
Online design of experiments by active learning
for system identification of autoregressive models

Kui Xie and Alberto Bemporad

Abstract—In this paper, we investigate the use of active-
learning (AL) strategies to generate the input excitation signal
at runtime for system identification of linear and nonlinear au-
toregressive models. We adapt various existing AL approaches
for static model regression to the dynamic context, coupling
them with Kalman filters to update the models recursively, and
also cope with the presence of input and output constraints. The
increased efficiency in terms of sample usage of the proposed
AL approaches with respect to random excitation is evaluated
on a few examples.

Index Terms—Design of experiments, active learning, system
identification, extended Kalman filtering

I. INTRODUCTION
Many system identification approaches exist, both for

linear [1] and nonlinear systems [2], [3]. Very often, these
methods rely on an existing training dataset for estimating
the model parameters that best approximate the system’s
behavior. No matter how good the chosen model class and
advanced the method used to solve the training problem
are, ultimately, the quality of the identified model depends
on the richness of the information in the training dataset.
Relying solely on collecting more data can be costly and
may result in excessive redundancy without substantially
increasing the information content and lead to more complex
optimization problems during model parameter estimation
due to the larger number of loss terms in the objective
function to minimize [4]–[6].

The problem of optimal design of experiments (DoEs) has
been studied for decades, dating back to the 1930s [7]. In the
machine learning literature, the related problem of selecting
the most informative samples to query for the target value
is referred to as active learning (AL) [8], [9]. AL strategies
aim to reduce the number of required training samples by
allowing the training algorithm to select the feature vectors
to query. Several AL methods exist in the literature, mostly
for classification problems [10], but also contributions exist
for regression problems [11]–[17].

The existing AL methods mainly focus on learning static
models to explain the relationship between feature vectors
and targets. These samples can be arbitrarily selected from
a dense set of admissible values, a pre-determined discrete
pool, or a stream of feature-vector samples [8]. However,
actively learning dynamical models is more challenging
because not all feature vector components can be changed

The authors are with the IMT School for Advanced
Studies Lucca, Piazza San Francesco 19, Lucca, Italy. Email:
{kui.xie,alberto.bemporad}@imtlucca.it

Database

Active Learning

Process

EKF

y

data
collection

active
learning

process

EKF

Fig. 1. Online active learning method for system identification.

instantaneously. Research on AL for system identification
is therefore limited, and it is primarily restricted to specific
classes of models such as Gaussian processes [18], [19], and
neural-network state-space models [20]. Furthermore, these
approaches assume that the state xk is measurable, while the
model is often identified from the input/output data.

In this paper, we extend the AL methods reported in [17]
for the regression of static functions to the dynamic con-
text, focusing on learning black-box parametric models in
input/output form. Specifically, we consider the problem of
identifying autoregressive models, either linear (ARX) or
nonlinear (NARX). To update the model parameters as new
samples are acquired, we rely on an (extended) Kalman
filtering approach [21], [22]. A schematic diagram of the
proposed strategy is shown in Fig. 1.

The proposed recursive approach employs online opti-
mization, based on the data collected so far, to design the
experiment at runtime. As for supervised AL of static models,
the developed DoE strategies ensure that the collected data
are informative and diverse [8], i.e., respectively, are acquired
to minimize modeling errors and explore the state/action
space, trying to avoid repetitions. Based on the AL method
for regression proposed in [17], we use an acquisition
method based on a non-probabilistic measure of uncertainty
of output predictions to sample the system where uncertainty
is expected to be most significant, and employ inverse-
distance weighting (IDW) functions to ensure the exploration
of areas not visited before. Recently, a related online AL
algorithm has been used for improving the sample efficiency
of reinforcement learning (RL) [23] and model predictive
coverage control [24].

