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Abstract— This paper presents a probabilistic framework to
design safe controllers for linear systems under parametric un-
certainties. To this end, a two-layer learning-enabled controller
is presented that unifies the experience-replay model learning
and the scenario-based optimization. The inner loop leverages
the scenario optimization to impose probabilistic stability and
safety specifications through sampling from a control Lyapunov
function and a control barrier function, respectively. Each
sample represents a plausible system dynamics realization
within the range of the uncertainties. To quantify the model
uncertainty and, thus, to facilitate a proactive and goal-oriented
sampling of safety and stability constraints, an experience
replay-based model learning is presented in the outer loop.
The exponentially fast convergent guarantees of the presented
approach and the quantification of the exponential rate using
the collected data allow us to quantify the ambiguity set for
the system parameters based on the data informativeness. The
quantified modeling error acts as a vanishing perturbation
to the true dynamics, from which samples can be taken
at a specific frequency to solve an optimization problem in
the inner loop. The presented approach provides safety and
stability guarantees with high probability, even during learning.
Simulation is used to depict the efficacy of the proposed
approach.

Index Terms— Safe control, scenario optimization, experience
replay, uncertain dynamics, model learning

I. Introduction

Successful deployment of autonomous control systems in
the real world demands developing systematic and tractable
control design methods that account for the satisfaction
of safety constraints despite uncertainties. To account for
safety constraints, the model predictive control (MPC) [1]
formulates the optimal safe control design as a constrained
optimization problem. The resulting optimization problem
is convex if the control system is linear and the cost is
quadratic. As another approach to deal with safety con-
straints, reachability-based methods [2] compute the set
of initial states that can be kept inside the safe set as
well as their corresponding control actions. However, the
computational cost of computing the set of reachable states
is significant in general. As a tractable safe control design
approach, control barrier function (CBF)-based methods [3],
[4] assure safety by guaranteeing the forward invariance of
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the safe set. Most CBF-based methods rely on complete
knowledge of the system dynamics. To deal with model
uncertainties, the uncertainties are modeled in [5] as a
Gaussian process. The CBF is then formed to ensure the
forward invariance of the safe set for the worst-case model
realization. The effect of the model perturbation on the safety
using CBFs is investigated in [6] by guaranteeing the forward
invariance of a super-level set of the safe set and asymptotic
convergence of system’s trajectories to the safe set. However,
this approach does not prevent the violation of strict safety
constraints. Adaptive CBF (aCBF) and robust aCBF are
developed in [7], [8] to extend CBFs to systems with para-
metric uncertainties. Chance constraint CBFs are developed
for the safety of systems under measurement noise in [9],
[10]. In most CBF-based approaches, safety and performance
specifications are integrated through a quadratic optimization
(QP) problem for which control Lyapunov functions (CLFs)
and CBFs are imposed as soft and hard inequality constraints,
respectively. Since these constraints must be satisfied for
the entire range of the uncertain system parameters, the
quadratic programming problem turns into an optimization
problem with an infinite number of constraints, which is
not tractable in general. Moreover, finding the CLF/CBF
functions that are valid for all possible values of uncertainties
is a daunting challenge. Even though safe model learning
and control of uncertain linear systems are considered in
[11], an entirely different approach is considered in this
paper to tackle the same problem. That is, the adaptive
robust control barrier function (ARCBF) is used in [11] for
which the worst-case learning error is employed. To further
reduce the conservatism, a two-layer control framework is
presented in this paper, and experience replay model learning
is performed in the outer layer to quantify the uncertain
set, and the scenario optimization is leveraged in the inner
layer to proactively sample from the uncertain set and
impose sampled safety constraints. The sampling approach
will reduce the conservatism of the learning-based control
design and also assure its tractability.

