quadrotors in red circles are
the physical ones).

presented, and an experiment using five physical quadrotors
and fifteen virtual quadrotors is conducted to validate the
efficacy of the proposed protocol.

APPENDIX

This part provides the proof of Theorem 1.
Firstly, we prove that the desired TVF configuration can

be achieved under DoS attacks with the proposed control
protocol (9)-(13). To be more concise, the time variable (t)
is omitted in this part.

The following discussion considers the case t ∈A
c
(t1, t2),

in which the communication channels among agents are not
subject to DoS attacks.

Define the following Lyapunov function

V (e,ρ) =
1
2

N

∑
i=1

eT
i Pei +

N

∑
i=1

N

∑
j=1

(ci j −α0)
2

8πi j
, (18)

where ρ = [ρT
1 , · · · ,ρT

N ]
T with ρi = [ci1, · · · ,ciN ]

T , i ∈ V . α0

is a constant satisfying α0 ≥ min
{

1, 2q0
(1−4ι)λ2

}
> 0, where

ι = max(i, j)∈E {ιi j}, λ2 is the smallest nonzero eigenvalue of
L , and q0 > 0 is a constant to be designed later. By using
(10) and (14), the time derivative of V (e,ρ) can be obtained
as follows

V̇ (e,ρ) =
1
2

N

∑
i=1

eT
i (PA+AT P)ei +

N

∑
i=1

N

∑
j=1

ai jci jeT
i Γ η̃ ji

+
N

∑
i=1

N

∑
j=1

ai j
ci j−α0

4
η̃T

i jΓ η̃i j−
N

∑
i=1

N

∑
j=1

ai j
ci j−α0

4
βi jci j. (19)

Since ai j = a ji, ci j = c ji, η̃i j =−η̃ ji with t ≥ 0, and ei−e j =

θi −θ j = [θ̃ j
i −e j

i ]− [θ̃ i
j −ei

j] = η̃i j − [e j
i −ei

j], we can obtain
that

N

∑
i=1

N

∑
j=1

ai jci jeT
i Γ η̃ ji =

1
2

N

∑
i=1

N

∑
j=1

ai jci j[ei − e j]
T Γ η̃ ji

=−
N

∑
i=1

N

∑
j=1

ai jci j

(1
2

η̃T
i jΓ η̃i j − e j

i
T

Γ η̃i j

)
≤

N

∑
i=1

N

∑
j=1

ai jci j

(
e j

i
T

Γ e j
i −

1
4

η̃T
i jΓ η̃i j

)
. (20)

Substituting (20) into (19), we obtain that

V̇ (e,ρ)≤ 1
2

N

∑
i=1

eT
i (PA+AT P)ei −

N

∑
i=1

N

∑
j=1

ai j
α0

4
η̃T

i jΓ η̃i j

+
N

∑
i=1

N

∑
j=1

ai jci je
j
i

T
Γ e j

i −
N

∑
i=1

N

∑
j=1

ai jβi j
(ci j −α0)

2

8
+ ς , (21)

where ς = ∑N
i=1 ∑N

j=1 ai jβi j
α2

0
8 .

From (11) and (12), we have δ̇i j ≥−(αi j +
µi j
γi j
)δi j, ∀t ≥ 0.

Obviously, δi j ≥ δi j(0)exp{−(αi j+
µi j
γi j
)t}> 0, ∀t ≥ 0. Define

the following Lyapunov function

W (e,ρ,δ ) =V (e,ρ)+
N

∑
i=1

N

∑
j=1

α0δi j, (22)

where δ = [δ T
1 , · · · ,δ T

N ]T with δi = [δi1, · · · ,δiN ]
T , i ∈ V .

Notice that W > 0 if and only if (ei,ci j −α0,δi j) ̸= (0,0,0)
due to P > 0 and δi j > 0. Since α0 ≥ 1 and εi j ≥ 1, it is easy
to get that

N

∑
i=1

N

∑
j=1

(ci j −α0µi j(1+ εi jci j))ai je
j
i

T
Γ e j

i

≤
N

∑
i=1

N

∑
j=1

α0(1−µi j)(1+ εi jci j)ai je
j
i

T
Γ e j

i . (23)

In the light of (12), (21), (23), and the dynamic event-
triggering condition (11), the time derivative of W (e,ρ,δ )
can be obtained as

Ẇ (e,ρ,δ )≤1
2

N

∑
i=1

eT
i

(
PA+AT P

)
ei −

N

∑
i=1

N

∑
j=1

ai jβi j
(ci j −α0)

2

8

−
N

∑
i=1

N

∑
j=1

ai jα0

(
αi j −

1−µi j

γi j

)
δi j

−α0

(1
4
− ι

) N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j + ς . (24)

Since η̃i j = θ̃ j
i − θ̃ i

j = (e j
i +θi)−(ei

j +θ j) = (e j
i −ei

j)+(θi−
θ j), by using Young’s inequality, one can deduce

N

∑
i=1

N

∑
j=1

ai j(θi −θ j)
T Γ (θi −θ j)