In this paper, we consider both one-step-ahead AL formu-
lations, based on the uncertainty associated with the follow-

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7202

ing predicted output, and a less myopic multi-step-ahead AL
approach based on the uncertainty related to the predicted
outputs over a finite horizon, also taking into account the
presence of input and output constraints; the latter are treated
as soft to avoid excessive conservativeness, especially at early
stages when the model is very uncertain. Although the online
computation burden of the AL algorithm is limited, especially
when the input can be selected from a discrete set (e.g., as in
the case of pseudo-random binary signal excitation, where the
set has only two elements), we also consider the possibility
of running the AL algorithm offline on a digital twin of the
system, saving the generated input signal, and then going on
the actual process.

The paper is structured as follows. In Section II, we will
present the proposed algorithm for NARX models. Numerical
experiments on linear and nonlinear autoregressive systems
will be reported in Section III. Lastly, we will draw conclu-
sions in Section IV.

II. ONLINE ACTIVE LEARNING OF NARX
MODELS

Let us consider the problem of identifying a strictly-causal
Nonlinear AutoRegressive eXogenous Model (NARX):

ŷk = f(xk−1, θ) (1a)
xk−1 = [y′k−1 . . . y′k−na

u′
k−1 . . . u′

k−nb
]′ (1b)

where ŷk ∈ Rny , uk ∈ Rnu , na ≥ 0, nb ≥ 0,
θ ∈ Rnθ is the vector of parameters to learn, and k =
−max{na, nb},−max{na, nb}+1, . . . , 0, 1, . . . is the sam-
ple index. For example, f could be a linear model, f(x, θ) =
θ′x, or a small-scale neural network with weight/bias terms
collected in the vector θ. Our goal is to actively generate
control inputs uk at runtime, k = 0, 1, . . . , N − 1, to
efficiently learn the parameter vector θ, solving the posed
system identification problem in a sample-efficient manner.

From now on, we assume that all the input and output
signals have been properly scaled. For instance, if lower
and upper bounds umin, umax, ymin, ymax on the possible
values of the signals are known, we can scale these signals
to the interval [−1, 1] using the scaling function σ : R → R,
σ(α) = 2

αmax−αmin

(
α− αmax+αmin

2

)
, where αmax and αmin

are the maximum and minimum values of the signal.
In the sequel, we will denote by θk the model parameter

vector obtained by training the model with the outputs
collected up to time k. We assume that, as in most practical
applications, the input uk is subject to constraints uk ∈ U ,
where U represents the set of valid inputs. For instance,
U = {u ∈ Rnu : umin ≤ u ≤ umax} or, in alternative,
they can be chosen from a finite set U = {u1, . . . , uM},
such as U = {−1, 1} in the case of pseudorandom binary
sequence excitation.

A. One-step-ahead active learning

Assume we have an acquisition function a : Rnx → R
given to solve a problem of AL for regression [8]. Ideally,
at each step k, given a new measurement yk, we would like
to choose xk = argmaxx a(x). However, at time k the only

component in xk that can be freely chosen is the current
input uk, given that all the remaining components involve
measured outputs and past inputs. Hence, we restrict the
acquisition problem to

uk = argmax
u∈U

a(xk(u)) (2a)

xk(u) ≜ [y′k . . . y′k−na+1 u′ u′
k−1 . . . u′

k−nb+1]
′ (2b)

where xk : Rnu → Rnx defines the feature vector cor-
responding to a given input selection. Note that when the
input uk is chosen from a finite set U = {u1, . . . , uM},
problem (2a) can be easily solved by enumeration, anal-
ogously to pool-based active learning algorithms [8]. The
new collected sample (uk, yk+1) can be immediately used
to update the process model θk+1. Generally, the acquisition
function a(x) optimized in (2a) depends on θk and all past
feature-vector/target samples (xk−1, yk) collected so far.

In [17], the author proposed an active learning method for
regression called ideal, utilizing inverse distance weighting
(IDW) functions. The acquisition function consists of two
nonnegative terms: a(x) = s2(x) + δz(x), where the IDW
variance function, s2(x) =

∑k
j=0 vj(x)∥yj − f(x, θk)∥22,

serves as a proxy for the variance of the output y predicted
by the model at x, the function z : Rnx → R is an IDW
exploration function, the function vj : Rnx → R is an IDW
weight function, and δ ≥ 0 is a tradeoff coefficient between
exploitation (of the model θk to estimate model uncertainty)
and pure exploration (since z(x) = 0 at each xj sampled so
far, ∀j = 0, . . . , k).