Uncertainty quantification and reduction through data col-
lection are of vital importance in reducing the conservatism
of safe control design methods. This is because overly con-
servative uncertainty quantification can result in jeopardizing
the system’s performance and can even lead to infeasibility.
While the epistemic uncertainty (i.e., lack of knowledge
about the system dynamics) can be reduced as more data
become available, to the best of our knowledge, there is no
systematic approach to quantify the uncertainty reduction,
and therefore, imposing less restrictive CBFs constraints. In
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this paper, a two-layer learning-enabled safe control frame-
work is presented for the control of uncertain constrained
linear systems. The higher layer provides an uncertainty
quantification and reduction mechanism that maps the current
data set into the parametric uncertainty set from which the
lower layer can sample. The lower layer then leverages the
scenario approach [12] along with the CBFs to provide high-
probability safety guarantees. In contrast with the existing
scenario methods in the literature, a proactive sampling
approach is presented, in which the information about the set
of uncertain parameters with a high probability of constraint
satisfaction is updated and rapidly learned. This is achieved
by proposing a model learning based on experience replay
as the outer governing layer of the controller. The history of
data is used in the update law of the experience replay ap-
proach, which also provides an easy-to-verify persistence of
excitation (PE) condition [13]. This provides three significant
attributions to the overall framework. First, in contrast with
adaptive methods, it guarantees exponentially fast model-
learning convergence and safety during learning. Second, it
facilitates the derivation of uncertain set boundaries; thus,
the informative sampling is performed based on a better
approximation of the uncertain set at each iteration. Third,
the features of the experience replay method make the
learning error a vanishing perturbation to the exact model
and this enables stability guarantee using the perturbation
theory without even the need for sampling. This provides an
efficient, non-conservative, and tractable solution to the safe
control of uncertain systems with fast and guaranteed model
learning.
A. Notation

int C indicates the interior of a set C while its boundary
is denoted by BC. The Euclidean norm of a vector is shown
by }¨}. C1 stands for the set of continuously differentiable
functions. AzB indicates the set of elements that they are in
A and are not in B. All random variables are assumed to
be defined on a probability space pΩ,F , Prq, with Ω as the
sample space, F as its associated σ-algebra and Pr as the
probability measure.

II. Background and Problem Formulation
The system dynamics is considered as

9x “ Ax ` Bu (1)
with x P Rn as the state of the system and u P U Ă Rm

as the control input. A and B are the nominal dynamics and
control input matrices, respectively. The system is assumed
to be stabilizable.
A. Control Barrier Functions (CBFs)

CBFs enable restricting the trajectories of the system to
evolve within a pre-defined safe set by providing conditions
for the control input. The safe set is defined as

C “ tx|hpxq ě 0u (2)
where hpxq : Rn Ñ R is a C1 function which represents the
safety criterion.

Definition 1. A continuous function α : p´b, aq Ñ p´8,8q

with a, b ą 0 is an extended class K function, if it is strictly
increasing and αp0q “ 0 [6], [14]. ■

Definition 2. [3] Consider the system (1) and the safe set
C Ă Rn (2). If there exists a locally Lipschitz extended class
K function α such that

sup
uPU

r
Bh
Bx

Ax `
Bh
Bx

Bu ` αphpxqqs ě 0, @x P D (3)

then, the function hpxq is a CBF on D with C Ď D Ă Rn. ■

Accordingly, the set of safe control inputs for hpxq is

Umpxq “ tu P U|
Bh
Bx

Ax `
Bh
Bx

Bu ` αphpxqq ě 0u

Guaranteeing the forward invariance of the set C, and thus
the system’s safety, using CBFs is formally presented in
Theorem 1.

Theorem 1. [3] Consider the system (1) and the set C Ď D

(2) defined for a C1 function hpxq. If h is a CBF on D, then,
any Lipschitz continuous controller tu : D Ñ R|u P Umpxqu

renders the set C forward invariant.

B. Scenario-based Optimization
Consider the following robust convex programming (RCP)

[15]
RCP : min

γ
cTγ s.t. fδpγq ď 0, @δ P ∆ (4)

where γ is the optimization variable, fδpγq are convex
functions for every realization of the uncertain parameter δ
in the uncertainty set ∆. For a continuous uncertainty set
∆, (4) becomes a semi-infinite optimization problem, i.e.,
optimization with a finite number of optimization variables
and an infinite number of constraints.

Assume that N independent identically distributed (iid) in-
stances or scenarios of the uncertain parameter δ are sampled
according to a probability distribution as δp1q, δp2q, ..., δpNq.
Then, the scenario convex programming (SCP) of (4) is as
follows,

SCPN : min
γ

cTγ s.t. fδpiq pγq ď 0, i “ 1, ...,N (5)

which, in contrast to (4), provides a tractable standard convex
optimization problem with a finite number of constraints.
The advantage of the scenario approach is that the solution
to (5) satisfies unseen constraints as well, except for a small
fraction of it, which rapidly goes to zero with an increment
in the number of samples.

