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Abstract— We develop investment approaches to secure elec-
tric power systems against load attacks where a malicious in-
truder (the attacker) covertly changes reactive power setpoints
of loads to push the grid towards voltage instability while
the system operator (the defender) employs reactive power
compensation (RPC) to prevent instability. Extending our previ-
ously reported Stackelberg game formulation for this problem,
we develop a robust-defense sequential algorithm and a novel
genetic algorithm that provides scalability to large-scale power
system models. The proposed methods are validated using
IEEE prototype power system models with time-varying load
uncertainties, demonstrating that reliable and robust defense
is feasible unless the operator’s RPC investment resources are
severely limited relative to the attacker’s resources.

Index Terms— Power Systems, Voltage stability, Load attacks,
Game Theory, Security investment, Robust defense

I. INTRODUCTION

Over the past decade, significant research has been per-
formed on cybersecurity of electric power systems [1], in-
cluding security against various kinds of attacks on both gen-
eration and loads. With the proliferation of demand response
and direct load control programs by utility companies across
the United States, load attacks are becoming more common.
Malicious attackers, for instance, can easily hack into the
thermostats of domestic customers and covertly change their
active and reactive power setpoints. When a large number of
loads are manipulated in this way, the transmission grid can
face a voltage collapse. In the literature so far, these attacks
have mostly been studied from the point of view of detection
and control [2]. Our objective in this paper is to formulate
a RPC investment strategy that power system operators can
adopt to secure the grid from this class of attacks, which
may result in severe degradation of voltage stability [3].

Game-theoretic methods, including Stackelberg games,
have been widely applied to study security and optimization
for wide ranges of cyber-physical systems, including power
systems [4]. However, most game-theoretic investment ap-
proaches employ repeated games [4], which are not suitable
when long-term, fixed security investment is desired. To ad-
dress this issue, in [5] we developed a cost-based Stackelberg
game (CBSG) to strategically allocate the players’ long-term
security investment resources. The cost-based Stackelberg
equilibrium (CBSE) of this game not only optimizes the
load attacker’s and the system operator’s payoffs, i.e., the
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increase and reduction of the voltage instability index [3],
respectively, but also saves their costs.

However, in [5] we assumed complete knowledge of the
opponent’s resources, which is idealistic for the defender,
who acts first. In this paper, we develop and validate a robust-
defense (i.e. robust-RPC) sequential method. Moreover, we
assumed fixed values of constant-power loads in [5] while
in this paper we consider a practical case of time-varying
loads. Finally, the algorithm in [5] requires traversal search
that has exponential complexity in the number of target
loads. To address scalability of the CBSG, we develop
an iterative, evolutionary, bidirectional, genetic algorithm
(GA)-based method to find a CBSE, which improves upon
previously investigated evolutionary methods for finding a
Stackelberg equilibrium (SE) [6], [7] by utilizing parallel
evolution for both players. We evaluate performance of the
proposed methods on IEEE 9-bus and 39-bus power system
models and show that reliable and robust defense is feasible
unless the operator’s RPC investment resources are severely
limited relative to the load attacker’s resources.

The rest of the paper is organized as follows. Section II
summarizes the power system and the CBSG based on [5]. A
bidirectional evolutionary algorithm is introduced in Section
III. A robust-defense method is proposed in Section IV.
Numerical results for IEEE prototype models are contained
in Section V, and Section VI concludes the paper.

II. POWER SYSTEM MODEL AND COST-BASED
STACKELBERG GAME

We consider a power system with G ≥ 1 generators and
K ≥ 1 constant power loads, where the load buses are
indexed as the first K buses, followed by G generator buses.
Let us denote the steady-state voltage magnitudes at the load
buses as VL = [V1, · · · , VK ] ∈ RK and at the generator
buses as VG = [VK+1, · · · , VK+G] ∈ RG. The admittance
matrix of the network is denoted as Y = G + jB. We
partition the susceptance matrix B ∈ R(K+G)×(K+G) into
four block matrices as

B =

(
BLL BLG

BGL BGG

)
(1)

where BLL contains the interconnections among loads and
BLG = BGL

T represents the interconnections between
loads and generators. Following the derivations in [3], one
can then define the open-circuit load voltage vector as V ∗