Besides ideal, we will consider also the alternative in-
cremental AL methods reviewed in [17, Section 3.4]: the
greedy method GSx [25, Algorithm 1], the greedy method
iGS [15, Algorithm 3], and the query-by-committee method
QBC [13], [26].

B. Initialization
As typically done in most AL algorithms, we start by using

passive learning to gather the initial Ni pairs of input/output
samples, Ni ≥ 0. The simplest way is to use random
sampling, i.e., generate u0, . . . , uNi−1 randomly, or use the
K-means algorithm, cf. [17, Section 3.1].

C. Constraints
To attempt satisfying also output constraints, we add a

penalty in (2a) on the expected violation of output con-
straints. For instance, the satisfaction of output constraints

ymin ≤ y ≤ ymax (3)

can be encouraged by introducing the penalty term

p(x) = ρ

ny∑
i=1

{max{ŷk+1,i(x, θk)− ymax,i, 0}2

+max{ymin,i − ŷk+1,i(x, θk), 0}2}
(4)

where ŷk+1 = f(x, θk) is the next output predicted by the
current model with parameter vector θk, and ρ is a penalty
parameter, ρ ≥ 0. We then solve the following problem

uk = argmax
u∈U

a(xk(u))− p(xk(u)). (5)

7203

A drawback of the formulation (5) with the penalty
term (4) is that it does not account for the model uncer-
tainty, which might be quite large during the early phase of
sampling. To address this issue, we consider the confidence
interval proposed in [27] for IDW functions, which is defined
as ŷk+1(x, θk)±καs(x), where s(x) is the square root of the
IDW variance function s2(x) and the scaling factor κα is set
as the upper α sample quantile of |CVi|/s−(i−1)(xi−1), i =
0, . . . , k, where α is a constant, typically set to 90%,
CVi = yi− ŷi(xi−1, θk) is the cross-validation error at xi−1,
s2−i(xi) =

∑k
j=0, j ̸=i vj(i)(xi)(yj−ŷi+1(xi, θk)), vj(i)(xi) =

wj(xi)/
∑k

l=0, l ̸=i wl(xi), and wl(x) is the weighting func-
tion. To prevent over-shrinking the constraint set in (5), we
impose a limit on the quantity καs(x) ≤ β(ymax − ymin),
where, in this case, we set β = 1

3 .
Hence, in (5) we can replace (4) with a softened version:

p(x) = ρ

ny∑
i=1

{max{ŷk+1,i(x, θk)− ymax,i + καs(x), 0}2

+max{ymin,i − ŷk+1,i(x, θk) + καs(x), 0}2}, (6)

which can then be used for active learning in the next section.

D. Alternative active-learning methods

We review three different AL methods for regression, alter-
native to ideal, slightly adapted here to generate input signals
for system identification. We exclude the iRDM method [16]
as it cannot be used for recursive model learning.

1) Greedy method GSx: The non-model-based method
GSx [25, Algorithm 1] aims to select the next sample xk by
maximizing the minimum distance from existing samples. In
analogy with (5), we extend GSx based on the acquisition
problem uk = argmaxu∈U dx(xk(u)) − p(xk(u)), where
dx(x) = minki=0 ∥x − xi∥22 is the minimum distance from
existing (scaled) samples.

2) Greedy method iGS: Given the predictor f(xk(u), θk)
trained on the available samples, the greedy sampling
technique iGS [15, Algorithm 3] can be used to select
the next input uk by solving the acquisition problem
uk = argmaxu∈U dx(xk(u))dy(xk(u)) − p(xk(u)), where
dx(x) is the same as in the GSx method and dy(x) =
minki=0 ∥ŷk+1(x, θk)− yi∥22 is the predicted minimum dis-
tance in the output space from existing output samples.