Theorem 2. Let γN
˚ be the solution to (5). Set a violation

parameter ϵ P p0, 1q and a confidence parameter β P p0, 1q.
Let the number of iid samples satisfy the following condition

N ą
2
ϵ

pln
1
β

` mq (6)

where m is the number of optimization variables. Then, with
the probability of no smaller than 1 ´ β, γN

˚ is an ϵ-level
robustly feasible solution. That is, it satisfies Prpδ P ∆ :
fδpγN

˚q ą 0q ď ϵ.

Proof: See [12], [16].
A lower bound for the number of samples is derived in

[17] based on the size of the feasible set. Let the number of
samples satisfy

N ě
1

2pϵq2 logp
|UzUϵ |
β

q (7)
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Then, it yields an ϵ-level robustly feasible solution with the
probability of at least 1´β, where U is the set of all feasible
values of γ, while Uϵ P U is the set of decision variable γ
for which the optimization constraints are satisfied with the
probability of higher than 1 ´ ϵ. We later show employing a
proper learning scheme can decrease this lower bound and
thus decrease the minimum number of samples to achieve a
specific violation probability.

C. Problem Statement
Considering the uncertain system dynamics as

9x “ Ax ` Bu ´ ∆pxqT θ (8)
where x P Rn is the system state, u P Rm is the control
input, and θ P Rp is the vector of unknown parameters. A
and B are the nominal dynamics and control input matrices,
respectively. It is assumed that the pair pA, Bq is stabilizable.

The goal is to design a controller that ensures safety
despite uncertainty while guaranteeing a stability condition,
which can impose a performance specification as much as
possible. Safety and stability specifications are encoded via
CBF and control Lyapunov function (CLF), respectively.
These functions are unified through QP optimization. Using a
quadratic Lyapunov function Vpxq “ xT Px and a CBF hpxq,
the QP optimization problem formulation for achieving this
overall goal for the uncertain system (8) becomes

QP : min
ul“ru,ηs

ul
T Hul ` Ful s.t. fθpuq ă 0, @θ P Θ (9)

where

fθpuq “

„

´ Bh
Bx pAx ` Buq ´ αphpxqq ` Bh

Bx∆
T pxqθ

´xT Qx ` 2xT PpBu ´ ∆T pxqθq ` λminpQq||x||2 ´ η

ȷ

(10)
and AT P ` PA “ ´Q, and η is the relaxation factor. In
the face of uncertainty, CBF and CLF inequality constraints
depend on an uncertain parameter θ, and thus, the QP
problem turns into an optimization with the infinite number
of constraints, which is not tractable. We leverage the sce-
nario approach to solve this problem along with an efficient
learning scheme to learn not only the uncertain parameters
but also quantify them over time to present a proactive
sampling approach that can achieve a higher probability of
achieving a safe and stabilizing controller.

III. Learning-enabled Scenario-based Quadratic
Programming

This section presents the idea of experience replay model
learning, learning-enabled scenario-based QP, and its theo-
retical development toward safe and stable control design of
systems under parametric uncertainty.
A. Experience Replay Model Learning

Let θ̂ be an estimation of θ and θ̃ “ θ´ θ̂ be the estimation
error. The following filters in terms of σ,l, xs and Ω, are
respectively applied to 9x, Ax ` Bu, x and ∆pxq in (8) as

9σptq “ ´βσptq ` 9xptq (11)
9lptq “ ´βlptq ` Ax ` Bu (12)
9xsptq “ ´βxsptq ` xptq (13)
9Ω “ ´βΩptq ´ ∆T pxq (14)

where β ą 0 is a design gain and Ωp0q “ 0, xsp0q “ 0,
σp0q “ 0, lp0q “ 0. The filtered signals in (11)-(14) are
given, respectively as

σptq “ e´βt
ż t

0
eβτ 9xpτqdτ (15)

lptq “ e´βt
ż t

0
eβτpAx ` Buqdτ (16)

xsptq “ e´βt
ż t

0
eβτxpτqdτ (17)

Ωptq “ ´e´βt
ż t

0
eβτ∆T pτqdτ (18)

where δ P Rn, Ω P Rnˆpmn`n2q, and xs P Rpm`nq. The filtered
signals are used to rewrite the system dynamics (8) as

