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Abstract— This work studies the performance of an event-
based control approach, namely level-triggered sampling, in a
standard multidimensional single-integrator setup. We falsify
a conjecture from the literature that the deployed p-norm
in the triggering condition supposedly has no impact on
the performance of the sampling scheme in that setting. In
particular, we show for the considered setup that the usage of
the maximum norm instead of the Euclidean norm induces
a performance deterioration of level-triggered sampling for
sufficiently large system dimensions, when compared to periodic
control at the same sampling rate. Moreover, we investigate the
performance for other p-norms in simulation and observe that it
degrades with increasing p. In addition, our findings reveal the
previously unknown role of the triggering rule in the cause of a
recently discovered phenomenon: Previous work has shown for
a single-integrator consensus setup that the commonly observed
performance advantage of event-based control over periodic
control can be lost in distributed settings with a cooperative
control goal. In our work, we obtain similar results for a
non-cooperative setting only by adjusting the norm in the
level-triggered sampling scheme. We therefore demonstrate that
the performance degradation found in the distributed setting
originates from the triggering rule and not from the considered
cooperative control goal.

Index Terms— Networked control systems, Event-triggered
control, Sampled-data control, Control over communications.

I. INTRODUCTION

Instead of sampling periodically, event-based control
closes the feedback loop only if an event-triggering con-
dition is satisfied. While periodic control still is the typical
choice for sample-based control systems, event-based control
schemes are a powerful alternative with relevance in various
applications such as networked control systems or systems
with energy efficiency requirements. The advantage of event-
based control for applications requiring resource-aware con-
trol loop design [1] lies in its capability to reduce the
usage rate of communication networks or energy-consuming
components in the control loop while maintaining a similar
performance level when compared to periodic control.

Early results by [2] have shown this potential in a single-
integrator setup with level-triggered sampling. Subsequent
works such as [3] have generalized the findings to 2-
dimensional integrator systems. As it remained challenging
to provide theoretical guarantees on the performance advan-
tage of event-based control for more general settings, [4]–
[9] have introduced and examined the concept of consistency
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for event-based control approaches. In short, an event-based
control scheme is called consistent if it provides an equal or
better level of performance as any periodic controller while
operating at the same average sampling rate. The authors
propose design techniques to arrive at consistent event-based
control schemes for LQ- or L2/ℓ2-performance measures and
linear time-invariant systems.

Another line of research on event-based control is aimed at
finding optimal triggering rules and control laws with respect
to predefined performance measures which formulate a trade-
off between control performance and triggering rate. Typical
performance measures consider quadratic state costs and
linear triggering rate costs including a scalar trade-off factor,
such as in [10] for a finite horizon or in [11, Paper II] for
an infinite horizon problem. The authors of the latter paper
provide a closed-form solution for an optimal triggering
rule in the multidimensional integrator case. Furthermore,
the work [12] proposes a numerical sampling scheme de-
sign method for an LQG setting with output feedback. It
builds upon the results in [13]–[15] which derive an H2-
optimal controller design approach for arbitrary uniformly
bounded sampling patterns and show that the design of
optimal controller and optimal triggering rule are separable
in this setting. Moreover, the authors in [16] present an
event-based controller design approach for continuous-time
LTI systems with H∞-performance guarantees. They also
prove consistency of the proposed event-based controller
with respect to the optimal periodic sample-based controller.

Inspired by [15, Rem. 1], we study the performance
of level-triggered sampling schemes for an n-dimensional
single-integrator system as considered in [11, Paper II] and
[15], but with different p-norms in the triggering condi-
tion. We thereby falsify the conjecture in [15, Rem. 1]
that the chosen p-norm supposedly plays no role for the
performance of the level-triggered sampling scheme in this
setting. While the 2-norm level-triggering scheme is well
studied and outperforms periodic control for the same av-
erage sampling rate, see e.g., [11], [13], [15], our theoret-
ical analysis shows a performance degradation for the ∞-
norm case. For sufficiently large system dimensions and
equal average sampling rates, we find that periodic control
outperforms event-based control with ∞-norm triggering.
Moreover, we examine the performance implications of other
p-norms in the level-triggering condition in simulation. We
observe that the performance of the level-triggered sampling
scheme degrades with increasing p. In addition, we obtain
new insights into a recently discovered phenomenon: Our
preliminary work [17], [18] shows for a distributed single-
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integrator consensus problem that the performance advantage
of event-based control compared to periodic control might
not generally be provided in cooperative setups. With the
results in this paper, we demonstrate that the decentralized
level-triggering rule in [17], which can also be written in
terms of the ∞-norm triggering rule, sits at the core of the
found phenomenon. This is due to the fact that, in this work,
we consider the same triggering rule in a non-cooperative
instead of a cooperative setting and still find the described
performance degradation of event-based control. We thereby
demonstrate that the phenomenon is not a direct consequence
of considering a cooperative control goal, but that further
research on it should focus on examining decentralized
triggering rules and their performance implications.