L =
−B−1

LLBLGVG, and, subsequently, the symmetric stiffness
matrix as

Qcrit ≜
1

4
diag(V ∗

L ) ·BLL · diag(V ∗
L ), (2)
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TABLE I
CBSG DESCRIPTION BASED ON [5]

Term Definition
a = [ak : k ∈ {1, · · · ,K}] ∈ RK Actions of the load attacker

ak ∈ {0, 1/(La − 1), 2/(La − 1), · · · , 1} Attacker’s investment level on load k (chance of success)
La The number of attacker’s investment levels

qka ≤ qk,max
a ,∀k Covertness constraint for the attacker on load k

Oj = [oj1, · · · , o
j
k, · · · , o

j
K ], ∀j = 1, · · · , 2K The jth outcome of attack at all loads

Pa(Oj) =
∏

k:∀oj
k
=1

ak
∏

k:∀oj
k
=0

(1− ak) The probability of outcome Oj

qj
a = Oj ⊙ qa The incremental reactive power demand for Oj

γa The scaled cost of the attack on load k at full effort level
Ca = γa||a||1 ≤ 1 The total cost of the attacker

d = [dk : k ∈ {1, · · · ,K}] ∈ RK RPC actions of the defender
dk ∈ {0, 1/(Ld − 1), 2/(Ld − 1), · · · , 1},∀k ∈ Lctrl Defender’s investment (RPC) level on the control device of load k

Ld The number of defender’s investment levels
qk,max
d The maximum reactive power the defender can compensate on load k ∈ Lctrl

qkd = dkq
k,max
d The defender’s compensation on load k ∈ Lctrl

γd The scaled investment cost of RPC per protected load
Cd = γd||d||1 ≤ 1 The defender’s total investment cost

Qj
L = Qn

L + qj
a − qd Tthe reactive power demand vector for the jth outcome Oj given actions a and d

Uj(q
j
a, qd) = Clip

(∥∥∥Q−1
critQ

j
L

∥∥∥
∞
; (∆n, 1)

)
The voltage instability index (3) restricted to [∆n, 1] for the jth outcome Oj and
actions a, d

Ua(a,d) =
2K∑
j

Pa(Oj)Uj(q
j
a, qd) The attacker’s expected utility given actions a and d

Ud(a,d) = −Ua(a,d) The defender’s utility given actions a and d
(a∗

o,d
∗
o) Cost-based Stackelberg equilibrium (CBSE)

where diag(·) denotes the diagonal matrix.
Let QL = [Q1, · · · , QK ] ∈ RK denote the K-dimensional

real vector that represents the reactive power setpoints at the
load buses. Using (2), the voltage instability index of the
system is defined as

∆ = ||Q−1
critQL||∞, (3)

which is easily computable and accounts for the structure of
the entire grid topology. The kth entry of the matrix-vector
product Q−1

critQL captures the stability stress on load k, with
||·||∞ identifying the maximally stressed node. According to
Theorem 1 in [3], the power flow equation will have a unique,
stable solution if ∆ < 1. Equivalently, ∆ ≥ 1 indicates that
at least one load bus in the model i is overly stressed and
can be responsible for a voltage collapse. We refer to 1−∆
as the voltage stability margin [8]. The larger the value of
∆, the narrower the stability margin is and the closer the
power system is to a voltage collapse. Finally, let Qn

L denote
the system’s nominal reactive power setpoint vector. Then
the nominal voltage instability index ∆n is computed as the
value of ∆ (3) using Qn

L.
As proven in [3, Supp. 6] and [5], the voltage instability

index ∆ increases as the reactive power demands of the loads
grow. The attacker can attempt to increase the reactive power
demands at the load buses by breaking into the loads and
adding an incremental vector

qa = [q1a, · · · , qKa ] ∈ RK (4)

to Qn
L, thus driving ∆ towards 1. Moreover, the attacker can

make such load attacks covert by designing the entries of qa
small enough that they maintain the load bus voltages to be
within their usual allowable range of 0.9 per unit (pu) to 1.1
pu while sill pushing ∆ towards 1. As the attack is at the