σptq “ Ωptqθ ` lptq (19)
From (11), σ can be stated based on known variables xptq
and xsptq as

σptq “ xptq ´ e´βt xp0q ´ βxsptq (20)
Based on (19) and (20), the prediction error is formed as

eptq “ σptq ´Ωptqθ̂ptq ´ lptq (21)
To store and employ the history of data in the update law,
two memory stacks tσi ´ liui“1:p, tΩiui“1:p are collected,
which store the values of σptiq ´ lptiq and Ωptiq, respectively
at each time instance ti. The prediction error for the past
time instance ti using the current estimation of the uncertain
parameters is then formed as

eiptq “ σi ´Ωiθ̂ptq ´ li (22)
Therefore, the update law employing the past stored data is
presented as

9̂θ “ βθ1Ω
T ptqeptq ` βθ2

p
ÿ

i“1

ΩT
ieiptq (23)

where βθ1 and βθ2 are positive scalar gains. Under a rank
condition and in the presence of rich data, the update law
(23) guarantees exponential convergence of θ̂ to θ.

The convergence is proved using the Lyapunov function
Vθ as

Vθ “
1
2
θ̃T θ̃ (24)

Using (19) and (21), the prediction error can be written as
eptq “ Ωθ̃. Therefore using (23), one has

9̃θ “ ´
9̂θ “ ´βθ1Ω

T ptqΩθ̃ ´ βθ2

p
ÿ

i“1

ΩT
iΩiθ̃

Therefore derivative of (24) turns into

9Vθ “ ´βθ1θ̃
TΩT ptqΩθ̃ ´ βθ2θ̃

T
p

ÿ

i“1

ΩT
iΩiθ̃ ď 0 (25)

Thus, based on Lyapunov analysis, the error is bounded, and
under a rank condition, the summation term becomes positive
definite, which ensures the asymptotic stability of the error.
This result is formally presented in the following Lemma.

Lemma 1. [13] Consider the update law (23). Let there
exist p˚ such that for all p ě p˚, and for any sequence
t1 ă t2 ă .... ă tp, one has

rankprΩ1
T ,Ω2

T , ...,Ωp
T sq “ mn ` n2 (26)
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Then, θ̂ converges to θ exponentially fast. Moreover, consid-
ering the Lyapunov function

Vθ “
1
2
θ̃T θ̃ (27)

then, there exists βθ12 such that
9Vθ ď ´2pβθ12qVθ (28)

Remark 1. The experience-replay model learning employs
the regressor representation of the dynamics and provides an
update law that incorporates the past stored data. If the stored
data satisfies the rank condition (26), then in accordance with
(28), the approximation error converges to zero exponentially
fast.

Remark 2. Note that βθ12 depends on the smallest eigenvalue
of the rank matrix in (26).

The result of Lemma 1 can also be used to find the
boundaries of the uncertain set and achieve a higher accuracy
as the learning progresses.

Definition 3. Conditional Ambiguity Set. Consider the
system (8) and the update law (23). If available data satisfies
the rank condition (26), then the conditional ambiguity set
Θc is defined based on available approximation of θ at each
iteration as
Θc “

tθ|||θ̂|| ´ ||θ̃p0q||e´pβθ12qptq ď ||θ|| ď ||θ̂|| ` ||θ̃p0q||e´pβθ12qptqu

(29)

Corollary 1. Considering the system (8) and the update
law (23), if the rank condition (26) is satisfied, then the
conditional ambiguity set (29) is the set of all possibilities of
the uncertain parameter θ and its lower and upper bounds
converge together exponentially fast to a single point which
is the true value of θ.

Proof: Consider the inequality derived in (28). Accord-
ing to the comparison Lemma one has

Vθ ď Vθp0qe´2pβθ12qptq

Thus, from (27), one has
||θ̃|| ď ||θ̃p0q||e´pβθ12qptq (30)

The uncertain parameter is θ “ θ̂ ` θ̃. Thus, from (30), the
conditional ambiguity set (29) is formed.

In addition, considering the set bounds, θ̂ converges to the
true value θ˚ and this guarantees the exponential convergence
of the error envelop to zero. This completes the proof.

This gives the exponential envelope of the learning error,
and thus, Θ is shrinking exponentially fast. This feature is
especially important when it is used in conjunction with the
scenario approach. Since scenario optimization is built upon
a sampling of constraints, this learning method provides a
smaller sampling set after each update.

