
Successive Convexification with Feasibility Guarantee via Augmented
Lagrangian for Non-Convex Optimal Control Problems

Kenshiro Oguri

Abstract— This paper proposes an algorithm that solves non-
convex optimal control problems with a theoretical guarantee
for global convergence to a feasible local solution of the original
problem. The proposed algorithm extends the recently proposed
successive convexification (SCvx) algorithm to address its key
limitation: lack of feasibility guarantee to the original non-
convex problem. The main idea of the proposed algorithm is to
incorporate the SCvx iteration into an algorithmic framework
based on the augmented Lagrangian method to enable the
feasibility guarantee while retaining favorable properties of
SCvx. Unlike the original SCvx, our approach iterates on both
of the optimization variables and the Lagrange multipliers,
which facilitates the feasibility guarantee as well as efficient
convergence, in a spirit similar to the alternating direction
method of multipliers (ADMM). Convergence analysis shows
the proposed algorithm’s strong global convergence to a feasible
local optimum of the original problem and its convergence
rate. These theoretical results are demonstrated via numerical
examples with comparison against the original SCvx algorithm.

I. INTRODUCTION

This paper proposes a new algorithm for solving non-
convex optimal control problems by extending the successive
convexification (SCvx) algorithm [1], [2], a recent algo-
rithm based on sequential convex programming (SCP), and
presents a convergence analysis of the proposed algorithm.
Most of the real-world problems are non-convex, as seen in
aerospace, robotics, and other engineering applications, due
to their nonlinear dynamics and/or non-convex constraints.
While lossless convexification is available for a certain
class of problems [3]–[5], many remain non-convex. Among
various options to tackle non-convex problems [6], SCP is
gaining renewed interest as a powerful tool in light of the
recent advance in convex programming [1], [2], [7]–[10].

Any SCP algorithms take the approach that repeats the
convexify-and-solve process to march toward a local solution
of a non-convex problem. This approach is common to many
optimization algorithms, including difference of convex pro-
gramming, which decomposes a problem into convex and
concave parts and approximates the concave part [11]; and
sequential quadratic programming [12], which is adopted in
many nonlinear programming software, such as SNOPT [13].

Among recent SCP algorithms, SCvx [1], [2] (and its
variation, SCvx-fast [14]) and guaranteed sequential tra-
jectory optimization (GuSTO) [8], [9] are arguably the most
notable ones due to their rigorous theoretical underpin-
nings, with successful application to various problems [15],
[16]. See [7] for a comprehensive review. In particular,

K. Oguri is with the School of Aeronautics and Astronautics, Purdue
University, IN 47907, USA (koguri@purdue.edu).

[1] (SCvx) and [8] (GuSTO) analyze the performance of
these algorithms in depth, and provide theoretical guarantees
on their powerful capabilities, through different approaches:
the Karush–Kuhn–Tucker (KKT) conditions for SCvx while
Pontryagin’s minimum principle for GuSTO. On the other
hand, like any algorithms, each algorithm has their own lim-
itations, including: the convergence guarantee to a KKT point
of the penalty problem but not of the original problem (i.e.,
lack of feasibility guarantee) in SCvx [1]; the requirement
on the dynamical systems to be control-affine in GuSTO [8].
Note that SCvx achieves a solution to the original problem
for a “sufficiently large” penalty weight [1], which the user
needs to find through trials and errors.

The objective of this paper is to fill the gap in those
theoretical aspects of the existing SCP algorithms by building
on the algorithmic foundation laid by SCvx. This study
proposes a new SCP algorithm that guarantees feasibility to
the original problem while retaining SCvx’s favorable prop-
erties, including the minimal requirements on the dynamical
system. The main idea is to integrate the SCvx iteration into
an algorithmic framework of the augmented Lagrangian (AL)
method [17]. The AL method is a nonlinear programming
technique proposed by Hestenes [18] and Powell [19] in
1960s to iteratively improve the multiplier estimate, address-
ing drawbacks of the quadratic penalty method [17].

The proposed algorithm iterates on the original opti-
mization variables and the multipliers of the associated
Lagrangian function in the primal-dual formalism. This fa-
cilitates the feasibility guarantee as well as efficient conver-
gence, in a spirit similar to the alternating direction method
of multipliers (ADMM) [20]. The proposed algorithm is
named SCvx*, as it inherits key properties of SCvx and
augments it by the feasibility guarantee, represented by
“*”. A preliminary version of SCvx* has been successfully
applied to space trajectory optimization under uncertainty
[21], although the present paper is the first to provide
comprehensive, rigorous convergence analysis of SCvx*.

The main contributions of SCvx* are threefold. Under the
Assumption 1 in Section II-A, the proposed algorithm

1) provides the convergence guarantee to a feasible local
optimum of the original problem, eliminating the need
of trials and errors for tuning the penalty weight;

2) provides the strong global convergence to a single
local solution of the original problem with minimal
requirements on the problem structure; and

3) provides the linear/superlinear convergence rate of La-
grange multipliers with a slight algorithm modification.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3296

II. PRELIMINARY

A. Problem Statement

We consider solving discrete-time non-convex optimal
control problems given by Problem 1, where xs ∈ Rnx and
us ∈ Rnu represent the state and control at s-th time instance
(nx, nu ∈ N). gaffine(·) and gi(·) represent the affine and non-
affine equality constraint functions while hcvx(·) and hj(·)
the convex and non-convex inequality constraint functions.
N, p, q ∈ N are the number of discrete time steps, equality
constraints, and inequality constraints, respectively. f0(·) is
assumed to be strictly convex and continuously differentiable
in xs, us ∀s, without loss of generality.1

Problem 1 (Non-convex Optimal Control Problem).

min
x,u

f0(x, u)

s.t. xs+1 = fs(xs, us), s = 1, 2, ..., N − 1,

gi(x, u) = 0, i = 1, 2, ..., p,

hj(x, u) ≤ 0, j = 1, 2, ..., q,

gaffine(x, u) = 0, hcvx(x, u) ≤ 0

where x = [x>0 , x
>
1 , ..., x

>
N]>, u = [u>0 , u

>
1 , ..., u

>
N−1]>.