device level rather than at the system level, the state estimator
placed at the local substation might be unable to detect it.
To prepare for possible future attacks, the operator, or the
defender, can switch on pre-installed voltage control devices,
such as shunt capacitors and power electronic converters,
to compensate for the potential increase in consumption
in advance. We assume generators provide reactive power
support as usual to maintain power balance, but extra support
required to compensate for the attacks is provided by the
control devices installed at a set of the load buses denoted
Lctrl = {ln : n = {1, · · · , N}}, where ln is the load bus
index and N ≤ K. Thus, the K-dimensional RPC vector for
all loads can be denoted as

qd = [q1d, · · · , qKd ] ∈ RK , (5)

where qkd = 0,∀k /∈ Lctrl. If an attack is successful at
each load, the overall reactive power balance becomes QL =
Qn

L + qa − qd. The goal of the system operator (defender)
is to strategically compensate for the attacker’s actions and
to avoid the voltage collapse by maintaining ∆ as close as
possible to the nominal ∆n.

The zero-sum CBSG in this paper is based on the CBSG
in [5]. It is summarized in Table I. The attacker’s and the
operator’s utilities are given by the expected value of ∆ (3)
restricted to [∆n, 1] and its opposite, respectively. The Cost-
Based Backward Induction (CBBI) in [5] computes a CBSE,
i.e., the load attack and RPC investment pair that provides
the same players’ payoffs as any SE but saves the attacker’s
and defender’s costs. Theorem I in [5], [9] and [10, Appx.B]
demonstrates existence of CBSE and other CBSG properties.

Finally, we assumed in [5] that the system model is given
by the nominal model. However in practice, the reactive
power setpoint vector QL is time-variant and is uncer-
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tain a priori. Consider a set of possible uncertain models
{Mi | i = 1, · · · ,M} due to the fluctuation of real-time
power consumption. When the nominal model is used by
the operator and the attacker to compute their investment
strategies (a∗

o,d
∗
o), there is a mismatch with the actual CBSE

of the model Mi. To evaluate the fractional difference of the
utilities of the nominal model and uncertain model Mi at a
CBSE of the nominal model, we

µi% =

∣∣∣∣Ua(a∗
o,d

∗
o)− Ua

i (a
∗
o,d

∗
o)

Ua(a∗
o,d

∗
o)

∣∣∣∣× 100%, (6)

where the payoffs of the system operator and the load at-
tacker at (a∗

o,d
∗
o) are given by Ua

i (a
∗
o,d

∗
o) = −Ud

i (a
∗
o,d

∗
o),

which are obtained from the ideal players’ utilities in Table I
by substituting the nominal reactive power vector Qn

L of the
nominal model by the ith model’s nominal reactive power
vector Qn,i

L and replacing ∆n by ∆n,i, the nominal voltage
instability index of the ith model. Note that µnom = 0.

III. A BIDIRECTIONAL EVOLUTIONARY METHOD FOR
COMPUTING A CBSE

The CBBI algorithm in [5] is a traversal searching method
with the complexity of O

(
LK
a LN

d

)
. To reduce the computa-

tional complexity, we employ the following bidirectional par-
allel evolutionary GA-based (BPEGA) method (Algorithm
1). In Algorithm 1, the population sizes of the each genera-
tion of the attacker’s and defender’s strategies are represented
by even non-negative integers Sa and Sd, respectively. In
Step 2 of Algorithm 1, in each generation, each player
determines the fitness value (performance metric) of the
current population. For the defender’s strategy candidate d ∈
POP t

d where POP t
d denotes the defender’s current strategy

population, an attacker’s best response within its strategy
population POP t

a is given by gtmp(d) = argmax
a∈POP t

a

Ua(a,d).

Thus, the fitness value of each d ∈ POP t
d is given by

fitd(d) = Ud(gtmp(d),d),∀d ∈ POP t
d. (7)

Suppose that d′ ∈ POP t
d has the highest fitness value within

the current population

d′ = argmax
d∈POP t

d

fitd(d). (8)

For each value of d′ that satisfies (8), the attacker assigns
the fitness value to all a ∈ POP t

a as

fita(a) = Ua(a,d′),∀a ∈ POP t
a. (9)

In Step 6, if several individuals have the same fitness value
and cost, the individuals who were selected in an earlier
generation are placed ahead of those selected later. Since the
“combine and sort” process guarantees that the individual
with the highest fitness value among the members of the
current generation and of the feasible children set is selected
for the next generation, the proposed BPEGA algorithm is
an elitist GA [12].