Our paper is structured as follows: In Section II, we
describe the setup and introduce the considered problem.
After that, we present our theoretical results in Section III,
and support our findings with numerical simulations in
Section IV. We conclude this work in Section V.

II. SETUP AND PROBLEM FORMULATION

We consider a system that can be described by the
following dynamical equation

dx(t) = u(t) dt+ dv(t), (1)

where x(t) = [x1(t), . . . , xn(t)]
⊤ refers to the system

state, u(t) = [u1(t), . . . , un(t)]
⊤ to the control input, and

v(t) = [v1(t), . . . , vn(t)]
⊤ to an n-dimensional standard

Wiener process.
Our aim is to quantify and relate the performance of a

selection of sample-based control algorithms, namely level-
triggered and periodic control schemes. In order to facilitate a
fair comparison, we will do so under equal average sampling
rates. Note that this comparison concept is equivalent to a
comparison of average sampling rates under equal perfor-
mance requirements [2]. This perspective has for example
also been leveraged in [2], [4], [5], [7]–[9], [11].

The control goal is to keep the described system as close
to the origin as possible over time. Therefore, we define the
following cost functional as performance measure

J := lim sup
M→∞

1

M

∫ M

0

E
[
x(t)⊤x(t)

]
dt, (2)

which quantifies the long-term average of the expected
quadratic deviation of the system state from the origin, or,
in other words, the asymptotic average variance of x(t).

Consequently, the input

u(t) = −
∑
k∈N

δ(t− tk)x(tk) (3)

is optimal under the considered performance measure (2)
regardless of the deployed sampling scheme. We denote by
δ(·) the Dirac impulse and by (tk)k∈N0

with t0 = 0 the sam-
pling instants determined by the respective sampling scheme.
The defined impulsive control input resets the system to the
origin at every sampling instant.

Note that this setup has been studied in various flavors
in the literature on event-based control, see e.g., [2], [3],
[11], [15], [19]. We contribute to this collection on funda-
mental characteristics of event-based control schemes in this
standard setup with the following two objectives: Firstly, we
examine the impact of the selected p-norm in a well-studied
event-triggering scheme - level-triggered sampling - on the
performance of the closed loop and, thereby, investigate the
following conjecture from [15, Rem. 1].

Conjecture 1 ([15]): Monte Carlo simulations indicate
that the performance of level-triggered sampling schemes is
independent of the utilized p-norm in the triggering rule.

Secondly, the studied ∞-norm level-triggering rule co-
incides with the decentralized level-triggering rule in [17]
whereas we study a non-cooperative instead of a cooperative
control goal here. Due to this connection, we attain new in-
sights on the phenomenon found in [17] that periodic control
outperforms event-based control in a particular distributed
consensus setup if the number of agents is large enough.

III. PERFORMANCE ANALYSIS

In this section, we present our performance analysis results
for the previously described setup. After some preliminaries,
we present a performance result for periodic control as a
comparison baseline. Subsequently, we state our performance
results for the event-based control schemes considered in
Conjecture 1. Since general performance results cannot be
obtained as of now, we consider the two special cases of
Euclidean and maximum norm triggering.

A. Preliminaries

Let us state helpful facts about the considered problem.
Lemma 1: Let the inter-event times be independent and

identically distributed and let E[τ ] < ∞, where τ is the
inter-event time determined by the sampling scheme. Then,
the cost (2) can be computed according to

J(τ) =
E
[∫ τ

0
x(t)⊤x(t) dt

]
E[τ ]

,

where we only need to consider the first sampling interval.
Proof: The proof follows along the lines of [18, Lem. 1]

and is omitted due to space limitations.
Let us define Q(τ) := E

[∫ τ

0
x(t)⊤x(t) dt

]
.

Lemma 2: Let τ be independent of the direction, i.e., τ
does not change if vi is interchanged with vj for any i, j ∈
{1, . . . , n}. Then, given Lemma 1, we can establish

Q(τ) = nE
[∫ τ

0

v1(t)
2 dt

]
.