Defining z = [x>, u>]> ∈ Rnz , where nz = nx(N+1)+
nuN , Problem 1 can be cast as a non-convex optimization
problem given in Problem 2, where gi(·) incorporates the
dynamical constraints xs+1 = fs(xs, us).

Problem 2 (Non-convex Optimization Problem).

min
z

f0(z)

s.t. gi(z) = 0, i = 1, 2, ..., p+Nnx,

hj(z) ≤ 0, j = 1, 2, ..., q,

gaffine(z) = 0, hcvx(z) ≤ 0

Define gall(·) and hall(·) to represent all the equality
and inequality constraints in Problem 2 as: gall(z) =
[g(z)>, gaffine(z)>]> and hall(z) = [h(z)>, hcvx(z)>]>,
where g = [g1, ..., gp+Nnx]> and h = [h1, ..., hq]

> are
vectorized non-affine and non-convex constraint functions.

Relevant conditions for a local minimum of Problem 2 are
provided in Theorem 1 and Theorem 2. These Theorems are
obtained by introducing the Lagrangian function L(·) with
Lagrange multiplier vectors λ and µ of appropriate size as:

L(z, λ, µ) = f0(z) + λ · gall(z) + µ · hall(z) (1)

and then applying Theorem 12.1 of [6] and Theorem 12.6 of
[6] to Problem 2, respectively. (·) is the dot product operator.

Theorem 1 (First-order Necessary Conditions). Suppose that
z∗ solves Problem 2 and that the linear independent con-
straint qualification (LICQ) holds at z∗. Then there exist La-
grange multiplier vectors λ∗ and µ∗ such that the KKT con-
ditions are satisfied, i.e., ∇zL(z∗, λ∗, µ∗) = 0, [gall(z∗)]i =
0, [hall(z∗)]j ≤ 0, [µ∗]j ≥ 0, and [µ∗]j [hall(z∗)]j = 0, ∀i, j.
1 If the original objective does not satisfy the assumption, one can

introduce a new variable (say τ) and turning the non-convex objective
into a non-convex inequality constraint bounded above by τ .

Theorem 2 (Second-order Sufficient Conditions). Suppose
that for some feasible point z∗ of Problem 2, there exist λ∗
and µ∗ that satisfy the KKT conditions given in Theorem 1
and that ∇2

zzL(z∗, λ∗, µ∗) is positive definite on the plane
tangent to the constraints, i.e., v>∇2

zzL(z∗, λ∗, µ∗)v >
0, ∀v ∈ {v 6= 0 | v>∇zgall(z∗) = 0, v>∇zhactive(z∗) = 0},
where hactive denotes the active inequality constraint vector.
Then z∗ is a strict local solution for Problem 2.

Assumption 1. A local solution z∗ of Problem 2 together
with a unique set of multiplier vectors λ∗ and µ∗ satisfies
the standard second-order sufficient condition for constrained
optimization given in Theorem 2. Around z∗, gall(·) and
hall(·) are continuously differentiable and satisfy LICQ.

B. Augmented Lagrangian Method

The augmented Lagrangian method [17] augments the
Lagrangian function Eq. (1) as:

Lw(z, λ, µ) = L(·) +
w

2
gall · gall +

w

2
[hall]+ · [hall]+ (2)

where w ∈ R, and [x]+ = max{0, x}, working element-wise
if x is a vector. This work takes advantage of the property
of the augmented Lagrangian method that guarantees the
convergence of the variable z and multipliers λ, µ to the
optimum, z∗, λ∗, µ∗, even if the minimization of Lw(·) is
inexact at each iteration, provided that a few assumptions are
met. Lemma 1 gives a summary of this favorable property
and the required assumptions in a form tailored to Problem 2.
The superscript (k) denotes the quantities at k-th iteration.

Lemma 1 (Augmented Lagrangian Convergence with In-
exact Minimization). Suppose that for Problem 2, a se-
quence of {z(k)

∗ } satisfies ‖∇zLw(k)(z
(k)
∗ , λ(k), µ(k))‖2 ≤

δ(k) where δ(k) → 0 and {λ(k), µ(k), w(k)} are updated as:

λ(k+1) = λ(k) + w(k)gall(z
(k)
∗), (3a)

µ(k+1) = [µ(k) + w(k)hall(z
(k)
∗)]+, (3b)

w(k+1) = βw(k) (β > 1) (3c)

where {λ(k), µ(k)} are bounded. Then, w(k) eventually ex-
ceeds a threshold w∗ that gives ∇2

zzLw∗(z
(k)
∗ , λ(k), µ(k)) �

0, and any sequence {z(k)
∗ , λ(k), µ(k)} globally converges to

a local optimum of Problem 2, {z∗, λ∗, µ∗}.