The iteration will stop when either of the following two
conditions is satisfied: (1) For each player, all individuals in
the current population are identical, i.e. ai = aj ,∀ai,aj ∈

Algorithm 1: Bidirectional Parallel Evolutionary Ge-
netic Algorithm

Parameter Initialization: Population sizes Sa and
Sd, crossover probability Pc, mutation rate Pm,
maximum number of generations T . Current
generation t = 0;

Step 1. Population Initialization: Randomly
selected feasible initial populations for both players
POP 0

a = {a1, · · · ,aSa
} and

POP 0
d = {d1, · · · ,dSd

}, where ∀a ∈ POP 0
a and

∀d ∈ POP 0
d which satisfy the attacker’s and

defender’s cost constraints, respectively;
while the termination criteria are not satisfied, do

Step 2. Evaluation: The defender and attacker
compute Ud(a,d) and Ua(a,d) for all
d ∈ POP t

d and a ∈ POP t
a and evaluate all

individuals in the current generation to compute
their fitness values based on (7) and (9);

for Attacker and Defender do
Step 3. Selection: Select Sa/2 (or Sd/2)

pairs of parents tmpaP (or tmpdP ) using the
Roulette Wheel selection method [11];

Step 4. Reproduction: Apply crossover with
probability Pc and mutation operation with
rate Pm [11] to generate Sa (or Sd) children
tmpac (or tmpdc );

Step 5. Check feasibility: For each
individual in tmpac (or tmpdc ), check if it is a
feasible solution to attacker’s (or defender’s)
cost constraint. Include all feasible children
in the set tmpac,f (or tmpdc,f );

Step 6. Combine and sort: Combine the
current generation POP t

a (or POP t
d) with

the set of feasible children tmpac,f (or
tmpdc,f ). Sort by the fitness value in the
descending order. Sort the individuals with
the same fitness values by their investment
cost in ascending order. The Sa (or Sd)
individuals with the highest ranking are
selected as the next generation POP t+1

a (or
POP t+1

d );
end
t← t+ 1

end
Step 7. Apply the CBBI algorithm [5] to the final

generation POPT
a and POPT

d to determine
(a∗

o,d
∗
o);

POP t
a and di = dj ,∀di,dj ∈ POP t

d; (2) The iteration has
reached the preset maximum iteration number T .

Finally, a GA converges when a sequence of objective
function evaluations approaches the maximum of the ob-
jective function as the number of iterations T tends to
infinity [6]. Since BPEGA employs parallel evolution of both
players, the convergence result of [7], which assumes only
the defender’s evolution, is not applicable to Algorithm 1.
Proposition 1. Assume a crossover probability Pc > 0 and
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a mutation rate Pm > 0. As the number of iterations T tends
to infinity, both players’ expected utilities generated by the
BPEGA (Algorithm 1) converge to the utilities at any SE
and the strategy pair selected by the BPEGA has the lowest
players’ costs among all SEs of the CBSG.

Proof. The proof is based on [9], [10, Prop.5.1] and is
omitted due to the space constraints.

The computational complexity of the BPEGA is
O(TSaSd) ≪ O(LK

a LN
d ), the complexity of the CBBI

algorithm, when the system size is large and TSaSd ≪
LK
a LN

d . In practice, power systems with different system
sizes might require different T values to achieve convergence
as discussed in Sec.V.

IV. ROBUST DEFENSE AGAINST LOAD ATTACKS

In the CBBI algorithm of [5] or the BPEGA Algorithm
1, the load attacker does not require the knowledge of the
operator’s cost per load γd to determine its best response
since it is the follower and thus observes the defender’s RPC
strategy before acting. However, the system operator acts first
and thus relies on the knowledge of γa. When the defender
does not have complete information about the attacker’s
resources, the proposed CBSG (Table I) is unsuitable. In the
robust-defense (RD) algorithm described below, the defender
employs a lower bound γest

a on the attacker’s actual cost γa,
where 0 ≤ γest

a ≤ γa, to compute its RPC strategy.
Step 1: (a) For each defender’s RPC action d that satisfies
the cost constraint, the defender estimates the set of attacker’s
best responses (i.e., load attack strategies) G(γest

a ,d), where
g(γest

a ,d) ∈ G(γest
a ,d) if

g(γest
a ,d) = argmax

a
Ua(a,d), (10)

s.t. γest
a ||a||1 ≤ 1, qka ≤ qk,max

a ,∀k.