Proof: We have

Q(τ) = E

[∫ τ

0

n∑
i=1

x2
i dt

]
= E

[∫ τ

0

n∑
i=1

v2i dt

]

= nE
[∫ τ

0

v1(t)
2 dt

]
,

where we used that τ is independent of the direction in the
last step.
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Remark 1: The assumption formulated in Lemma 2 is
satisfied for the considered sampling schemes in this paper.

B. Periodic Control

For periodic control, the inter-event time is a user-defined
constant τper = tk+1−tk = const. As this sequence of inter-
event times is indeed independent and identically distributed
as well as independent of the direction in the sense of
Lemma 2, we are able to state the following result.

Proposition 1: Suppose system (1) is controlled by the
control input (3) with constant inter-event times τper. Then,
the cost (2) can be expressed as

Jper(τper) = n
τper
2

.

Proof: As the inter-event times τper are constant,
Lemmas 1 and 2 apply. Thus, we arrive at

Q(τper) = n

∫ τper

0

E
[
v1(t)

2
]
dt

= n

∫ τper

0

tdt = n
τ2per
2

,

which we can use in Jper(τper) = Q(τper)/τper to arrive at
the desired expression for (2).

Remark 2: Note that this result is in line with the ones
found in [2], [19], [20], scaled by the state dimension.

The found cost expression will serve as a baseline for
the event-based control schemes analyzed in the following
section.

C. Event-Based Control

For this paper, let us consider p-norm level-triggering rules
of the form

∥x(t)∥p ≥ ∆p (4)

where ∆p > 0 is a constant and p ∈ [1,∞]. This is motivated
by Conjecture 1. In addition, note that the decentralized
triggering rule considered in [17] for a consensus problem
is equal to (4) with p = ∞.

The inter-event times resulting from this type of triggering
rule can be defined as a stopping time

τp(∆p) = inf{t > 0 : ∥x(t)∥p ≥ ∆p}.
Note that all inter-event times are independent and identically
distributed. Given the considered type of triggering rule, we
can establish the following lemma.

Lemma 3: Given the triggering condition (4), the follow-
ing scaling relationships hold

Qp(∆p) = ∆4
pQp(1),

E[τp(∆p)] = ∆2
pE[τp(1)] ,

where Qp(∆p) := Q(τp(∆p)).
Proof: See Appendix A.

The scaling relationships allow us to concentrate on the
case ∆p = 1 for the performance analysis of the triggering
rules (4). This is due to the following lemma which utilizes
the shorthand Jp(∆p) := J(τp(∆p)).

Lemma 4: Given the assumptions of Proposition 1 and
triggering condition (4), the following holds

Jp(∆p)

Jper(E[τp(∆p)])
=

Jp(1)

Jper(E[τp(1)])
.

Proof: Utilizing Lemma 3 with Proposition 1 and
Lemma 1 yields

Jp(∆p) = ∆2
pJp(1),

Jper(E[τp(∆p)]) = ∆2
pJper(E[τp(1)]),

which allows us to cancel ∆p from the considered ratio.
Thus, the properties shown for Jp(1)/Jper(E[τp(1)]) also

hold for the respective ratio with any ∆p > 0. For the
remainder of this work, we will thus omit the argument ∆p

whenever a result holds for any choice of ∆p > 0.
Let us now proceed with our analysis for two specific

choices of p, namely p = 2 and p = ∞. The 2-norm case
has already been studied in the literature, and we present
reformulated results such that a comparison with periodic
control and other p-norm level-triggering schemes becomes
possible. For the ∞-norm case, we deduce new theoretical
findings and put them into context with the presented 2-norm
results and Conjecture 1.

1) Euclidean Norm Triggering: Utilizing the Euclidean or
2-norm for triggering results in the inter-event times

τ2(∆2) = inf{t > 0 : ∥x(t)∥2 ≥ ∆2}. (5)

As laid out in the introduction, this case is well-studied in the
literature, see e.g., [2], [3], [11], [15]. Let us now leverage
existing results to deduce performance characteristics that we
can use in our intended comparison.

Following the arguments in [11, Paper II] or [15], we arrive
at a closed-form solution for the cost ratio of 2-norm level-
triggering and periodic control.

Proposition 2: Given the triggering rule in (5), we have

J2
Jper(E[τ2])

=
n

n+ 2
,

where Jper(E[τ2]) denotes the periodic control cost with
τper = E[τ2].