B. Experience Replay Scenario-based Optimization

To avoid the infinite number of samples and provide a
tractable safe solution, important sampling from the updated
set of uncertain parameters (29) is performed.

Fig. 1. Set Convergence

By extracting N iid samples θp1q, ..., θpNq from (29), the
corresponding scenario-based quadratic programming (SQP)
becomes

SQP : min
ul“ru,ηs

ul
T Hul ` Ful

s.t. fθpiq puq ď 0, i “ 1, ...,N (31)
Let the solutions to the SQP with N samples be denoted by
uN

˚. Based on desired probabilistic characteristics, samples
are chosen according to Theorem 2. Thus, the problem
reduces to a convex optimization with the finite number of
samples.
Remark 3. Note that iid sampling from an uncertain set of
system parameters can be easily performed, in contrast to the
cases for which ii samples of the system states are required.

The safety and stability of the system under the proposed
approach are presented as follows.

Theorem 3. Consider the approximation of (8) as
9x “ Ax ` Bu ´ ∆T pxqθ̂ (32)

Let u “ kx, where k is a stabilizing gain for (32) with
x “ 0 as the exponentially stable equilibrium point of the
closed loop approximated system. Let Vpxq “ xT Px be
the Lyapunov function for (32), where P is the solution to
the Lyapunov equation. Suppose that the update law (23)
is employed and (26) is satisfied. Then, the origin is an
exponentially stable equilibrium point for (1).

Proof: The system dynamic (1) can be written based
on (32), and the error bound as

9x “ Ax ` Bu ´ ∆T pxqθ̂ ´ ∆T pxqθ̃

where ∆T p0qθ̃ “ 0. In addition, considering (30) one has,
∆T pxq||θ̃|| ď ∆T pxq||θ̃p0q||

Thus, there exists a coefficient γ such that ||∆T pxqθ̃|| ď γ||x||.
That is, the error bound satisfies a linear growth bound
condition, which makes it a vanishing perturbation to the ap-
proximated system. Therefore, according to the perturbation
theorem, the exponential stability of the approximated system
results in the exponential stability of the original system as
well. For more details, see [11].

It is shown so far that the experience replay learning
method provides an accurate bound of the error and, thus, the
boundaries of the uncertain set. In conjunction with scenario
optimization, this significant feature enables proactive sam-
pling and an increased probability of satisfying all constraints
at each iteration. This result is formally presented in the next
section.

IV. Overall framework

The proposed two-layer framework is presented in this
section. The overall control scheme is depicted in Figure 2,
which consists of a core control of SQP to calculate the least
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control effort to ensure safety and stability while the model-
learning behaves as a governing outer-loop providing a more
accurate approximation of the system, and the uncertain set
which will be further used by the core loop and this cycle
continues. The detailed algorithm is as follows.

Algorithm 1: Safe and Stable Scenario-based Control Design
1: Initialization:
2: Start from a safe initial condition x0 P C
3: Initiate the controller with a stabilizing feedback gain k0.
4: Initial approximation of uncertain parameters θ̂0
5: Select ϵ and β based on required confidence level

6: procedure Outer Control Loop
7: Form the stack variable until (26) is satisfied. Then update

weights using experience replay update law (23).
8: Find the uncertain set boundaries using (30).
9: end procedure

10: procedure Inner Control Loop
11: Find the nominal controller.
12: Form the Lyapunov function and CBF function inequality

constraints in (10).
13: Sample constraints in (9) based on updated uncertain set

from the outer loop and desired specifications in the initiation
step.

14: Solve the scenario optimization (31) and apply the safe and
stabilizing controller to the system.

15: Update the outer loop and repeat until control objectives
are met.

16: end procedure

Lemma 2. Consider the scenario optimization (31), and the
sampling set Θc updated by the experience replay model
learning as (29) based on Algorithm 1; then, with a fixed
number of samples, the probability of satisfying safety con-
straints sequentially increases.

Proof: Consider U, Uϵ as the feasible region of u
and the set of inputs that constraints are satisfied with the
probability of at least 1 ´ ϵ, respectively. We define Uθ
as the set of u for the realizations of θ according to the
updated set of constraints Θ as (29) and U˚ as the set of
inputs that satisfy constraints by the probability of one, which
corresponds to the exact value of uncertain parameter θ˚.
Since θ˚ P Θ, one has U˚ Ă Uθ.