(b) For each d, the smallest-cost estimated best response is

go(γ
est
a ,d) = argmin

g(γest
a ,d)∈G(γest

a ,d)

||g(γest
a ,d)||1. (11)

Step 2: (a) The defender (operator) determines the set of its
RPC strategies Dest where d∗

RD ∈ Dest if

d∗
RD = argmax

d
Ud(go(γ

est
a ,d),d), (12)

s.t. γd||d||1 ≤ 1.

(b) A strategy in (12) with the smallest cost is chosen

do
RD = argmin

d∗
RD∈Dest

||d∗
RD||1. (13)

Step 3: (a) By observing the defender’s RPC action do
RD,

the attacker finds its actual set of best responses G(γa,do
RD),

where the load attack strategy a∗
RD ∈ G(γa,do

RD) if

a∗
RD = g(γa,d

o
RD) = argmax

a
Ua(a,do

RD), (14)

s.t. γa||a||1 ≤ 1; qka ≤ qk,max
a ,∀k,

(b) If multiple solutions exist in G(γa,do
RD), the attacker

chooses a load attack strategy with the smallest cost

ao
RD = go(γa,d

o
RD) = argmin

a∗
RD∈G(γa,do

RD)

||a∗
RD||1. (15)

A strategy pair (ao
RD,do

RD) is a cost-based RD solu-
tion. Note that the actual defender’s payoff differs from
its estimate Ud(go(γ

est
a ,do

RD),do
RD) and is given by

Ud(ao
RD,do

RD).

Theorem 1.
In the proposed RD method (steps 1∼3 above):
(a) The actual utility of the defender is at least as large as
its estimated utility, i.e.

Ud(ao
RD,do

RD) ≥ Ud(go(γ
est
a ,do

RD),do
RD). (16)

(b) The defender’s actual payoff Ud(ao
RD,do

RD) increases
with its estimate of the attacker’s cost γest

a and approaches
its payoff Ud(a∗

o,d
∗
o) at a CBSE of the CBSG in Table I as

γest
a tends to the actual γa value.

Proof. The proof is referred to [13] and is omitted due to
the space constraints.

Remark 1. Theorem 1(a) demonstrates that assuming the
worst-case attack scenario provides robust RPC when the
system operator is uncertain about the load attacker’s re-
sources. Moreover, from Theorem 1(b), we conclude that as
the operator’s knowledge of the attacker’s cost improves, the
defender’s actual payoff of the RD solution increases and
approaches the payoff of the ideal game.

To evaluate the defender’s utility loss due to its uncertainty
about the attacker’s budget, we compute the mismatch (loss)
of actual defender’s utility using the RD method relative to
that at a CBSE of the ideal CBSG. For each set of γest

a , γa,
and γd values, this mismatch is computed as

µRD% =

∣∣∣∣Ud(ao
RD,do

RD)− Ud(a∗
o,d

∗
o)

Ud(a∗
o,d

∗
o)

∣∣∣∣× 100%. (17)

Finally, the evolutionary Algorithm 1 can be easily modi-
fied to perform the RD method and shown to converge to an
RD solution. Moreover, as for the CBSG, the RD method is
developed assuming the nominal model, but can be applied
to any uncertain model i and evaluated using a metric similar
to (6). The details are omitted for brevity.

V. NUMERICAL RESULTS

In Sec.V-A, we validate computationally efficient BPEGA
method proposed in Sec.III by comparing its performance
with the traversal algorithm for the IEEE 9-bus system. Then
in Sec.V-B, we employ GA methods to analyze performance
of the IEEE 39-bus system.