=
N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j −

N

∑
i=1

N

∑
j=1

ai j(e
j
i − ei

j)
T Γ (e j

i − ei
j)

−2
N

∑
i=1

N

∑
j=1

ai j(θi −θ j)
T Γ (e j

i − ei
j)

≤
N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j +

N

∑
i=1

N

∑
j=1

ai j(e
j
i − ei

j)
T Γ (e j

i − ei
j)

+
1
2

N

∑
i=1

N

∑
j=1

ai j(θi −θ j)
T Γ (θi −θ j). (25)
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Thus, it is easy to obtain that

eT (L ⊗Γ )e =
1
2

N

∑
i=1

N

∑
j=1

ai j(ei − e j)
T Γ (ei − e j)

=
1
2

N

∑
i=1

N

∑
j=1

ai j(θi −θ j)
T Γ (θi −θ j)

≤
N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j +4

N

∑
i=1

N

∑
j=1

ai je
j
i

T
Γ e j

i . (26)

According to (10), we have ċi j ≥ −πi jβi jci j, ∀t ≥ 0, and
thus ci j ≥ ci j(0)exp{−πi jβi jt} > 0, ∀t ≥ 0. Therefore, from
the dynamic event-triggering condition (11), we have

ai je
j
i

T
Γ e j

i − ιi jai jη̃T
i jΓ η̃i j ≤ ai j

δi j

γi j
. (27)

In addition, let q0 = max
{

1+4ι , 4
γq1

}
and

q1 ≤ min(i, j)∈E

{
1
2

(
αi j −

1−µi j
γi j

)
/( 1

4 − ι)
}

with
γ = min(i, j)∈E {γi j}. Substituting (27) into (26) gives

eT (L ⊗Γ )e ≤
N

∑
i=1

N

∑
j=1

(1+4ιi j)ai jη̃T
i jΓ η̃i j +4

N

∑
i=1

N

∑
j=1

ai j
δi j

γi j

≤q0

N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j +q0q1

N

∑
i=1

N

∑
j=1

ai jδi j. (28)

Therefore,
N

∑
i=1

N

∑
j=1

ai jη̃T
i jΓ η̃i j ≥

1
q0

eT (L ⊗Γ )e−q1

N

∑
i=1

N

∑
j=1

ai jδi j. (29)

Denote α̃0 =
α0(1−4ι)

2q0
. Then, (24) can be rewritten as

Ẇ (e,ρ,δ )≤1
2

eT
[
IN ⊗

(
PA+AT P

)
− α̃0L ⊗Γ

]
e

− 1
2

N

∑
i=1

N

∑
j=1

ai jα0

(
αi j −

1−µi j

γi j

)
δi j

−
N

∑
i=1

N

∑
j=1

ai jβi j
(ci j −α0)

2

8
+ ς . (30)

Moreover, α̃0λ2 ≥ 1 due to α0 ≥ 2q0
(1−4ι)λ2

. Thus, from (15),
we get that

Ẇ (e,ρ,δ )≤1
2

N

∑
i=1

eT
i
(
PA+AT P−PBBT P

)
ei

− 1
2

N

∑
i=1

N

∑
j=1

ai jα0

(
αi j −

1−µi j

γi j

)
δi j

−
N

∑
i=1

N

∑
j=1

ai jβi j
(ci j −α0)

2

8
+ ς

≤−κ1W (e,ρ,δ )+ ς , (31)

where κ1 = min(i, j)∈E

{
βi jπi j,

αi j
2 − 1−µi j

2γi j
, σ1

λmax(P)

}
> 0.

Now we consider the case t ∈ A (t1, t2), over which com-
munication channels are subject to DoS attacks. Consider
the same Lyapunov function W (e,ρ,δ ) as (22). Under DoS

attacks, we have ai j = 0, ∀(i, j)∈ E . Thus, the time derivative
of W (e,ρ,δ ) can be obtained as

Ẇ (e,ρ,δ )≤1
2

N

∑
i=1

eT
i (t)(PA+AT P)ei(t)

≤σ2

2

N

∑
i=1

eT
i Pei ≤ κ2W (e,ρ,δ (t)), (32)

where κ2 = σ2 > 0.
Assume that there is no DoS attacks at the start time

instant. For easier understanding, the time interval with-
out/with DoS attacks can be rewritten as ∪k∈N[t2k, t2k+1) and
∪k∈N[t2k+1, t2k+2), which represent A (t1, t2) and A

c
(t1, t2),

respectively.
For simplicity and clarity, we rewrite W (e,ρ,δ ) as W (t).

From (31) and (32), we get that

Ẇ (t)≤

{
−κ1W (t)+ ς , t ∈ [t2k, t2k+1),

κ2W (t), t ∈ [t2k+1, t2k+2).
(33)

Then, in terms of the comparison method, we get the
following solution of (33)

W (t)≤

{
e−κ1(t−t2k)W (t2k)+

∫ t
t2k

e−κ1(t−τ)ςdτ, t ∈ [t2k, t2k+1),

eκ2(t−t2k+1)W (t2k+1), t ∈ [t2k+1, t2k+2).