Proof. The proof is by applying Propositions 2.14, 3.1, and
3.2 of [17] to Problem 2 (see [22] for an explicit discussion
about the global convergence) under Assumption 1.

Noting that z(k)
∗ represents an approximate minimizer of

Lw(k)(· , λ(k), µ(k)), Lemma 1 clarifies that inexact mini-
mization at each augmented Lagrangian iteration must be
asymptotically exact, i.e., ‖∇zLw(·)‖2 → 0 as k →∞.

III. THE PROPOSED ALGORITHM: SCVX*

This section presents the proposed algorithm, SCvx*. The
convergence analysis of SCvx* is given in Section IV.

3297

A. Non-convex Penalty Problem with Augmented Lagrangian

While the augmented Lagrangian function Eq. (2) is intro-
duced from the viewpoint of primal-dual formalism, it can
be also viewed from a penalty method standpoint. Adopting
this viewpoint, Eq. (2) can be equivalently expressed as
Lw(z, λ, µ) = f0(z) + P (gall(z), hall(z), w, λ, µ), where
P (g, h, w, λ, µ) denotes the penalty function defined as:

P (·) = λ · g +
w

2
g · g + µ · h+

w

2
[h]+ · [h]+ (4)

With the penalty function of the form given by Eq. (4),
we now formulate our non-convex penalty problem based on
Problem 2. As our algorithm is based on SCP, our penalty
problem penalizes the violations of non-convex constraints
only (∵ convex constraints are imposed in each convex
programming); hence, redefine the Lagrange multipliers as

λ = [λ1, λ2, ..., λp+Nnx]>, µ = [µ1, µ2, ..., µq]
> ≥ 0. (5)

This leads to our non-convex penalty problem, Problem 3.

Problem 3 (Non-convex penalty problem with AL).

min
z

J(z) = f0(z) + P (g(z), h(z), w, λ, µ)

s.t. gaffine(z) = 0, hcvx(z) ≤ 0

where g = [g1, g2, ..., gp+Nnx
]> and h = [h1, h2, ..., hq]

>.

B. Convex Penalty Problem with Augmented Lagrangian

Problem 3 is clearly non-convex due to the nonlinearity
and non-convexity of g(·) and h(·). To solve the problem via
SCP, we linearize them about a reference variable z̄ at each
iteration, which yields g̃ = 0 and h̃ ≤ 0, where

g̃(z) = g(z̄) +∇zg(z̄) · (z − z̄),
h̃(z) = h(z̄) +∇zh(z̄) · (z − z̄)

(6)

However, imposing g̃ = 0 and h̃ ≤ 0 in the convex
subproblem can lead to the issue of artificial infeasibility [2],
and hence these linearized constraints are relaxed as follows:

g̃(z) = ξ, h̃(z) ≤ ζ (7)

where ξ ∈ Rp+Nnx , ζ ∈ Rq , and ζ ≥ 0. Although the
original SCvx literature [1], [2] introduces virtual control
and virtual buffer terms separately, the former is naturally
incorporated in ξ. It is easy to verify this; noting that
linearized dynamical constraints are given by

xs+1 = Asxs +Bsus + cs + Esξ, s = 1, 2, ..., N (8)

where Es ∈ Rnx×p+Nnx extracts the virtual control term at
s-th time instance from ξ, and

As =∇xfs(x̄s, ūs), Bs = ∇ufs(x̄s, ūs),
cs =fs(x̄s, ūs)−Asx̄s −Bsūs

(9)

it is clear that Eq. (8) can be incorporated into g̃(z) = ξ.
On the other hand, the linearization and constraint relax-

ation lead to another issue called artificial unboundedness

Algorithm 1 SCvx*

Input: z̄(1), r(1), w(1), εopt, εfeas, ρ0, ρ1, ρ2, α1, α2, β, γ

1: k = 1, ∆J (0) = χ(0) = δ(1) =∞, λ(1) = µ(1) = 0
2: while ∆J (k−1) > εopt or χ(k−1) > εfeas do
3: {g̃(k), h̃(k)} ← derived via Eq. (6) at z̄(k)

4: {z(k)
∗ , ξ

(k)
∗ , ζ

(k)
∗ } ← solve Problem 4

5: {∆J (k),∆L(k), χ(k)} ← Eq. (13)
6: if ∆L(k) = 0 then
7: ρ(k) ← 1
8: else
9: ρ(k) ← ∆J (k)/∆L(k)

10: {z̄, w, λ, µ, δ}(k+1) ← {z̄, w, λ, µ, δ}(k) . default
11: if ρ(k) ≥ ρ0 then . accept the step
12: z̄(k+1) ← z

(k)
∗ . solution update

13: if Eq. (15) is satisfied then
14: {λ, µ,w}(k+1) ← Eq. (3) . multiplier update
15: δ(k+1) ← Eq. (16) . stationarity tol. update
16: r(k+1) ← Eq. (17) . trust region update
17: k ← k + 1
18: return (z

(k)
∗ , λ(k), µ(k))

[1]. To avoid this, we impose a constraint on the variable
update magnitude with a trust region bound r > 0, given by

‖z̄ − z‖∞ ≤ r (10)

The trust region method is common in many algorithms for
nonlinear programming [6]. This prevents the optimizer from
exploring the solution space “too far” from z̄.

Problem 4 gives the convex subproblem at each iteration.
Problem 4 is convex in z, ξ, ζ since [x]2+ = (max{0, x})2,
which appears in Eq. (4), is convex in x ∈ R.

