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Comparison of closed loop control strategies for
the activation of genetic switches
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Abstract—The performance of biomanufacturing systems
can be improved by incorporating inducible synthetic gene
circuits which ‘switch’ the microbial cell factories from growth
to production upon the manual addition of a small molecule
activator. Here, we consider feedback strategies which enable
autonomous activation of a genetic circuit based on cell state.
Using a multi-scale modelling framework which takes into
account the dynamics of microbial growth and pathway produc-
tion, we show that population-based feedback offers a promising
strategy for autonomous activation of genetic switches.

I. INTRODUCTION

Microorganisms can be engineered to produce a variety
of chemicals, from drug precursors to food colours. How-
ever, currently, engineered microbial “cell factories” show
limited efficiency as chemical production often results in
poor cell growth due to the cell’s inherent constraints in its
cellular economy. Expression of many engineered pathways
drains host cell metabolism, creating a hard growth-synthesis
trade-off. Though higher synthesis means higher product
yield, the cost to growth fundamentally limits the achievable
volumetric productivity, and so too the economic viability
of bioproduction. A promising strategy for decoupling the
growth-synthesis trade-off is to engineer a two-stage pro-
duction processes; where cells grow first, before production
from the larger population is activated (reviewed in [1],[2]).
These strategies can be implemented in living cells using
gene circuits (module Q in Fig. la) which activate the
pathway (A module) and inhibit host processes (E in Fig.
1a). Upon activation, the circuit deactivates growth processes
and simultaneously activates synthesis. A number of such
“two-sided” circuits, which regulate both £ and A, have
been engineered in living cells [3]. We recently proposed a
simplified “one-sided” topology, containing only one regula-
tory loop which acts to inhibit growth through E [4]. We
showed that the cell’s endogenous constraints enable this
topology to facilitate near optimal performance. As growth is
inhibited, the cell shifts to an ‘enzyme dominated’ proteome
which activates the pathway module in the absence of ‘direct’
activation.

However, to date, most growth/production circuits rely on
exogenous activation of this switch by the addition of small
molecule inducers to the culture medium at some given time
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Fig. 1. Block diagram of the controllers and depicting host-pathway inter-
actions. Blocks represent gene/protein modules composed of transcription
and translation reactions. Consumption of cellular resources are shown as
green arrows. Metabolic fluxes are shown as yellow arrows. Other mass
or information flow is shown as grey arrows. The blocks represent the
following: S, the substrate pool; E, the host metabolism; e, the translational
precursors; A, the synthetic metabolic pathway; a, the intracellular product;
ay, the extracellular product; Cellular resources, the pool of ribosomes and
amino acids which are consumed by translation; A4, the cells growth rate;
N, the cell population. The growth-product switch is controlled by the Q
module. (a) In the open loop system, Q is activated by an input u. (b)
In the closed loop systems, Q is activated by either cell growth rate A or
population size N.

point. Such chemical inducers are often expensive which can
dramatically increase the costs of a given bioprocess. Whilst
there is increasing interest in the use of cheaper alternatives,
these alternatives are often metabolic by-products and so
enter the cell’s metabolism reducing their concentration over
time. We recently showed that engineering bistable gene
circuits offers a potential means to reduce the concentration
of expensive inducers [5].

In this paper, we consider an alternative strategy; the
creation of autonomous systems where the system “self
switches” without the need for manual measurement and
cutting out inducer costs altogether (blue, orange lines in
Fig. 1b). Some such switches have been engineered in living
cells (e.g. [6], further reviewed in [7]) but to date the
design of such systems within host constraints has not been
rigorously considered. In Section II, we develop a multi-
scale model of the host physiology, pathway dynamics and
gene circuit controller. This model captures key host-circuit
interactions which can complicate synthetic circuit design
[8]. In Section III, we use phenomenological models of
biological processes which could close the feedback loop to
evaluate potential strategies which may enable autonomous
control in the absence of external input. In Section IV, we
use multi-objective optimisation to design controllers which
maximise key industrial performance metrics from batch
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cultures: volumetric productivity (total product synthesis
rate) and yield (substrate-to-product conversion ratio). We
show that population-based feedback performs as well as
optimal open loop inducible systems. In Section V, we
explore how design rules change when the controller circuit
topology is simplified as we proposed in [4]. In Section VI,
we compare the dynamics of the different control systems to
identify the basis of the difference in performance. In Section
??, we develop a realistic model of how population-based
control can be implemented in living cells and show that the
additional resource consumption caused by the population-
sensing system reduces the performance of the simple “one-
sided circuit”.