3) Query-by-Committee method QBC: The Query-by-
Committee (QBC) method for regression [13], [26] utilizes
KQBC different predictors θjk, j = 1, . . . ,KQBC . In AL
of static models, predictors are typically obtained by boot-
strapping the acquired dataset. In contrast, as we acquire
the samples online, we create KQBC different models by
running KQBC (extended) Kalman filters in parallel and,
at each time step, only update KQBC − 1 models after
acquiring the new sample yk. This adaptation of QBC
aims to select the input uk that maximizes the variance
of the estimated output prediction ŷk+1(xk(u), θ

j
k): uk =

argmaxu∈U
∑KQBC

j=1

∥∥∥∥ŷk+1(x, θ
j
k)−

∑KQBC
h=1 ŷk+1(x,θ

h
k)

KQBC

∥∥∥∥2
2

− p(x),with x = xk(u).

Algorithm 1 Online design of experiments for system iden-
tification of autoregressive models using active learning and
inverse-distance based exploration (ideal-sysid).

Input: Set U of admissible inputs, number Ni of passively-
sampled inputs, length N of the experiment to design, ex-
ploration hyperparameter δ ≥ 0, number L ≥ 1 of prediction
steps, possible upper and lower bounds ymax, ymin, penalty
parameter ρ ≥ 0 on output constraint violations.

1. Generate Ni samples u0, . . . , uNi−1 by passive learning
(e.g., random sampling)

2. Excite the system and collect y0, . . . , yNi−1;
3. Estimate θNi−1;
4. For k = Ni, . . . , N do:
4.1. measure yk;
4.2. update θk by EKF;
4.3. If k < N , get uk by solving problem (7), with penalty

p as in (4) or (6) to handle possible output constraints;
5. End.

Output: Estimated parameter vector θN ; input excitation
u0, . . . , uN−1.

E. Multi-step prediction

So far we have been concerned only with the one-step-
ahead prediction ŷk+1 and, consequently, with the acquisition
of the new control input uk. To circumvent such a possible
myopic view, we can take a predictive approach and extend
the formulation to optimize a finite sequence of future inputs
Uk = [u′

k u′
k+1 . . . u′

k+L−1]
′, where L ≥ 1 is the desired

prediction horizon. In this case, the predicted regressor vector
x̂k+j entering the acquisition function a contains either
outputs ŷk+h predicted by model θk (h ≥ 1) or measured
outputs yk+h (h ≤ 0), and either current and future inputs
uk+h = uh (h ≥ 0) or past inputs uk+h (for h < 0). We will
denote the predicted regressor as x̂k+j ≜ xk+j(U) to recall
that it depends on the first j + 1 inputs in U .

Furthermore, since future measured outputs yk+j+1 are
not available, replacing them by surrogates ŷk+j+1 =
f(x̂k+j , θk) cause the IDW variance s2(x̂k+j) = 0, and thus
a(x̂k+j) = z(x̂k+j), ∀j > 0. Therefore, the multi-step-ahead
active learning problem can be formulated as follows:

Uk = arg max
U∈UL

s2(xk(U))

+ δ

L−1∑
j=0

z(xk+j(U))− p(xk+j(U))
(7)

where UL ≜ U × . . . × U . Note that (7) coincides with (5)
when L = 1, as xk(U) = xk(u).

Based on the receding-horizon mechanism used in model
predictive control, after solving (7), only the current input uk

is applied to excite the process, while the remaining moves
uk+j are discarded, for all j = 1, . . . , L − 1. Then, after
acquiring the new measurement yk+1 and updating the model
via EKF to get the new parameter vector θk+1, problem (7)
is solved again to get Uk+1, and so on.

7204

The overall algorithm for online input design for system
identification based on the ideal active learning approach,
denoted by ideal-sysid, is summarized in Algorithm 1.