Problem 4 (Convex penalty subproblem with AL).

min
z,ξ,ζ

L(z, ξ, ζ) = f0(z) + P (ξ, ζ, w, λ, µ)

s.t. g̃(z) = ξ, h̃(z) ≤ ζ, ζ ≥ 0,

‖z̄ − z‖∞ ≤ r, gaffine(z) = 0, hcvx(z) ≤ 0

C. SCvx* Algorithm

We are now ready to present the proposed SCvx* algo-
rithm. Algorithm 1 summarizes SCvx*. The key steps of
Algorithm 1 are discussed in the rest of this section.

1) Successive linearization: Let us compactly express the
penalty function Eq. (4) at k-th iteration as:

P (k)(g, h) , P (g, h, w(k), λ(k), µ(k)) (11)

Likewise, the penalized objectives of Problems 3 and 4 at
k-th iteration are expressed as:

J (k)(z) , f0(z) + P (k)(g(z), h(z))

L(k)(z, ξ, ζ) , f0(z) + P (k)(ξ, ζ)
(12)

Given a user-provided initial reference point z̄(1), the
linearization process follows Section III-B, which instantiates
Problem 4 at each iteration. Problem 4 is solved to conver-
gence, yielding the solution at k-th iteration, z(k)

∗ , ξ
(k)
∗ , ζ

(k)
∗ .

3298

Every time after Problem 4 is solved, SCvx* calculates:

∆J (k) = J (k)(z̄(k))− J (k)(z
(k)
∗) (13a)

∆L(k) = J (k)(z̄(k))− L(k)(z
(k)
∗ , ξ

(k)
∗ , ζ

(k)
∗) (13b)

χ(k) = ‖g(z
(k)
∗), [h(z

(k)
∗)]+‖2 (13c)

where ∆J (k),∆L(k), and χ(k) represent the actual cost
reduction, predicted cost reduction, and the infeasibility.

2) Step acceptance: After solving Problem 4, SCvx*
accepts the solution and updates z̄(k) if a certain criterion
is met. With ρ0 ∈ (0, 1), the acceptance criterion is given by

ρ0 ≤ ρ(k), ρ(k) = ∆J (k)/∆L(k) (14)

where ρ(k) measures the relative decrease of the objective;
an iteration is accepted only if ρ(k) is greater than ρ0, which
helps avoid accepting bad steps (e.g., those which do not
improve the non-convex objective). This criterion is based
on the original SCvx [2], but not exactly the same; this point
is made precise in the following remark.

Remark 1. The definition of ∆L(k) in Eq. (13b) is different
from SCvx [1], [2]. As SCvx considers a fixed penalty
weight, their definition of ∆L with our notation corresponds
to J (k−1)(z̄(k))− L(k)(z

(k)
∗ , ξ

(k)
∗ , ζ

(k)
∗), which is not always

non-negative because J (k)(z̄(k)) 6= J (k−1)(z̄(k)). With the
careful definition of ∆L(k) as in Eq. (13b), a key result
∆L(k) ≥ 0 is guaranteed in SCvx*, as proved in Lemma 3.

3) Lagrange multiplier update: Although the multipliers
λ and µ are fixed in each convex subproblem, they must
be updated to march toward the convergence of Problem 2.
SCvx* updates λ and µ when the current iteration is
accepted and the following condition is met:

|∆J (k)| < δ(k), (15)

where δ(k) ∈ R is updated such that δ(k) → 0 as k →
∞. The motivation behind this criterion is to satisfy the
asymptotically exact minimization requirement clarified in
Lemma 1. A simple design for updating δ(k) is:

δ(k+1) =

{
|∆J (k)| if δ(k) =∞
γδ(k) otherwise (γ ∈ (0, 1))

(16)

when Eq. (15) is met. Any other scheme than Eq. (16) may
be used as long as it satisfies δ(k) → 0 as k →∞.

Every time when Eq. (15) is met, SCvx* updates w(k),
λ(k), µ(k) using Eq. (3), where gall(·) and hall(·) must be
replaced by g(·) and h(·). Section IV-A shows that this
scheme ensures satisfying the convergence conditions in
Lemma 1. A stricter condition than Eq. (15) is also possible
to guarantee the convergence rate, as shown in Section IV-B.

4) Trust region update: The trust region radius r plays an
important role in preventing artificial unboundedness. ρ(k)

in Eq. (14) is used to quantify the quality of the current
radius r(k). Like original SCvx [2], given the user-defined
initial radius r(1) > 0 and thresholds ρ1, ρ2 ∈ R that satisfy

ρ0 < ρ1 < ρ2, SCvx* updates r(k) as follows:

r(k+1) =

max{r(k)/α1, rmin} if ρ(k) < ρ1

r(k) elseif ρ(k) < ρ2

min{α2r
(k), rmax} else

(17)

where α1 > 1 and α2 > 1 determine the contracting and
enlarging ratios of r(k), respectively, and 0 < rmin < rmax.
Although the convergence proof in Section IV-A does not
require r(k) be bounded from above in theory, SCvx*
implements the upper bound rmax for numerical stability.

5) Convergence check: SCvx* detects the convergence to
Problem 2 and terminates the iteration if:

∆J (k) ≤ εopt ∧ χ(k) ≤ εfeas (18)

where εopt, εfeas ∈ R are small positive user-defined scalars
representing the optimality and feasibility tolerances.

IV. CONVERGENCE ANALYSIS

This section presents the convergence analysis of SCvx*.
Section IV-A shows the global strong convergence to Prob-
lem 2 while Section IV-B discusses its convergence rate.