(34)

By interation over (34), we have the following result

W (t)≤e−κ1|A
c
(t0,t)|+κ2|A (t0,t)|W (t0)

+ ς
∫ t

t0
e−κ1|A

c
(τ,t)|+κ2|A (τ,t)|dτ. (35)

In fact, UAVs need time to recover communication, which is
denoted by ∆. In combination with Assumption 2 , we have
|A (t0, t)| ≤ T0 +

t−t0
τa

+N f (t0, t)∆. Thus,

−κ1|A
c
(t0, t)|+κ2|A (t0, t)| ≤ −κ1(t − t0)

+(κ1 +κ2)

(
T0 +

t − t0
τa

+N f (t0, t)∆
)
. (36)

Therefore, from (35) and (36), we have

W (t)≤e−η(t−t0)e(κ1+κ2)T0W (t0)+
ς
η

e(κ1+κ2)T0(1− e−η(t−t0))

=ce−η(t−t0)W (t0)+
ς
η

e(κ1+κ2)T0 , (37)

where η = κ1 − κ1+κ2
τa

− κ∗ > 0 and c = e(κ1+κ2)T0(1 −
ς

ηW (t0)
). The inequality (37) implies that W (t) is bounded.

Thus, ei, ci j, and δi j are bounded and the desired formation
configuration is achieved.

Secondly, we discuss the exclusion of Zeno behavior.
Note that the error e j

i (t) = θ̃ j
i (t)− θi(t) for agent i is

not continuous and reset to zero at the triggering moments
{t i→ j

k }. Consider the right-hand Dini derivative of e j
i (t) for

t ∈ [t i→ j
k , t i→ j

k+1), t i→ j
k+1 < ∞, thus, from (5), (7), and (13), we

get that

D+e j
i (t) = Ae j

i (t)−BK
N

∑
i=1

ai jci jη̃ ji(t). (38)
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Since ei(t) is bounded, we can see that θi(t) −
θ j(t) is bounded. Moreover, η̃i j(t) = θ̃ j

i (t) − θ̃ i
j(t) =

eA(t−t i→ j
k )θi(t

i→ j
k )−eA(t−t j→i

k′ )θ j(t
j→i
k′ ) is bounded, where t j→i

k′
represents the lastest event-triggering time instant of agent j
to agent i. Then, it is easily obtained that

D+∥e j
i (t)∥ ≤ ∥A∥∥e j

i (t)∥+ σ̄i j, (39)

where σ̄i j denotes the upper bound of ∥BK∥∑N
i=1 ai j c̄∥η̃ ji(t)∥

and c̄ represents the upper bound of ci j since ci j is also
bounded. Denote by Φ : [0,∞)→ R≥0 a non-negative func-
tion satisfying

Φ̇(t) = ∥A∥Φ(t)+ σ̄i j, (40)

with Φ(0) = ∥e j
i (t

i→ j
k )∥ = 0. Then, we have that ∥e j

i (t)∥ ≤
Φ(t − t i→ j

k ) with Φ(t) = σ̄i j
∥A∥ (e

∥A∥t − 1). From the dynamic
event-triggering condition (11), we obtain that

∥e j
i (t)∥

2 ≤ 1
γi j(1+ εi jci j(t))∥Γ ∥

δi j(t). (41)

According to (41), we get that the interval between two
triggering instants t i→ j

k and t i→ j
k+1 for agent i can be lower

bounded by the time for Φ2(t − t i→ j
k ) evolving from 0 to

δi j(0)
γi j(1+εi j c̄)∥Γ ∥exp{−(αi j +

µi j
γi j
)t}, which is the lower bound

of the right-hand side of (41). Thus, a lower bound ∆i j
k of

t i→ j
k+1 − t i→ j

k can be gotten by solving the inequality below

σ̄2
i j

∥A∥2 (e
∥A∥∆i j

k −1)2

≥
δi j(0)

γi j(1+ εi j c̄)∥Γ ∥
exp{−(αi j +

µi j

γi j
)(t i→ j

k +∆i j
k )}. (42)

Then, it is obtained that

t i→ j
k+1 − t i→ j

k ≥ ∆i j
k ≥ 1

∥A∥
ln
(

1+
∥A∥
σ̄i j

κi j

)
, (43)

where κi j =

√
δi j(0)

γi j(1+εi j c̄)∥Γ ∥exp{−(αi j +
µi j
γi j
)(t i→ j

k +∆i j
k )}.

Here, notice that the right-hand side of the second inequality
in (43) approaches zero only when t → ∞. In this case,
t i→ j
k → ∞ with k → ∞ and t → ∞. Besides, t i→ j

k+1 − t i→ j
k ≥

∆i j
k > 0 exists in any finite time. Thus, it can be concluded

that Zeno behavior does not exist for each agent of the MAS
in any finite time.
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