F. Numerical complexity

In analyzing the complexity of Algorithm 1, we assume
that the model parameter vector θ is estimated by EKF,
whose complexity is O(n2

θ) per step. Therefore, the recursive
training has a complexity of O(n2

θN), plus the cost of
evaluating (1) and its Jacobian with respect to θ (N times)
for the EKF updates. In the QBC case, (KQBC − 1)N
more EKF-related computations are required, assuming that
the different EKFs are run in parallel also during the
random-sampling phase. In the case of pool-based sampling
(U = {u1, . . . , uM}), the complexity of solving problem (7)
requires (N − Ni + 1)ML evaluations of the acquisition
function a(x), or (N −Ni + 1)M evaluations for L = 1.

III. NUMERICAL EXPERIMENTS

In this section, we test the online design-of-experiment
approach based on active learning described in Algorithm 1
(ideal-sysid) for the identification of linear and nonlinear
autoregressive models, and compare it to passive learning
and variants of Algorithm 1 obtained by replacing ideal with
one of the alternative AL methods reviewed in Section II-D.
We use random sampling to generate the initial Ni samples
for all AL methods. The model parameter vector θk ∈ Rnθ

is recursively estimated by (extended) Kalman filtering with
covariance matrices Pk ∈ Rnθ×nθ , Q ∈ Rnθ×nθ and
R ∈ Rny×ny , as described in [22]. We set P0 = 1

10−3×N Inθ
,

Q = 0, and R = 10−2Iny
. Note that we only report results

based on one-step prediction due to space limitations. To
quantify the overall quality of prediction on the training
and test datasets, we measure the root-mean-square error
(RMSE), RMSE =

√
1

Nmax

∑Nmax

k=1 (yk − ŷk(xk−1, θk))2,
where Nmax is the total number of samples in the set
(Nmax = N for the training set and Nmax = Ntest for the test
set). All computations were performed in MATLAB R2023b.

A. Linear ARX example

Firstly, we test the proposed AL approaches for learning
a linear ARX model with na = 3, nb = 3, nu = 1, and
ny = 1. We generate noisy synthetic data by simulating the
following system

yk = θa,1yk−1 + θa,2yk−2 + θa,3yk−3

+ θb,1uk−1 + θb,2uk−2 + θb,3uk−3 + αηk
(8)

from zero initial condition, where θa = [9
10 − 3

10
1
3]

′, θb = [13
− 1

5
1
15]

′, ηk ∼ N (0, 1), and α = 0.005. The overall vector
of model parameters is therefore θ = [θ′a θ′b]

′, that we wish
to reconstruct. We use pool-based sampling by letting U =
{−1,−1 + 1

M , . . . ,−1 + 2M−1
M , 1} with M = 20.

The prediction model is the linear model f(xk−1, θk) =
θ′kxk−1, where the parameter vector θk is updated recursively
by Kalman filtering after measuring each new sample yk. We
set the ideal-sysid parameters δ = 1, Ni = 16, N = 100,
ρ = 0 (no output constraints), L = 1, and apply Algorithm 1.

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

ou
tp

ut
 v

al
ue

s

y
actual

y
estimated

0 5 10 15 20 25 30

simulated samples

0.0

1.0

2.0

es
tim

at
io

n
er

ro
rs #10-2

Fig. 2. ideal-sysid applied to system (8). Upper plot: measurements yk
(red squares) and predictions ŷk = θ′Nxk−1 (blue squares). Lower plot:
average estimation errors and vertical lines denote mean absolute deviation
(L = 1).

20 30 40 50 60 70 80 90 100

queried samples

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1)

passive
/ = 0

/ = 10-2

/ = 10-1

/ = 1

/ = 101

/ = 102
75 80 85 90 95 100

9.0

9.5

10.0

#10-3

Fig. 3. Effects of the exploration parameter δ in ideal-sysid and comparison
with passive learning. Vertical lines denote mean absolute deviation (L = 1).

We also generate a test dataset by running (8) from zero
initial condition for Ntest = 30 steps. Fig. 2 compares the
one-step-ahead estimates ŷk = θ′Nxk−1 with respect to the
measured outputs yk on test data after running Algorithm 1
for N steps (upper plot) and the lower plot shows the average
estimation errors over 200 runs with the same test dataset.
To adequately evaluate results, we enlarge the test set size
and set Ntest = 300 in all remaining experiments.