II. CONTEXT-BASED MODEL OF THE OPEN LOOP SWITCH

We use a multi-scale modelling framework which captures
microbial cell metabolism, gene expression and growth [9].
This non-linear ‘self-replicator’ model of host and pathway
is composed of 26 coupled ordinary differential equations
which capture the time evolution of a simple metabolism
(consisting of a substrate s;, universal energy carrier e and
product a;), gene expression of a coarse-grained proteome
(consisting of transporters pr, metabolic enzymes pg, host
proteins py, ribosomal proteins pr, pathway enzymes py
and regulator protein pg), and cell growth.

A. The gene expression model

Protein production is considered as a two step process
composed of transcription and translation. The mRNAs of
gene Y (my) are born spontaneously at a rate proportional
to the cell’s energy (e) and any regulator protein (pys). The
mRNA (reversibly) binds to free ribosomes (R) to produce
translation complexes (cy). These undergo translation (pro-
tein birth) at rate Ty(cy, e) to produce proteins (py). All
species dilute due to growth (1) and mRNAs are also subject
to decay (5,,). Applying the law of mass action to this scheme
gives the following dynamics:

I/i’ty:Tx(e,py/)7by-R‘my+uy~Cy7(7L+5m)-my (1)
C"YZby'R~I”I/ly—LtY'Cy—TL(CY7 e)—?L-cY 2)
py =Ti(cy, e)—A-py (3)

The translation rate Ty (cy, e) is:
Ti(cy, €)= (1/ny)-cy - (Ymax-€)/(ky+e) (4)

where (Ynax - €)/(ky+€) is a Michaelis-Menton equation
which scales the maximal peptide elongation rate (},ax) by
the cell’s internal energy supply (e) and a constant of K.
ny is the length of the protein in amino acids, see [9] for
a complete discussion. The transcription rate Tx (e, pys) is
given by the Michaelis-Menton equation:

) ©

Tite. pv) = (e +orwr(on) (5

where @y is a constant basal expression (set to 10~ through-
out) and wy is the maximal mRNA birth rate. Wy (py/) is
the regulation of my birth by the protein py/. The e/(6y +e)

expression scales the birth rate by the cell’s internal energy.
In the core model without any engineered regulation:

1 Y ={T,E,A,r,R}
O

We model ribosome biogenesis as a multistep process com-
posed of r-protein (pgr) and rRNA (r) production and assem-
bly into the function ribosome (with full dynamics described
in [9]). Therefore the dynamics of the free ribosome pool are:

R=by-pr-r—up-R—A-R...
-I—Z (TL(Cx, e)—bx~mX-R+MX .Cx>
X
(7)

where pr and r are r-rpoteins and rRNAs repectively
which form the functional free ribosome and X =
{T, E, H, R, A, Q}. All genes within the model are
connected to this single pool by ribosome-mRNA association
reactions through the Yy (-) term. As one gene Y increases
the R — cy rate increases which perturbs the other genes in
the set X through the Yy (-) term.