A. IEEE 9-bus System

The IEEE 9-bus system has 6 load buses, which are all
potential targets for the attacker. We assume that the set of
buses with control devices installed is Lctrl = {4, 5, 6, 8}.
In the simulation, qk,max

a is determined by the covertness
constraint, and we set qk,max

d = 2 pu, ∀k. It was verified
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that these compensations do not violate the [0.9, 1.1] pu
voltage range for any bus. The M load-uncertain models are
created by adding independent zero-mean Gaussian random
variables to the components of the nominal reactive power
setpoint vector Qn

L, i.e., the ith model’s nominal reactive
power setpoint vector is given by Qn,i

L = Qn
L(1+ϵi), where

ϵi ∼ N(0, σ2), i = {1, · · · ,M}, and the standard deviation
σ = 0.1 [14]. Note that the number of models M = 20,
which satisfies the criteria for the sample size given the
margin of error (MOE) of 0.05 and the confidence interval
(CI) of 95%.

𝑈 𝒂∗ , 𝒅∗ Δ

𝑈 𝒂∗ , 𝒅∗ 1
Voltage collapse

Multiple SEs 
exist

Fig. 1. Attacker’s expected utility at CBSE vs. γa and γd for La = Ld =
3, IEEE 9-bus system

0

2

4

6

8

10

i %

Max = 6.803

Min = 0

75th percentile = 3.777

25th percentile = 0.430

Median = 1.986

Outlier Max = 10.061

Mean = 2.491

Fig. 2. Boxplot of the utility difference µi% (6) over the randomly
generated set of 20 models and 5 cost pairs (γa, γd): (0.1, 0.1), (0.1, 1.5),
(0.75, 0.75), (1.5, 0.1), (1.5, 1.5); La = Ld = 3; the IEEE 9-bus system

Fig. 1 shows the attacker’s expected utility Ua(a∗
o,d

∗
o) at

a CBSE for varying γa and γd assuming a fixed nominal
model. These trends are consistent with Theorem 1 in [5].
In particular, each player’s utility improves as that player’s
cost decreases while the opponent’s cost is fixed, and both
players target “important” loads with the greatest impact
on ∆0, but the attacker tends to avoid the loads protected
by the defender [5]. Fig. 2 represents the utility difference
(6) statistics for five different cost pairs. We observe that
most uncertain models experience modest utility differences
from the CBSE shown in Fig. 1, demonstrating robustness of
CBSG to load uncertainty in the IEEE 9-bus power system.

Next, we validate convergence of BPEGA Algorithm 1.
We set Sa = 30, Sd = 20, Pc = 0.85, Pm = 0.05,
and T = 30. These initialization parameters are selected
experimentally and reflect a trade-off between convergence
and computational complexity for the IEEE 9-bus system.
For the nominal system model, Fig. 3 shows that the BPEGA

Algorithm 1 converges to a CBSE obtained by the traversal
CBBI algorithm in fewer than 15 iterations, thus confirming
Proposition 1. Similar results were obtained for other cost
pairs, demonstrating fast convergence of the BPEGA Algo-
rithm 1 [10].

5 10 15 20 25 30
iteration T

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

U
a
(a

* o
, d

* o
)

a
 = 0.375, 

d
 = 0.75, BPEGA

a
 = 0.375, 

d
 = 0.75, CBBI

a
 = 1.05, 

d
 = 1.5, BPEGA

a
 = 1.05, 

d
 = 1.5, CBBI

a
 = 0.75, 

d
 = 1.05, BPEGA

a
 = 0.75, 

d
 = 1.05, CBBI

Fig. 3. Convergence of the attacker’s utility in the BPEGA Algorithm 1
with La = Ld = 3; the IEEE 9-bus system

0 0.2 0.4 0.6 0.8 1
a
est

0

2

4

6

8

10

R
D

 %

d
 = 1.5, 

a
 = 0.45

d
 = 0.75, 

a
 = 0.45

d
 = 1.5, 

a
 = 0.75

d
 = 0.75, 

a
 = 0.75

d
 =1.5, 

a
 = 1.05

d
 =0.75, 

a
 = 1.05

Fig. 4. The mismatch µRD% (17) for varying γest
a given γa =

{0.45, 0.75, 1.05}, and γd = {0.75, 1.5}; La = Ld = 3; the IEEE
9-bus system

Finally, we compare the performance of the RD method
for the nominal-model IEEE 9-bus system to that of the ideal
CBSG by measuring the mismatch µRD% (17) in Fig. 4 for
varying costs γest