A. Convergence

Let us first introduce Lemma 2.

Lemma 2 (Local Optimality Necessary Condition). If z∗ is a
local minimizer of J (k) in Problem 3, then z∗ is a stationary
point of J (k) with the current w(k), λ(k), µ(k).

Proof. Apply Theorem 2.2 of [6] to Problem 3.

We then present Lemma 3, which states the non-negativity
of ∆L(k) as well as the stationarity of J (k) when ∆L(k) = 0.
This extends Theorem 3 of [2] (also Theorem 3.10 of [1])
to account for the effect of varying w(k), λ(k), µ(k).

Lemma 3. The predicted cost reductions ∆L(k) in Eq. (13b)
satisfy ∆L(k) ≥ 0 for all k. Also, ∆L(k) = 0 implies that
the reference point z = z̄(k) is a stationary point of J (k).

Proof. Since (z
(k)
∗ , ξ

(k)
∗ , ζ

(k)
∗) solves Problem 4, we have

L(k)(z
(k)
∗ , ξ

(k)
∗ , ζ

(k)
∗) ≤ L(k)(z̄(k), g(z̄(k)), h(z̄(k)))

= f0(z̄(k)) + P (k)(g(z̄(k)), h(z̄(k))) = J (k)(z̄(k))
(19)

Thus, it implies that ∆L(k) ≥ 0 for all k and that ∆L(k) = 0

holds if and only if z(k)
∗ = z̄(k). From this, ∆L(k) = 0

implies that z = z̄(k) is a local minimizer of J (k), and hence,
from Lemma 2, a stationary point of J (k).

Lemma 3 is a key for SCvx* to inherit two favorable
aspects of the original SCvx algorithm, namely, (1) the as-
sured acceptance of iteration and (2) the assured stationarity
of limit points. Lemmas 4 and 5 clarify these two aspects in
the context of SCvx* by extending those of SCvx.

Lemma 4. The SCvx* iterations are guaranteed to be
accepted (i.e., Line 11 is satisfied) within a finite number
of iterations after an iteration is rejected.

3299

Proof. The proof is straightforward by combining Lemmas 2
and 3 and the proof for Lemma 3 of [2] (or Lemma 3.11 of
[1]), where the generalized differential and the generalized
directional derivative can be replaced with the gradient and
directional derivative (∵ unlike SCvx, the penalty function
of SCvx* is differentiable due to the formulation based on
the augmented Lagrangian method).

Lemma 5. A sequence {z(k)
∗ } generated by SCvx* when

the Lagrange multipliers and penalty weight are fixed is
guaranteed to have limit points, and any limit point ẑ is
a stationary point of Problem 3.

Proof. The proof is straightforward by combining Lemmas 3
and 4 and the proof for Theorem 4 of [2] (or Theorem 3.13
of [1]), where note from Eq. (17) that r(k) ≥ rmin > 0.

Remarkably, Lemma 5 implies that, when the values of
λ(k), µ(k), w(k) remain fixed, we have ∆J (ki) → 0 as i →
∞, where {z(ki)

∗ } is a subsequence of {z(k)
∗ }. This assures

the satisfaction of Line 13 within a finite (typically a few)
number of iterations after λ(k), µ(k), w(k) are last updated.
This key property is formally stated in Lemma 6.

Lemma 6. The SCvx* multipliers and penalty weights are
guaranteed to be updated (i.e., Line 13 is satisfied) within a
finite number of iterations after their last update.

Proof. The proof is by contradiction. Suppose Line 13 is not
satisfied for indefinite number of iterations, i.e., |∆J (k)| ≥
δ(k) for k →∞. It implies λ(k), µ(k), w(k) remain the same
for k →∞. However, when λ(k), µ(k), w(k) remain the same
values, there is at least one subsequence with ∆J (ki) → 0
due to Lemma 5, which eventually satisfies |∆J (k)| < δ(k)

for any δ(k) > 0 without requiring infinite k. This contradicts
|∆J (k)| ≥ δ(k) for k →∞, and thus implies Lemma 6.

We are now ready to present the main result of this paper
on the convergence property of the SCvx* algorithm.

Theorem 3 (Global Strong Convergence with Feasibility).
SCvx* achieves global convergence to a feasible local
optimum of the original problem, Problem 2.

Proof. Let {z(ki)
∗ } be a subsequence of {z(k)

∗ } that consists
of the iterations where the multipliers are updated; such
subsequences are guaranteed to exist due to Lemma 6. Then,
Eq. (16) ensures δ(ki) > δ(ki+1), and due to Lemma 5,
∆J (ki) → 0 and δ(ki) → 0 in the limit. Again due to
Lemma 5, the limit point is a stationary point of Problem 3,
satisfying ∇zJ (k) = 0. Then, ∇zLw(k) → 0 also holds in
the limit since every z

(k)
∗ satisfies gaffine = 0 and hcvx ≤

0 within convex programming. Thus, the SCvx* iteration
guarantees ‖∇zLw(k)‖2 → 0 in the limit, with the multiplier
update Eq. (3). Therefore, as w(k) exceeds the threshold w∗
given in Lemma 1 after finite iterations, SCvx* achieves the
global convergence to a feasible optimum of Problem 2.

Remarks below discuss two key improvements that the
SCvx* algorithm provides over the original SCvx algorithm.

Remark 2 (Feasibility). The converged solution generated
by SCvx* is feasible to Problem 2, while the original SCvx
algorithm does not provide such a feasibility guarantee.