B. The pathway and cell metabolic models

The metabolic model is composed of an extracellular
substrate (S) which is imported into the cell at rate v,psake
by transporters (pr) to form a pool of internalised substrate
(s;). This is utilised for host processes at rate vy, (e.g.
energy/amino production, lumped together into an anabolic
driver species e) or the engineered pathway at rate v,4.
Applying the Law of Mass Action to determine the dynamics
of the s; concentrations gives:

$i = Vuptake (S, PT) = Vhost (Si, PE) = Vproa(sis pa) = A -Si (8)

The e is consumed by translation and has dynamics:
ézn'vhosz(ShPE)—Z(nY'TL(Cy, e)—A-e (9
Y

where n is the number of e molecules produced from each
s; molecule. The dynamics of intracellular product concen-
tration (a;) are:

ai = Vprod(Si, pa) —A-a; (10

The rates of these reactions are modelled with Michaelis-
Menten kinetics vy (x,py) = (vy -x- py)/(ky +x), where
x is the substrate concentration and py is the concentration
of the catalysing enzyme with a turnover number of vy and
Michaelis constant of ky. We denote host transport proteins
T (i.e. Y =T), host enzymes as E and the enzyme of the
engineered bioprocess to be A.

C. The open loop controller

The concentration, and ratio between, pg and p4 deter-
mines the systems performance; high pg, low p4 favours
growth at a loss of product and vice versa. To dynamically
control the birth rate of pg and p4, we introduce a regulator
protein pp which activates my production and inhibits mg
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production. To model this regulation we update Wg and ¥4
to:

ng nA
We(po) = M{(Ein = npgin
E"F + po"t Ka™ + pg"
We introduce it’'s mRNA (mp) and translation complex
(cp) and modify Eq. 7 Eq. 9, and Eq. 15 to take account
of the additional R and e consumption and the impacts on
growth. The dynamics of the regulator follow those in Eq.
1-3. The transcription rate Tx (e, U) for the controller system
is

Wa(po) (11)

e
T ,U:( a)U)<7) 12
x(e,U) wp+wg-U) Bo e (12)
For the open loop system:
U = uyp. (13)
Dynamic control can be created with a step input at time
tind:
0 <t
U= { ind (14)
uo 12> ting

D. The batch culture model

We derive the cell growth rate as a consequence of total
production rate (see [9] for derivation):

A= (1/M0)- () (y+€)) - T (ex )

X

15)

The three state culture model is composed of: the cell
population (), the external substrate (S, which is taken up
by cells), the extracellular product (A) which is exported from
the cell. The dynamics of this system are:

N=2()'N S =—Vupake(")'N A=vpa(-)-N (16)
E. Biotechnological performance metrics

To characterise any specific controller design (i.e. con-
troller topology and parameterisation thereof), the system of
equations is simulated until all substrate is depleted (S(¢) =
0), a time point we define as z,,,, and we calculate the yield
(Jy) and the volumetric productivity (J,,) as follows:

jy = A(tmd)/s(o) JVP = A(tend)/tend~

These metrics are key to designing real world bioprocesses,
with volumetric productivity being a key driver of production
times, and therefore economic viability of a given process,
and yield being the determinant of bioprocess efficiency.

and 17

III. CLOSED LOOP SYSTEM PERFORMANCE

The closed loop control strategies in Figure 1b were
implemented phenomenologically by updating the function
U(-). Growth-based feedback, where growth inhibits the
circuit, is modelled by:

U=1/(1+(A/Ky))

where K, controls the strength of the feedback: as K; —
0, U — 0, as K; — inf, U — 1. Population-based feedback,
where the circuit is activated by the total cell population, is:

U= (N/Ky)/(1+(N/Ky)) (19)

(18)
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Fig. 2. Closed loop control increases volumetric productivity. A selection
of designs were simulated (circles)

where N is the population and Ky controls the strength
of the controller activation. Over the course of growth,
population size increases: when N < Ky, U < 0.5 and when
N > Ky, U > 0.5 therefore Ky determines the point at which
the controller is activated. We initially explored the impact
of these strategies on a set of designs drawn from across
the design space. For increasingly stronger growth-based
feedback (decreasing K3 ), volumetric productivity increases
at a cost of yield until a peak in performance at which
point both metrics fall (Fig. 2, dotted lines). Population-based
feedback can significantly increase volumetric productivity at
only a minor loss of yield (Fig. 2, solid lines). Increasing Ky
increases volumetric productivity to a maximum before both
metrics fall.