Proof: The result follows, for example, from [15,
Prop. 2] with Σv,Σu → 0. We omit the details here.

Remark 3: We additionally know from [11, Paper II] that,
for a fixed average sampling rate, the 2-norm level-triggering
rule is optimal with respect to (2). Given this result, we
can reformulate Conjecture 1 as the hypothesis that any
p-norm utilized in the considered triggering condition is
supposedly optimal in the sense that the resulting triggering
rule minimizes (2) for a fixed E[τp].

2) Maximum Norm Triggering: Let us now examine Con-
jecture 1 for the ∞- or maximum norm. The corresponding
inter-event time can be formulated as

τ∞(∆∞) = inf{t > 0 : ∥x(t)∥∞ ≥ ∆∞}. (6)

Before we can arrive at a result on the performance relation-
ship between event-based and periodic control within this
setting, we require the following lemma.
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Lemma 5: Let Z, (Zn) be a random variable and a se-
quence of random variables, respectively. Moreover, let (Zn)
converge weakly to Z and V[Z] < ∞, where V[·] denotes
the variance. Then,

lim inf
n→∞

V[Zn] ≥ V[Z] .

Proof: See Appendix B
Given this lemma, we can now show the following result.
Theorem 1: Given that system (1) is controlled with the

impulsive control input (3) under the triggering rule in (6),
there exists an n0 such that, for all n ≥ n0, we have

Jper(E[τ∞]) < J∞

where Jper(E[τ∞]) denotes the periodic control cost with
τper = E[τ∞].

Proof: Due to Lemma 4, we only consider the case
∆∞ = 1. In this proof, we will therefore omit the arguments
of τ∞(1) and Q∞(1) for better readability.

As a first step, we can follow similar arguments as in the
proof of [17, Lem. 1] to show that

2(lnn)2 (τ∞ − an) ⇒ G, as n → ∞, (7)

with

an :=
1

2 lnn
−

ln

√
2/π

(2 lnn)1/2

2(lnn)2
,

and where ⇒ denotes convergence in distribution. Further-
more, G is a Gumbel-distributed random variable, i.e.,

P(G ≥ r) = exp(− exp(r)).

In addition to the direct proof in [17, Lem. 1], (7) can also
be derived from [21, Thm. 2.1.6]. We will therefore omit the
details here.

With Lemma 5, there exists an n1 such that

V
[
2(lnn)2 (τ∞ − an)

]
≥ 0.5 · V[G] ∀n ≥ n1,

which implies

V[τ∞] ≥ 1

2
· V[G]

4(lnn)4
∀n ≥ n1, (8)

with V[G] = π2/6. Following a similar reasoning as in the
proof of [17, Thm. 2], we arrive at

E
[∫ τ∞

0

v1(t)
2 dt

]
>

E[τ∞]
2

2
+

V[τ∞]

2
− c n−1/2,

with c = E[(
∫ T2

0
v1(t)

2 dt)2]1/2 and Tj := inf{t > 0 :
|xj(t)| = 1} for all j ∈ {1, . . . , n}. Furthermore, there exists
an n2 such that 1

4 ·
π2/24
(lnn)4 −c n−1/2 > 0 for all n ≥ n2 and let

n0 := max(n1, n2). Together with (8), we have for n ≥ n0

1

n
Q∞ = E

[∫ τ∞

0

v1(t)
2 dt

]
>

E[τ∞]
2

2
+

1

4
· π2/24

(lnn)4
− c n−1/2

>
E[τ∞]

2

2
=

1

n
Q(τper = E[τ∞]),

where we used Lemma 2 in the first step and Proposition 1
in the last step. Multiplying both sides with n/E[τ∞] gives
the desired result.

Remark 4: Note that, in the proof of Theorem 1, we have
used a similar proof technique as in [17], [18] while we
consider a different, i.e., non-cooperative, setup. In addition,
we provide a much shorter proof for the desired inequality
by leveraging Lemma 5 instead of deriving the asymptotic
order of the moments of τ∞. The latter requires to show the
convergence of the first and second moment in addition to
the convergence in distribution in (7).

With Theorem 1, we are able to falsify Conjecture 1 for
the ∞-norm. In particular, we prove that triggering with
the ∞-norm performs worse than periodic control for n ≥
n0 while triggering with the 2-norm outperforms periodic
control for any state dimension. Thus, the Euclidean and
maximum norm triggering schemes cannot result in the same
performance as suspected in Conjecture 1. While it remains
an open problem to examine the conjecture for p-norms other
than p = 2 and p = ∞, we can already conclude that the
choice of the norm matters for the two examined cases.