Remark 3 (Accelerated convergence). SCvx* iterates not
only on the variable z(k) but also on the Lagrange multipliers
λ(k) and µ(k), which, besides providing the feasibility guar-
antee, facilitates the convergence by iteratively improving the
multiplier estimate rather than using a fixed value.

B. Convergence rate

Having the augmented Lagrangian method as the basis of
the algorithm facilitates the analysis of the convergence rate
of SCvx*. Based on [17], [22], linear or superlinear con-
vergence rate of the Lagrangian multipliers can be achieved
when δ(k) decreases to zero as fast as ‖λ(k) − λ∗‖2/w(k).
To achieve this, we may replace Eq. (15) by

|∆J (k)| ≤ min {δ(k), ηχ(k)}, (20)

where η is a positive scalar. With this criterion, Proposition
2 of [22] states that the augmented Lagrange multiplier
iteration Eq. (3) converges to z∗, λ∗, µ∗ superlinearly if
w(k) → ∞, and linearly if w(k) → wmax < ∞, where
wmax ∈ (0,∞) is the upper bound of the penalty weight.
It must be noted that these convergence rates are about the
Lagrange multiplier iteration but not with respect to k.

The choice of η can be arbitrary to achieve the above
convergence rate in theory. A simple yet effective approach
is to initialize η by ∞ at first, and then update it by η ←
|∆J (k)|/χ(k) when Eq. (20) is met for the first time.

Here, we must ensure that SCvx* retains the favorable
property of guaranteed multiplier update (Lemma 6) under
the stricter condition Eq. (20). Lemma 7 addresses this. Once
the convergence in λ, µ is achieved, then λ, µ will not be
updated anymore while z(k) converges to a feasible local
minimum of Problem 2 due to Lemmas 1 and 5.

Lemma 7. Suppose that Eq. (20) instead of Eq. (15) is
used for the multiplier update criterion. Then, until the
convergence in λ and µ is achieved, the SCvx* iteration
guarantees that the values of λ and µ are updated within a
finite number of iterations after their last update.

Proof. For conciseness, the proof is focused on problems
with equality constraints only, as any inequality constraints
can be converted to equality constraints by introducing
dummy variables without changing the results in the aug-
mented Lagrangian framework (see Section 3.1 of [17]).
Thus, µ and h are not explicitly considered in this proof.

It is clear from Lemma 5 that the claim is true if χ(k) > 0
holds until the convergence in λ is achieved. It is also clear
that λ(k) 6= λ∗ until the convergence in λ is achieved. Thus,
let us show χ(k) > 0 when λ(k) 6= λ∗ by contradiction.

Suppose that there exists certain λ(k)(6= λ∗) such that lead
to χ(k) = 0. For z(k)

∗ that solves Problem 4, it is clear from
Eq. (13c) that χ(k) = 0 if and only if g(z

(k)
∗) = 0. Since

χ(k) = 0, Eq. (20) is not satisfied, and hence the values of
λ(k) remain fixed until ∆J (k) = 0 is achieved in the limit.

3300

TABLE I
SCVX* PARAMETERS (ε = εopt = εfeas)

ε {ρ0, ρ1, ρ2} {α1, α2, β, γ} {r(1), rmin, rmax}

10−5 {0, 0.25, 0.7} {2, 3, 2, 0.9} {0.1, 10−10, 10}

Due to Lemma 5, the limit point is a stationary point of
Problem 3, satisfying 0 = ∇zJ (k) = ∇zf0 +(λ+wg) ·∇zg.
Using g = 0 due to χ(k) = 0, this leads to 0 = ∇zf0 + λ ·
∇zg, which implies that the limit point of {z(k)

∗ } is a feasible
stationary point of Problem 2, i.e., ∇zL = 0, and hence
satisfies the KKT conditions of Problem 2, since every z(k)

∗
also satisfies gaffine = 0 and associated multiplier conditions
within convex programming. This contradicts λ(k) 6= λ∗, and
thus χ(k) 6= 0 by contradiction, implying χ(k) > 0 because
χ(k) must be non-negative.

V. NUMERICAL EXAMPLES

This section presents numerical examples to demonstrate
SCvx* and compare the performance to SCvx. Note that
Algorithm 1 boils down to SCvx by ignoring Lines 13 to 15
and replacing Eq. (4) by an l1 penalty function P (g, h, w) =
w‖g‖1 + w‖[h]+‖1. CVX [23] is used with Mosek [24].
SCvx* parameters commonly used for the two examples

are listed in Table I. In each example, w(1) is varied to in-
vestigate the performance of SCvx* and SCvx for different
penalty weights. wmax = 108 is set for SCvx* to avoid
numerical instability. If the algorithm does not converge in
100 iterations, it is terminated and deemed unconverged.

A. Example 1: Simple Problem with Crawling Phenomenon

The first example is a simple non-convex optimization
problem from [25] to demonstrate that SCvx* can also over-
come the so-called crawling phenomenon, which is known to
occur for a class of SCP algorithms. The non-convex problem
from [25] is defined in the form of Problem 2 as follows:

min
−2≤z≤2

z1 + z2 (21a)

s.t. z2 − z4
1 − 2z3

1 + 1.2z2
1 + 2z1 = 0, (21b)

− z2 − (4/3)z1 − 2/3 ≤ 0 (21c)

which is solved by SCvx* and SCvx with various w(1). The
same initial reference point as [25], z̄(1) = [1.5, 1.5], is used.