IV. POPULATION-BASED FEEDBACK OUTPERFORMS
GROWTH RATE-BASED CONTROL

To compare optimal performance of the different systems,
and identify any trade-off between the two objectives of
volumetric productivity and yield, we employed a multi-
objective optimisation routine (see Appendix for description
of numerical methods) to evaluate a number of control
strategies across any potential trade-off. We compared the
following strategies:

« Strategy 1. An open loop static approach where U takes
the form as in Eq. 13

o Strategy 2. An open loop dynamic approach where U
takes the form of a step response as in Eq. 14

o Strategy 3. Growth-based feedback where U takes the
form in Eq. 18

« Strategy 4. Population-based feedback where U takes
the form in Eq. 19

For each controller topology, we optimised the parameter
set (K,p) related to (i) the expression and action of the
genetic switch (the transcription rates, i.e. @Wg,®4,®p, and
dissociation constants of the controlling transcription factor
ie. Kg and K4) and (ii) the parameters governing the
controller (for Strategy 2, t;,4, for Strategy 3, K, and for
Strategy 4, Ky). Given that the volumetric productivity and
yield objectives vary over orders of magnitude we use the
same multi-step optimisation approach we have presented
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previously [4]. Firstly, we use a genetic algorithm to solve
two optimisation problems to maximise Jy and J,, (and yield-
ing Jymax and Jyp max, respectively). To identify the Pareto
optimal designs and any performance trade-off between these
two extremes, we used a multi-objective genetic algorithm
to solve the following optimisation problem:
maximise  (4/hunacs 0 /Dpnar)

Kopt (20)

subject to b < Kypr < ub.

All four strategies show a trade-off between volumetric
productivity and yield; increasing one objective necessitates
a decrease in the other (Fig. 3a). The A-based controller
does not outperform static open loop approaches — i.e. the
Pareto fronts for strategies 1 and 3 overlap (Fig. 3a). Analysis
of the designs along the Pareto fronts show the approaches
have similar parametric characteristics with high wg values,
low @y. For both strategies, Q-regulation strength should be
weaker on the wg (i.e. higher K¢ the dissociation constant)
and stronger on wy (Fig. 3b). The Pareto fronts suggest
that production and regulation of pg through wg and Kg
is key in determining the position along the volumetric
productivity/yield trade-off, with lower expression or tight
binding favouring higher yield. K, i.e. the strength of the
growth based feedback, is constant across the trade-off which
is why this closed-loop strategy gives the same performance
as the static open-loop strategy. Dynamic control (Strategy 2)
facilitates a near doubling of volumetric productivity (com-
pare to the static open loop approach) and our optimisation
shows that the N-based controller (Strategy 3) achieves a
further slight increase (Fig. 3a, dark blue curve). The Pareto
optimal designs for Strategy 2 and 3 differ both quantitatively
and qualitatively suggesting the two strategies do not share
design rules (Fig. 3b). In Strategy 2, wg and @, are of similar
order of magnitude with lower Kg (tighter binding) and
higher K4 (weaker binding). The production of Q, through
@p is low and constant across the trade-off. #;,,; is the
key determinant of the volumetric productivity/yield trade-
off with shorter #;,; (i.e. earlier induction times) increasing
yield at a loss of productivity. Whilst a similar qualitative
and quantitative trend in Kr and K4 is seen in Strategy 3,
the transcription rates show quantitative differences. In the
population-based feedback system, @wg is 10 times higher
than in the dynamic control strategy. In Strategy 3, wg is
two orders of magnitude lower than @4 and in comparison
to the dynamic control wg should be an order of magnitude
lower while w4 needs to be over one order of magnitude
higher. Ky is the key determinant of the trade-off between
volumetric productivity and yield.