In addition and as already mentioned, the decentralized
triggering condition considered in [17] can also be formu-
lated via the maximum norm if all agent states are stacked in
a vector. While we consider a non-cooperative control goal
instead of a consensus problem in this work, we find that pe-
riodic control outperforms ∞-norm triggering for sufficiently
large system dimensions n, similarly to the phenomenon
discovered in [17]. This observation as well as the underlying
proofs indicate that the decentralized triggering condition
is the key component inducing the found phenomenon.
Thereby, we also demonstrate that this phenomenon is not
a direct consequence of considering a cooperative control
goal. Instead, we can conclude that the form of the deployed
triggering condition and the information available to each
agent are at the root of the observed twist in the performance
relationship of periodic and event-based control. Thus, future
research can focus on whether there exists a consistent
decentralized triggering rule and, if yes, what form it has.

IV. SIMULATION

After demonstrating the difference between 2- and ∞-
norm triggering from a theoretical perspective, we support
these findings with Monte Carlo simulations in this section.
In addition, we will evaluate performance ratios for other p-
norms and, thereby, try to attain more insights for which we
have not presented a theoretical analysis yet.

We therefore perform Monte Carlo simulations in order to
obtain estimates for the cost ratio Jp/Jper(E[τp]) for various
p ∈ [1,∞]. Note once more that, due to Lemma 4, the
performance ratios obtained in simulation are valid for any
choice of ∆p > 0. Thus, without loss of generality, we
choose ∆p = 1 in our simulations. Given the simulation
results for the event-based control schemes, we can then
estimate the cost ratio under perfect satisfaction of the
constraint τper = E[τp] by leveraging Proposition 1. In
addition, since Lemma 1 applies, we can terminate a Monte
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Fig. 1. Cost ratio Jp/Jper(E[τp]) for different p-norms in the triggering
condition. Simulation results are interpolated with dashed lines.

Carlo run when the first event has been reached. We can
therefore estimate the cost ratio based on the following result.

Proposition 3: Let us consider system dynamics (1) with
control input (3) and let τ be any stopping time satisfying
the assumptions of Lemmas 1 and 2. Then, the cost ratio
J(τ)/Jper(E[τ ]) can be expressed as

J(τ)

Jper(E[τ ])
=

E
[
R(τ)4

]
n(n+ 2)E[τ ]2

where R(t) := ∥v(t)∥2 is a Bessel process of dimension n
started at R(0) = 0.

Proof: Omitted due to space limitations.
We simulate the system utilizing the Euler-Maruyama

method with a step size of 10−4 s. Moreover, we perform
20 000 Monte Carlo runs per experiment to estimate the
required expected values in the cost ratio expression from
Proposition 3.

The simulation results are shown in Fig. 1. We have
simulated the system under 2-, 8- and ∞-norm triggering
conditions for various state dimensions. In addition, we also
depict the closed-form solution of the cost ratio given in
Proposition 2 for the 2-norm case. Firstly, we can validate
the simulation results by comparing them to the closed-form
solution for the 2-norm triggering condition. On the one
hand, we observe that the estimated cost ratio is close to
the closed-form solution for the state dimensions considered
in the simulation. On the other hand, there remains some
deviation resulting from the finite number of Monte Carlo
samples per run and the utilized step size.

Secondly, we are able to confirm our theoretical result
that, with the ∞-norm triggering condition, periodic con-
trol outperforms event-based control beyond a certain state
dimension. Furthermore, we observe that the performance
ratio is lower bounded by the one for the 2-norm case.

Thirdly, we also simulated the system under 8-norm
triggering. Note that 2-, 8- and ∞-norm naturally yield
equal cost ratios for n = 1. We can already observe a
significant performance disadvantage of the 8- and ∞-norm
compared to the 2-norm triggering condition for larger single
digit state dimensions. Moreover, we find that 8-norm level-
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Fig. 2. Cost ratio Jp/J2 for different p-norms in the triggering condition
under the constraint E[τp] = E[τ2].

triggered control also seems to suffer from the problem that
periodic control can outperform it for a sufficiently large state
dimension. Given the simulation results, this state dimension
is larger than in the ∞-case and seems to lie somewhere
around n ≈ 70 as opposed to n ≈ 40.