Fig. 3 shows how the median RMSE over 200 runs de-
creases with the number of acquired samples N for different
values of δ in the ideal-sysid method. We note that the
ideal-sysid method shows limited sensitivity to the hyper-
parameter δ. With δ ≪ 1, pure exploitation performs better
at the early stage, while only limited exploration occurs later.
We will set δ = 1 in the remaining tests. The figure clearly
shows ideal-sysid outperforms passive learning (random
sampling of uk ∈ U , in this case): the RMSE decreases faster
with the number of samples acquired.

Next, we compare the performance of ideal-sysid when
the AL method ideal is replaced by GSx, iGS, or QBC in
Algorithm 1. The median RMSE and its mean absolute
deviation over 200 runs are depicted in Fig. 4 (upper plot).
ideal-sysid outperforms GSx, iGS, and passive learning, and
is comparable to QBC. For all the considered AL methods,
the RMSE values are identical for k ≤ Ni − 1, indicating
that they share the same initial randomly generated samples,
resulting in the same parameters learned by the Kalman filter.
The initial samples are also used to initialize the Kalman

7205

20 30 40 50 60 70 80 90 100

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1, no constraints)

passive

GSx

iGS

QBC

ideal

85 90 95 100

0.90

0.95

1.00

#10-2

20 30 40 50 60 70 80 90 100

queried samples

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1, with constraints)

passive
GSx
iGS
QBC
ideal

Fig. 4. AL problem (8) predicted with an ARX model, median RMSE
without (upper plot) and with constraints (9) (lower plot). Vertical lines
denote mean absolute deviation (L = 1, ρ = 106).

queried samples

ou
tp

ut
 v

al
ue

s

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

GSx

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

iGS

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

QBC

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

ideal

Fig. 5. Initial samples (grey dots), system outputs generated by all
considered AL methods (L = 1) applied to system (8) without penalties
(ρ = 0, yellow dots) and with constraint violation penalties in (4) (ρ = 106,
blue dots) and constraints (9) (black dashed lines).

filters employed by QBC to estimate different models θjk ∈
Rnθ with corresponding covariance matrices P j

k ∈ Rnθ×nθ ,
j = 1, . . . ,KQBC , as described in Section II-D3.

To excite the system to learn the parameters under the
output constraints

−0.25 ≤ yk ≤ 0.25 (9)

we set ρ = 106 in Algorithm 1 and repeat the online input
design procedure. The obtained RMSE results are presented
in Fig. 4 (lower plot). It is evident that ideal-sysid consis-
tently outperforms GSx and iGS, and performs better than
QBC after 72 samples are collected. The good performance
of the passive method is because output constraints are

0 10 20 30 40 50 60 70 80 90 100

queried samples

-0.2

0

0.2

ou
tp

ut
 v

al
ue

s

Fig. 6. Initial samples (grey dots), actual system outputs (blue dots) with
shrunk constraints (yellow dash lines), predictions (pink dots), and constraint
values (black dashed lines) (ideal-sysid with penalty (6), L = 1, ρ = 106)

20 30 40 50 60 70 80 90 100

3.0

3.5

4.0

#10-2 RMSE - NARX (L=1, no constraints)

passive GSx iGS QBC ideal

20 30 40 50 60 70 80 90 100

queried samples

3.0

3.5

4.0

#10-2 RMSE - NARX (L=1, with constraints)

passive GSx iGS QBC ideal

Fig. 7. AL problem (10) predicted with an ARX model, median RMSE
without (upper plot) and with constraints (9) (lower plot). Vertical lines
denote mean absolute deviation.

ignored and violated. Instead, as illustrated by Fig. 5 (blue
dots), introducing the constraint-violation penalty p defined
in (4) is quite effective in preventing the outputs from
exceeding the bounds in (9).