Table II summarizes the comparison of SCvx* and SCvx
by listing the number of iterations required for convergence
with respect to different values of w(1). “N/A” indicates non-
convergence achieved within the maximum iteration limit (=
100). Table II illustrates that SCvx* constantly achieves the
convergence regardless of the initial values of w(k); this is
in sharp contrast to the SCvx results, which successfully
converge to a feasible local minimum only for the two cases:
w(1) = 10 and 100, emphasizing the sensitivity to the value
of w(1) (which is held constant over iterations in SCvx).

Fig. 1 depicts the convergence behavior for w(1)=1. It
clarifies that the SCvx* iteration successfully converges to

TABLE II
EXAMPLE 1: CONVERGENCE RESULTS (N/A: NON-CONVERGENCE)

w(1) value 10−1 100 101 102 103 104 105

SCvx* # ite. 39 33 31 42 40 51 56
SCvx # ite. N/A N/A 35 31 N/A N/A N/A

-2 -1 0 1 2

z1

-2

0

2

z 2

initial
iteration
-nal
optimum

(a) SCvx* result, 33 iterations

-2 -1 0 1 2

z1

-2

0

2

z 2

initial
iteration
-nal
optimum

(b) SCvx result, not converged

Fig. 1. Example 1 convergence behavior for w(1) = 1 in the z1-z2 space.
The black curve represents the non-convex equality constraint Eq. (21b), and
the gray shaded area is the infeasible area from Eq. (21c).

the optimum while SCvx is not able to satisfy the non-
convex equality constraint (on the black curve). This example
illustrates two non-converging modes of SCvx: 1) non-
improving feasibility for w(1)=10−1, 100; and 2) crawling
phenomenon for w(1)=103, 104, 105. In contrast, SCvx*
effectively addresses these non-converging modes, consistent
with the two key improvements stated in Remarsks 2 and 3.

B. Example 2: Quad Rotor Path Planning

The second example is a quad-rotor non-convex optimal
control problem from the original SCvx literature [1]. The
problem is defined in the form of Problem 1 as follows:

min
x,u

N∑
s=1

Γs∆t

s.t. xs+1 = xs +

∫ ts+1

ts

[
v

T/m− kD‖v‖2v + g

]
dt, ∀s

‖ps − pobj,j‖2 ≥ Robs,j , j = 1, 2,

x1 = xini, xN = xfin, T1 = TN = −mg,
[1 0 0] · ps = 0, ‖Ts‖2 ≤ Γs, Tmin ≤ Γs ≤ Tmax,

cos θmaxΓs ≤ [1 0 0] · Ts, ∀s

where p, v ∈ R3, and m ∈ R denote the position, velocity,
and mass of the vehicle; T ∈ R3 is the thrust vector;
Γ ∈ R represents the thrust magnitude (at convergence);
g = [−9.81, 0, 0]>m/s2 is the gravity acceleration; kD =
0.5 is the drag coefficient; pobj,j and Robj,j are the posi-
tion and radius of j-th obstacle (defined the same as [1]);
xini = [0 m, 0 m, 0 m, 0 m/s, 0.5 m/s, 0 m/s]> and xfin =
[0 m, 10 m, 0 m, 0 m/s, 0.5 m/s, 0 m/s]> are the initial and
final states; {Tmin, Tmax} = {1.0, 4.0}N; θmax = π/4. The
state and control variables are xs = [r>s , v

>
s]> ∈ R6 and

us = [T>s ,Γs]
> ∈ R4, where the zeroth-order-hold control

is used for the discretization, i.e., us = u(t) ∀t ∈ [ts, ts+1).
tN = 5.0 seconds with N = 31. For z̄(1), the straight line
that connects xinit and xfin is used for xs while −mg and
‖mg‖2 are used for Ts and Γs, respectively.

3301

TABLE III
EXAMPLE 2: CONVERGENCE RESULTS

w(1) value 10−1 100 101 102 103 104 105

SCvx* # ite. 24 17 14 11 11 11 14
SCvx # ite. N/A 9 11 13 14 15 16

0 5 10

100

j"
J
j

0 5 10

iteration

100

@

(a) SCvx* result, 11 iterations

0 5 10 15

100

j"
J
j

0 5 10 15

iteration

100
@

(b) SCvx result, 15 iterations

Fig. 2. Example 2 convergence behavior for w(1) = 104; y-axes represent
the penalized objective improvement |∆J(k)| (top) and the infeasibility
χ(k) (bottom). The circles in (a) indicate iterations with multiplier updates.

Table III summarizes the convergence results for Example
2. This suggests that the performance of SCvx* and SCvx
are similar overall for this example, whereas a key difference
is observed that SCvx struggles to converge to a feasible
solution when w(1) = 10−1. SCvx* constantly converges to
a feasible local minimum irrelevant to the value of w(1). This
property is favorable especially for large-scale problems,
where the user may not afford to tune w(1) [21]. On the other
hand, this also provides a reassuring result that, despite the
lack of the theoretical feasibility guarantee, SCvx can also
perform well and may be good enough for relatively simple,
small-scale optimal control problems.

Fig. 2 presents the convergence behavior for w(1) = 104

in terms of |∆J (k)| and χ(k). The circles in Fig. 2(a) indicate
the iterations when Line 13 of Algorithm 1 is satisfied and
the multipliers are updated. The dashed lines represent the
tolerance ε=εopt=εfeas(= 10−5). While SCvx satisfies the
constraints earlier, SCvx* achieves the overall convergence
faster, likely due to the iterative estimate of multipliers that
balances the progress in optimality and feasibility.