In order to examine the relative performance disadvantage
of triggering with other p-norms than the 2-norm more
closely, we plot the cost ratios Jp/J2 under the constraint
E[τp] = E[τ2] for various p in Fig. 2. We obtain them by
computing the ratio of the corresponding p-norm and 2-norm
results from Fig. 1. We observe that the ratios Jp/J2 increase
rapidly beyond n = 1 for all simulated p-norms. Moreover,
the performance disadvantage of p-norm triggering compared
to 2-norm triggering grows with increasing p > 2.

Consequently, the simulation results confirm our theo-
retical findings. As demonstrated for the 8- and ∞-norm
case, the observed performance degradation for p-norms with
p ̸= 2 can even render the event-based control scheme
inconsistent depending on the state dimension. Moreover, the
simulation results point to the conclusion that the choice of
the p-norm has a performance implication for any choice of
p ∈ [1,∞]. In particular, we formulate the conjecture that

Conjecture 2: The performance of the considered level-
triggered sampling schemes degrades with increasing p > 2.

V. CONCLUSION

In this work, we have examined Conjecture 1 from [15,
Rem. 1], namely that the selected p-norm has no impact on
the performance of the level-triggered sampling scheme in
an n-dimensional single-integrator setup. We have falsified
the conjecture by our theoretical analysis in the ∞-norm
case. The provided simulation results confirm this result and,
moreover, indicate that the conjecture does not hold for other
p-norms either. In addition, based on the performed Monte
Carlo simulations, we formulated the new conjecture that the
performance of the p-norm level-triggering schemes degrades
with increasing p > 2 in the considered setup.

These findings also provide important insights into the
source of the phenomenon found in [17], namely that event-
based control might be outperformed by periodic control
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in a particular multi-agent system consensus setup. With
the results derived in this paper, we demonstrate that the
decentralized triggering condition in [17], which can also
be written in terms of the ∞-norm, is at the root of this
performance degradation. This also reveals that the observed
phenomenon is not a direct consequence of considering a
cooperative control goal. Consequently, future research on
the phenomenon should focus on examining decentralized
triggering conditions and their performance implications.

In future work, we plan to provide theoretical results on
the performance of other p-norm triggering conditions. While
their behavior has already been examined in simulation in
this work, characterizing it theoretically remains an open
problem. In addition, exploring consistency of decentralized
triggering conditions is at the core of explaining and poten-
tially resolving the phenomenon found in [17].

APPENDIX

A. Proof of Lemma 3

Let us show the first identity. Since triggering condition
(4) satisfies the assumptions of Lemmas 1 and 2, we have

Qp(∆p)/n

= E
[∫ τp

0

v1(s)
2 ds

]
= E

[∫ inf{t>0 : ∥vk(∆2
pt/∆

2
p)∥p=∆p}

0

v1(∆
2
ps/∆

2
p)

2 ds

]

= E

[∫ inf{t>0 : ∆p∥vk(t/∆2
p)∥p=∆p}

0

∆2
pv1(s/∆

2
p)

2 ds

]

= ∆2
p E

[∫ ∆−2
p inf{∆2

pt
′>0 : ∥vk(t

′)∥p=1}

0

v1(s
′)2∆2

p ds
′

]

= ∆4
p E

[∫ inf{t′>0 : ∥vk(t′)∥p=1}

0

v1(s
′)2 ds′

]
= ∆4

p Qp(1)/n.

The third step leverages the scaling property of Brownian
motions. In the fourth step, we applied linear integral sub-
stitution. The other formula is proved similarly.

B. Proof of Lemma 5

For a random variable Y and a real number M > 0, define
its saturated version

Y M :=

{
Y, |Y | ≤ M,

M sign(Y ), otherwise.

It is well known that a Lipschitz transform with Lips-
chitz constant 1 (or smaller) reduces the variance, hence
V
[
Y M

]
≤ V[Y ].

By the continuous mapping theorem (cf. [22, Thm. 2.3]),
ZM
n weakly converges to ZM since Zn weakly converges to

Z. Therefore, V
[
ZM
n

]
converges to V

[
ZM

]
when n → ∞,

as the random variables are bounded. Thus, it follows that

lim inf
n→∞

V[Zn] ≥ lim inf
n→∞

V
[
ZM
n

]
= V

[
ZM

]
.

With V[Z] < ∞, letting M → ∞ shows the claim since

lim
M→∞

V
[
ZM

]
= V[Z] .
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