Note that as model accuracy improves, the number of
constraint violations also decreases. The initial Ni = 6
samples (grey dots) are generated using passive learning. The
figure also shows the output samples (yellow dots) obtained
without imposing a constraint violation penalty (ρ = 0).

Fig. 6 illustrates the output samples (blue dots) generated
by ideal-sysid under the scenario where the constraints are
tightened, as defined in (6) along with the adjusted constraint
values (yellow dashed lines) and predictions ŷk (pink dots).

To evaluate the robustness of the AL methods against
mismatches between the chosen model class and the system,
we consider data generated by the NARX system

yk = θ′xk−1 + ay3k−1 + by2k−2 + αηk (10)

where θ, α and ηk are the same as in the ARX example (8),
a = −0.1, and b = 0.1. We still apply the original ARX
model, ŷk = θ′kxk−1, to predict the output yk of the
nonlinear system (10) and use Kalman filtering to estimate
θk. Fig. 7 (upper plot) shows that, without constraints,
ideal-sysid is superior to passive, iGS, and QBC, and is
comparable to GSx; in the constrained case (lower plot),
except for passive that can collect more informative samples

7206

20 30 40 50 60 70 80 90 100

1.0

1.5

2.0

2.5

3.0
3.5

#10-2 RMSE - NARX (L=1, no constraints)

passive
GSx
iGS
QBC
ideal

20 30 40 50 60 70 80 90 100

queried samples

1.0

1.5

2.0

2.5

3.0
3.5

#10-2 RMSE - NARX (L=1, with constraints)

passive
GSx
iGS
QBC
ideal

Fig. 8. AL problem (10) predicted with a NARX model, median RMSE
without (upper plot) and with constraints (9) imposed in all methods but
passive sampling (lower plot). Vertical lines denote mean absolute deviation.

by violating the constraints, ideal-sysid still provides the
best performance. The suboptimal performance of QBC and
iGS might be due to the persistence of the estimated model
uncertainty due to the inherent model bias.

B. NARX example

Finally, we demonstrate the effectiveness of the proposed
AL approach for actively learning the nonlinear autoregres-
sive model ŷk = [x′

k−1 x
3
k−1,1 x

2
k−1,2]θk from data generated

again by system (10), and with θk estimated by EKF. Fig.
8 shows that ideal-sysid is superior to passive, GSx, and
QBC, while it matches iGS without constraints (upper plot).
On the other hand, iGS performs poorly when constraints
are imposed (lower plot). Note again in the lower plot that
the RMSE of passive is the lowest in the constrained case,
due to its ability to get more informative data by violating
the output constraints.

IV. CONCLUSIONS

This paper has introduced different active learning methods
for online experiment design tailored to the identification
of autoregressive models. The proposed technique ideal-
sysid stands out as promising due to its consistent be-
havior across different scenarios, including both linear and
nonlinear models, as well as those with or without soft
output constraints. Future work will focus on extending the
proposed approach to identifying linear and nonlinear state-
space models from input/output data, which poses additional
challenges due to the presence of hidden states.

REFERENCES

[1] L. Ljung, System Identification : Theory for the User. Prentice Hall,
2 ed., 1999.

[2] L. Ljung, C. Andersson, K. Tiels, and T. Schön, “Deep learning and
system identification,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1175–
1181, 2020.

[3] G. Pillonetto, A. Aravkin, D. Gedon, L. Ljung, A. Ribeiro, and
T. Schön, “Deep networks for system identification: a survey,” arXiv
preprint 2301.12832, 2023.

[4] I. M. Y. Mareels and M. Gevers, “Persistency of excitation criteria for
linear, multivariable, time-varying systems,” Mathematics of Control,
Signals and Systems, vol. 1, no. 3, pp. 203–226, 1988.

[5] T.-C. Lee, Y. Tan, and D. Nešić, “Stability and persistent excitation in
signal sets,” IEEE Transactions on Automatic Control, vol. 60, no. 5,
pp. 1188–1203, 2015.

[6] C. R. Rojas, J. S. Welsh, G. C. Goodwin, and A. Feuer, “Robust
optimal experiment design for system identification,” Automatica,
vol. 43, no. 6, pp. 993–1008, 2007.