V. REDESIGN OF SIMPLIFIED SWITCHES FOR CLOSED
LOOP CONTROL

In [4], we proposed a simplified genetic switch design
which relies only on inhibition of growth (i.e. ¥g(pg) while
W, = 1) rather than inhibition of growth and activation of
the pathway (Wg(pg) and Wa(pg)). Having showed that
population-based feedback can achieve the same perfor-
mance as induction, we repeated our analysis with these

x10"2
a T T T
2 -
S 15
-] s T
g oeamieg
=
<
3 1 [= = w voL (static)
o N B W §OL (dynamic) | E(-)A(+)
o CL(A) | E(-)A(+)
— m— CL(N) | E(-)A(+)
>° 0.5 OL (dynamic) | E(-)A(0)
OL (dynamic) | E(0)A(+)
e CL(N) | E(-)A(0)
CL(N) | E(0)A(+)
0 ! ’ ! . 1 ! . s
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Yield (A(t,)/S(0)

10° }

104 0.032[
0.8 0.85 0.9 0.95 1 0.8

0.85 0.9 0.95 1

Fig. 3. Pareto fron!s'e%gr volumetric productivity and leelﬁid (a) The Pareto
fronts were identified by the optimisation routine described in Section IV.
OL (static) corresponds to constant input U, OL (dynamic) corresponds to
a step input for U. CL (A) corresponds to growth-based controller where
U takes the form in Eq. 18. CL(N) corresponds to the population-based
controller where U takes the form in Eq. 19. E(-)A(+) corresponds to “dual
control” systems where E is inhibited by Q and A is activated by Q. E(-
)A(0) corresponds to a “one-sided” control system where Q only regulates
E. E(0)A(+) corresponds to a “one-sided” control system where Q only
regulates A. (b) Pareto-front designs identified by solving the multi-objective
optimisation problem. Line colours correspond to those in (a).

simpler gene circuits. We tested the following topologies:

Ye=/f(po) Wa =glpo) [ECDAGDI (2D
Ve =f(po) ¥a =1 [E-DAO)] (22)
Yp=1 Ya  =gpo) [EOAHD]  (23)

where f(pg) takes the form of Wg and g(pg) takes the form
of W4 in Eq. 11. We re-solved the optimisation problem
in Eq. 20 for each circuit topology considering both the
open loop dynamic approach (where U is a step input) and
population feedback (where U is proportional to N as in
Eq. 19). As previously observed, the “one-sided” controller,
E(-)A(0), performs nearly as well as the original “dual
control” system (e.g. E(-)A(+)). We find that population-
based feedback enables the same performance to be achieved,
when compared to that produced with dynamic induction
(Fig. 3a). Whilst in Section IV, we observed that autonomous
controllers for the “dual control” system showed significant
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Fig. 4. Dynamics of the designs with high volumetric productivity
and yield. Designs from Fig. 3a with yields of 0.85 were simulated and
the internal dynamics of the model shown. The strategy is shown by
the colour of the line as in Fig. 3a. (a) The input signal (U). (b) The
normalised concentration of the controlling transcription factor (pg). (¢) The
extracellular product (A). (d) The population size (N). (e) The transporter
protein per cell (pr). (f) The internalised substrate (s;). (g) Host enzyme
per cell (pg). (h) Flux from s; — e. (i) Pathway enzyme per cell (p4). ()
Flux from s; — a;.

changes in parameters for the inducible system, we do not
see such differences for the two “one-sided” topologies (Fig.
3b) — i.e. there is large overlap between the light (inducible)
and dark (autonomous) lines for the “one-sided” systems.
This suggests that such systems could be made autonomous
with only minimal redesign.