VI. CONCLUSIONS

In this paper, a new SCP algorithm SCvx* is proposed
to address the lack of feasibility guarantee in SCvx by
leveraging the augmented Lagrangian framework. Unlike
SCvx, which uses a fixed penalty weight over iterations,
SCvx* iteratively improves both the optimization variables
and the Lagrange multipliers, facilitating the convergence.
Inheriting the favorable properties of SCvx and fusing those
with the augmented Lagrangian method, SCvx* provides
strong global convergence to a feasible local optimum of the
original non-convex optimal control problems with minimal
requirements on the problem form. The convergence rate of
SCvx* is also analyzed, clarifying that linear/superlinear
convergence rate with respect to the Lagrange multipliers
can be achieved by slightly modifying the algorithm. These
theoretical results are demonstrated via numerical examples.

REFERENCES

[1] Y. Mao, M. Szmuk, X. Xu, and B. Acikmese, “Successive Convexifica-
tion: A Superlinearly Convergent Algorithm for Non-convex Optimal
Control Problems,” arXiv preprint, 2019.

[2] Y. Mao, M. Szmuk, and B. Acikmese, “Successive convexification of
non-convex optimal control problems and its convergence properties,”
in Conf. on Decis. and Control, pp. 3636–3641, IEEE, 2016.

[3] B. Açıkmeşe and S. R. Ploen, “Convex Programming Approach to
Powered Descent Guidance for Mars Landing,” J. of Guid., Control
and Dyn., vol. 30, no. 5, p. 1353–1366, 2007.

[4] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class
of optimal control problems with non-convex control constraints,”
Automatica, vol. 47, no. 2, pp. 341–347, 2011.

[5] M. W. Harris, “Optimal Control on Disconnected Sets Using Extreme
Point Relaxations and Normality Approximations,” IEEE Trans. on
Autom. Control, vol. 66, pp. 6063–6070, 2021.

[6] J. Nocedal and S. J. Wright, Numerical Optimization. Springer New
York, 2006.

[7] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone,
and B. Açıkmeşe, “Convex Optimization for Trajectory Generation: A
Tutorial on Generating Dynamically Feasible Trajectories Reliably and
Efficiently,” IEEE Control Syst. Mag., vol. 42, pp. 40–113, 2022.

[8] R. Bonalli, T. Lew, and M. Pavone, “Analysis of Theoretical and Nu-
merical Properties of Sequential Convex Programming for Continuous-
Time Optimal Control,” IEEE Trans. on Autom. Control, vol. 68,
pp. 4570–4585, 2022.

[9] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guar-
anteed Sequential Trajectory optimization via Sequential Convex Pro-
gramming,” in Int. Conf. on Robot. and Automat., pp. 6741–6747,
IEEE, 2019.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
England: Cambridge University Press, 2004.

[11] A. L. Yuille and A. Rangarajan, “The Concave-Convex Procedure
(CCCP),” in Adv. in Neural Inf. Process. Syst., 2001.

[12] P. T. Boggs and J. W. Tolle, “A Strategy for Global Convergence in a
Sequential Quadratic Programming Algorithm,” SIAM J. Numer. Anal.,
vol. 26, pp. 600–623, 1989.

[13] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” SIAM J. on
Optim., vol. 12, pp. 979–1006, 2002.

[14] Y. Mao and B. Acikmese, “SCvx-fast: A Superlinearly Convergent
Algorithm for A Class of Non-Convex Optimal Control Problems,”
arXiv preprint, 2021.

[15] M. Szmuk, T. P. Reynolds, and B. Açıkmeşe, “Successive Con-
vexification for Real-Time Six-Degree-of-Freedom Powered Descent
Guidance with State-Triggered Constraints,” J. of Guid., Control, and
Dyn., vol. 43, pp. 1399–1413, 2020.

[16] R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and M. Pavone, “Trajectory
Optimization on Manifolds: A Theoretically-Guaranteed Embedded
Sequential Convex Programming Approach,” in Robot.: Sci. and Syst.,
2019.

[17] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. Elsevier, 1982.

[18] M. R. Hestenes, “Multiplier and gradient methods,” J. of Optim.
Theory and Appl., vol. 4, pp. 303–320, 1969.

[19] M. J. D. Powell, “Algorithms for nonlinear constraints that use
lagrangian functions,” Math. Program., vol. 14, pp. 224–248, 1978.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Found. and Trends in Mach. Learn., vol. 3,
pp. 1–122, 2011.

[21] K. Oguri and G. Lantoine, “Stochastic Sequential Convex Program-
ming for Robust Low-thrust Trajectory Design under Uncertainty,” in
AAS/AIAA Astro. Special. Conf., 2022.

[22] D. P. Bertsekas, “On Penalty and Multiplier Methods for Constrained
Minimization,” SIAM J. Control Optim., vol. 14, pp. 216–235,, 1976.

[23] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined
Convex Programming, version 2.1,” 2014.

[24] Mosek ApS, “The MOSEK Optimization Toolbox for Matlab Manual,
version 8.1..” http://docs.mosek.com/9.0/toolbox/index.html, 2017.

[25] T. P. Reynolds and M. Mesbahi, “The Crawling Phenomenon in
Sequential Convex Programming,” in Amer. Control Conf., pp. 3613–
3618, IEEE, 2020.

3302