[7] R. Fisher, The Design of Experiments. Edinburgh: Oliver & Boyd,
1935.

[8] B. Settles, Active Learning. Synthesis lectures on artificial intelligence
and machine learning, Morgan & Claypool, 2012.

[9] P. Kumar and A. Gupta, “Active learning query strategies for clas-
sification, regression, and clustering: a survey,” Journal of Computer
Science and Technology, vol. 35, no. 4, pp. 913–945, 2020.

[10] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu, “Active learning: A
survey,” in Data Classification: Algorithms and Applications (C. Ag-
garwal, ed.), ch. 22, pp. 572–605, Chapman and Hall/CRC Press, 2014.

[11] D. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[12] D. Cohn, Z. Ghahramani, and M. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol. 4,
pp. 129–145, 1996.

[13] R. Burbidge, J. Rowland, and R. King, “Active learning for regression
based on query by committee,” in Int. Conf. on Intelligent Data
Engineering and Automated Learning, pp. 209–218, 2007.

[14] W. Cai, Y. Zhang, and J. Zhou, “Maximizing expected model change
for active learning in regression,” in Proceedings - IEEE International
Conference on Data Mining, ICDM, pp. 51–60, 2013.

[15] D. Wu, C.-T. Lin, and J. Huang, “Active learning for regression using
greedy sampling,” Information Sciences, vol. 474, pp. 90–105, 2019.

[16] Z. Liu, X. Jiang, H. Luo, W. Fang, J. Liu, and D. Wu, “Pool-
based unsupervised active learning for regression using iterative
representativeness-diversity maximization (iRDM),” Pattern Recogni-
tion Letters, vol. 142, pp. 11–19, 2021.

[17] A. Bemporad, “Active learning for regression by inverse distance
weighting,” Information Sciences, vol. 626, pp. 275–292, May 2023.
Code availble at http://cse.lab.imtlucca.it/∼bemporad/ideal.

[18] S. Tang, K. Fujimoto, and I. Maruta, “Actively learning Gaussian
process dynamical systems through global and local explorations,”
IEEE Access, vol. 10, pp. 24215–24231, 2022.

[19] H. S. A. Yu, C. Zimmer, and D. Nguyen-Tuong, “Batch active learn-
ing in gaussian process regression using derivatives,” arXiv preprint
arXiv:2408.01861, 2024.

[20] E. Lundby, A. Rasheed, I. Halvorsen, D. Reinhardt, S. Gros, and
J. Gravdahl, “Deep active learning for nonlinear system identification,”
arXiv preprint arXiv:2302.12667, 2023.

[21] L. Ljung, “Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems,” IEEE Transactions on
Automatic Control, vol. 24, no. 1, pp. 36–50, 1979.

[22] A. Bemporad, “Recurrent neural network training with convex loss
and regularization functions by extended Kalman filtering,” IEEE
Transactions on Automatic Control, vol. 68, no. 9, pp. 5661–5668,
2023.

[23] K. Seel, A. Bemporad, S. Gros, and J. Gravdahl, “Variance-based ex-
ploration for learning model predictive control,” IEEE Access, vol. 11,
pp. 60724–60736, 2023.

[24] R. Rickenbach, J. Köhler, A. Scampicchio, M. N. Zeilinger, and
A. Carron, “Active learning-based model predictive coverage control,”
IEEE Transactions on Automatic Control, pp. 1–16, 2024.

[25] H. Yu and S. Kim, “Passive sampling for regression,” in IEEE Int.
Conf. on Data Mining, pp. 1151–1156, 2010.

[26] T. RayChaudhuri and L. Hamey, “Minimisation of data collection
by active learning,” in Proc. Int. Conf. on Neural Networks, vol. 3,
pp. 1338–1341, 1995.

[27] V. R. Joseph and L. Kang, “Regression-based inverse distance
weighting with applications to computer experiments,” Technometrics,
vol. 53, no. 3, pp. 254–265, 2011.

7207