For the E(-1)A(0) topology, the optimal values for the in-
ducible and autonomous systems are similar with only minor
increases in @g and decreases in Kp required. Therefore,
when producing an autonomous system, the optimal designs
favour stronger transcription but a stronger regulation of
that higher production rate. We observe a general increase
in wp in the autonomous system when compared to the
inducible system and find that across the front @p increases
with increasing yield. This represents a different approach to
design: in the inducible system, pg activation is constant with
the strength of the regulation varying along the front; in the
autonomous system the regulation strength is constant with
the induction a key driver in performance. As with the “two-
sided” system, increasing yield is associated with decreased
Ky (equivalent to earlier activation). For the E(0)A(+1)
system, the optimal performance is much worse than the two
topologies which regulate the host metabolism. Whilst the
optimisation routine has identified the bound for the wg and
w4 transcription rates these correspond to the biologically
feasible values [10].

VI. POPULATION-BASED FEEDBACK CREATES AN
AUTONOMOUS GROWTH-PRODUCTION SWITCH

To determine the reasons for the different performance
of the four strategies in Section IV, we compared the time
evolution of select species and rates, for designs with the

same yield (here 0.85) for Strategies 2, 3 and 4. We also
consider the two “one-sided” controllers proposed in V. That
is controllers corresponding to the black and blue curves
from Fig. 4 and the orange and yellow curves from Fig. 4.

Strategy 3 (A-based feedback, light blue) does not create a
dynamic input signal; rather the control is applied constantly
in the same way as Strategy 1 (Fig. 4a) until substrate
depletion. The dynamics of Strategy 1 (constant input, not
shown) and 3 are the same across all key bioprocesses. This
constant input results in a constant (low) growth rate (Fig.
4d) and constant v,,q, which only falls when extracellular
substrate S falls to zero (Fig. 4j). The system shows no
response to the changes in A before extracellular substrate S
depletion — there is no dynamic growth to production switch.

Both Strategy 2 (open loop dynamic induction, black
curves) and 4 (population-based feedback, dark blue curves)
show a biphasic production. There is an initial growth phase
with low A production (see low rate of A accumulation in
Fig. 4c). At some time, the rate of A production increases
and growth rate falls (Fig. 4d) — this can be observed
by the increasing gradient of A accumulation in Fig. 4c).
The population-based feedback system shows a longer and
lower activation (i.e. U shows a longer rise time and lower
maximum) and includes a not insignificant basal level of
production (Fig. 4a, d). This results in a prolonged growth
phase (Fig. 4d) and higher population when the population
begins to switch to the production phase. As the switch acti-
vates, pg falls (Fig. 4g), enabling the intracellular substrate
s; to accumulate (Fig. 4f). This increase in substrate supply
for p4, in comparison to Strategy 2, enables a short lived
increase in v,,q (Fig. 4j).

The two “one-sided” gene circuits show a weaker biphasic
growth/production - with much smaller increases in Vg
over the timecourse (Fig. 4j). The E(0)A(+) topology acti-
vates earlier than the dual controller but this activation is
slow. The production of p4 dominates the dynamics, with
others changing relatively little. The system has a higher
Vproa and therefore shows extended culture times which
limits volumetric productivity (Fig. 4c, inset). The E(-)A(0)
system activates more slowly than the dual control system;
the constitutive production of p4 exerts a burden during
growth which enhances v,,,4 but also reduces A. This results
in the circuit activating at lower population size and limits
productivity — although the increase in s; after the switch due
to non-regulatory interactions which increase pr results in
only a little lengthening of the total culture time (Fig. 4e).

These dynamics are replicated across most of the Pareto
front (Fig. 5). Across the front, the population-based feed-
back system responds more slowly than the optimal dynamic
system (Fig. 5a). For systems with higher volumetric produc-
tivity, the system rapidly reaches its maximum activation. As
yield increases, the system activates earlier (i.e. decrease in
Ky leads to decreased in time when the system reaches 10%
activation). As yield increases, the time between the 10%
and 90% activation times increases. The highest yielding
designs are activated earlier (with low Ky) and have smaller
differences in population between the 10%, 50% and 90%
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Fig. 5. Impact of Ky on the system dynamics. Panels (a) and (b) are