a estimated by the system operator given
selected γa and γd values. We observe that the mismatch
reduces as the worst-case cost estimate γest

a approaches the
actual γa value as shown in Theorem 1(b). We also found
that the mismatch is zero for all γest

a values in many cases,
e.g. when (γa, γd) = (0.75, 0.45) or (0.75, 1.05). Moreover,
even when the most powerful attacker is assumed (γest

a = 0)
while the actual γa values are in the range 0 ≤ γa ≤ 1.5
and γd ∈ {0.45, 0.75, 1.5}, the mismatch (17) for most cost
pairs was less than 1% with median of µRD = 0 and
75% percentile = 0.575, indicating that the RD method is
robust to the system operator’s uncertainty about the load
attacker’s resources. On the other hand, the defender’s cost
of the RD solution is at least as large as the defender’s
cost of a CBSE of the ideal CBSG. When the actual γa
is large, γest

a = 0, and γd is relatively small, e.g. γa ≥ 1.05
and γd ≤ 0.225, the defender’s overpayment using the RD
method compared to the ideal CBSG can be as high as 300%
since the defender grossly overestimates the attacker’s budget
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in the RD method. However, the defender’s excess cost of
the RD solution reduces as its cost per load γd increases and
γest
a approaches the actual γa value. Finally, the attacker’s

investment cost is the same in both methods.
B. IEEE 39-bus system

Next, we apply the proposed methods to the IEEE 39-bus
system, which contains 29 loads. We assume that the set of
buses with control devices installed is Lctrl = {5, 6, 7, 8, 10,
11, 13}. This set includes both players’ five most important
loads [5]. The M = 20 load-uncertain models were created
using the same method for the IEEE 9-bus system (Sec.V-A).
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Fig. 5. Attacker’s utility at a CBSE found by the BPEGA algorithm with
La = Ld = 3; the IEEE 39-bus system

For levels of investment La = Ld = 3, the complexities
of the CBBI algorithm and the BPEGA Algorithm 1 are
O
(
329 × 37

)
and O(TSaSd) = O(30 × 30 × 20) =

O(18000), respectively. Since the former complexity is too
high, we apply the BPEGA Algorithm 1 and the RD method
for IEEE 39-bus system in Fig. 5 and 6. We observe the same
performance trends as in Fig. 1. Note that voltage collapse
occurs only when the attacker has very small cost γa while
the defender’s cost γd ≫ γa. We conclude that voltage col-
lapse can be successfully prevented in both IEEE 9-bus and
39-bus systems unless the defender’s security resources are
disproportionately limited relative to the attacker’s budget.
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Fig. 6. Boxplot of the mismatch µRD% (17) of the RD solution for γest
a =

0 over the cost pairs: γa = [0 : 0.075 : 1.5], γd = {0.45, 0.75, 1.5};
La = Ld = 3; the IEEE 39-bus system

Moreover, we found that for the IEEE 39-bus system,
most uncertain models experience slight utility differences
(6) ranging from 0% to 1.836%, confirming the robustness
of proposed CBSG to load uncertainty. Furthermore, Fig. 6
shows the boxplot for the mismatch (17) of the defender’s
utilities of the RD solution for selected defender’s costs when

the most powerful attacker is assumed (γest
a = 0) and the

actual γa values are in the range 0 ≤ γa ≤ 1.5. We observe
that the mismatch for most cost pairs is modest, confirming
that the RD solution is robust to imperfect knowledge of the
attacker’s budget by the defender. Finally, for both IEEE 9-
bus and 39-bus systems, we found that the RD method is
robust to model uncertainty, with statistics similar to those
in Fig. 2.

VI. CONCLUSION

We investigated scalable, robust game-theoretic invest-
ment solutions for securing electric power systems from
load attacks and associated voltage collapse. To address the
scalability of the proposed methods to large power sys-
tems, a bidirectional, parallel, evolutionary generic algorithm
(BPEGA) was developed. Moreover, we proposed a robust-
defense (RD) method to address realistic scenarios where the
defender lacks full information about the attacker’s budget. It
is demonstrated that the system operator is able to preserve
voltage stability for both load- and/or information-uncertain
scenarios unless its reactive power compensation resources
are much more limited than the load attacker’s resources.
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