based on the Pareto optimal solutions in Fig. 3. Panels (c-e) are based on
the optimal design of the “two-sided” switch whose dynamics are shown
in Fig. 4. (a) Time of activation in population-based feedback systems in
comparison to the open loop dynamic induction system. Designs are selected
from across the Pareto optimal solutions. The black line shows the t;,,4
values for Strategy 2. The coloured lines correspond to percentage of system
activation. (b) Population size at the point of activation in the population-
based feedback system in comparison to the open loop dynamic induction
system. The optimal Ky values from across the Pareto optimal solutions are
shown in red and purple. (c) Population size over time. (d) Extracellular A
over time. (e) Yield versus volumetric productivity trade-off for the designs
in (c) and (d). Selected points are highlighted.

activation states due to lower growth rate. This shows high
yielding designs are achieved by those with low growth and
high production (similar to early activation of the growth
production switch in Strategy 2). These design rules hold
for the “one-sided” system where the host enzyme (E) is
regulated but we see a general earlier activation at smaller
population sizes which is the key cause of limited volumetric
productivity.

For a given design, low values of Ky lead to high pro-
duction (Fig. 5d) and low population ((Fig. 5c) - resulting in
poor yield and low productivity (Fig. 5e). As Ky increases,
the controller acts to delay production (arrow ii in Fig. 5d),
enabling increased population growth (arrow i in Fig. 5c).
This enables increased volumetric productivity (arrow iv in
Fig. Se). After the peak in productivity, increasing Ky results
in decreased total production (arrow iii in Fig. 5d) which
limits yield.

VII. CONCLUSIONS

Here, we compared by simulation and optimization, two
potential strategies for engineering autonomous (or ‘cell
controlled’) activation of genetic switches. We showed that
population-based feedback outperforms growth-based control
and that such a system creates an autonomous growth-
production switch system. We showed that such feedback can
achieve the same performance as induction by extracellular
molecules and is therefore a promising strategy making
biomanufacturing genetic switches autonomous without the
need for human or computer-based control.

APPENDIX

The model was implemented in MATLAB 2023a with
dynamics simulated with the in-built stiff solver odel5s
with absolute and relative tolerances of 10~® and setting the
NonNegative flag such that no states could be less than zero.
To achieve specific designs (i.e. design parametrisations), we
use the ga and gamultiobj functions from MATLAB’s Global
Optimisation Toolbox (version 23.2), together with the Paral-
lel Computing Toolbox (version 23.2). Initial conditions for
the multiscale simulation were determined by simulating the
cell and process model (i.e. N =S = A) to steady state from
the following initial conditions N =0, S = 104, s; = 102,
e = 10°, pr = pr = R = 100. The steady state concen-
trations were then used as initial conditions for cell and
process species in the multiscale models. The simulations
of the multiscale model species were initialised at N = 10,
S =1x 10", We simulated the model across a period of
28 days. The host model parameters are ¢, = 0.5, vr =
728 min’l, ve = 5800 min’l, Kg = k7 = 1000 molecules,
or = 0 = 4.14 mRNAs-min~!, oy = 948.93 mRNAs -
min~!, @, = 3170 mRNAs-min~!, @z = 930 mRNAs -
min~ !, 77 = g = 4.38 molecules, g = 426.87 molecules,
ny = ng = nyg = 300 amino acids, ng = 7459 amino acids,
bT:bEZbH:szl, MTZME:I/!H:MRZI, bpzl,
up =1, S5, =0.1 min’l, Ky = 121775 molecules, hy = 8,
Ymax = 1260 amino acids per min, Y, = 7 molecules, My =
10 amino acids. The circuit and pathway parameters (where
X ={A,0}) are wo = 1073, wx =20 mRNAs-min~!, 7y =
4.38 molecules, ny = 300 amino acids, by =1, ux =1, v4 =
580 min~', k4 = 1000 molecules. Voo = 10715 L, V. =
1L, kp=1x 102 molecules*2~min*1, k-=1076 min~ !
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