In addition U˚ Ă Uϵ Ă U. From Corollary 1, Uθ
exponentially fast converges from U to U˚, as also shown in
Fig. 1. Therefore, from (7), the number of required samples
reduces; or for a fixed number of samples, from Theorem
2, the probability of satisfying constraints increases. This
completes the proof.
Theorem 4. Consider a violation parameter ϵ P p0, 1q and
a confidence parameter β P p0, 1q. Let the number of iid
samples satisfy the following condition

N ą
2
ϵ

pln
1
β

` mq (33)

where m is the dimension of the control input. Then, with
a probability of no smaller than 1 ´ β, the solution to SQP
problem (31) ensures the probabilistic safety of the system,
i.e., Prpδ : fθpuN

˚q ą 0q ď ϵ. In addition, fixing the
number of samples from the conditional ambiguity set Θc, the

Fig. 2. Control Framework

violation probability sequentially decreases, thus providing
a higher probability of safety guarantee.

Proof: Since Uθ P U, then based on Theorem 2, with
the probability of no smaller than 1 ´ β and at most an ϵ-
fraction, the CBF constraints are satisfied. From [10], the
safety criteria are satisfied with the same probability. From
the result of Lemma 2, this probability increases at each
iteration. This completes the proof.

V. Simulation

Consider the following uncertain system,
9x1 “ θ1x2 ` u
9x2 “ θ2x1 ` 2x2 ` 1.5u

where θ1, θ2 P ∆ are the uncertain parameters and ∆ “

r´1.8, 1.8s is the corresponding uncertainty set. Without
loss of generality, we use a simple case to demonstrate the
concept. Assume the system needs to respect the following
state constraint as the safety criterion x1 ď 1. To guarantee
this criterion, the CBF candidate hpxq “ 1 ´ x1 and the
corresponding safety set C “ tx|hpxq ě 0u are considered.
The forward invariance of C is guaranteed if the invariance
criterion is satisfied, 9h ` αh ě 0. In other words,

´θ1x2 ´ u ` αp1 ´ x1q ě 0 (34)
However, this criterion incorporates the uncertain parameter
θ1, and thus, it is not fully known.

To tackle this problem, we 1) use the experience replay
model-learning to find an accurate estimate of the uncertainty
set ∆ and learn about the uncertain parameter θ1 to shrink the
uncertainty set. 2) sample the available uncertainty set and
form the CBF criterion for samples at each iteration to solve
a well-defined scenario optimization and ensure the safety
of the system with high probability. The error converges
to zero exponentially fast by using the experience replay
model learning; thus the uncertainty set is updated at each
time instance t as ∆1 “ t||θ1|| ď a1e´0.15tu. This set is
uniformly sampled, and the corresponding safety criterion is
incorporated in SQP problem (31).

To depict the performance of the proposed method, three
different simulations are conducted. First, it is assumed that
the full system dynamic (34) is available. The red line in
Figure 3(a) depicts the safety border in which x1 must stay
below it. As it is shown in this figure, CBF has certified the
safety of the system. However, in the presence of uncertainty,
it is not applicable. Second, the scenario approach for safety
guarantee for a fixed uncertainty set is employed. The safety
set is sampled and corresponding CBFs are considered. In
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Fig. 3. The state trajectory for x1 with (a) Known CBF, (b) Scenario
approach, (c) Experience replay scenario approach
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Fig. 4. The state trajectory for x2

this simulation scenario, the effect of experience replay in
shrinking the uncertainty set is not considered. As can be
seen in Figure 3(b), the safety of the system is preserved
despite the uncertainty. Note that this method is superior
to the methods in which CBF should be satisfied for all
possible realizations of uncertain parameters. However, due
to a large set of uncertainties, the behavior of the system
is relatively conservative in the sense that it does not get
as close as possible to the safety boundary. Finally, the
scenario approach, in conjunction with experience replay
model learning and by sampling the conditional shrinking
ambiguity set, is employed. The result is depicted in Figure
3(c), which shows that the safety of the system is preserved
in a non-conservative manner. Note that the experience-
replay model learning provides an accurate bound for the
uncertainty which rapidly converges to the true value and
thus provide a better response. Moreover, the response of
the system is very similar to the case in which CBF is fully
known. The other state of the system and the weight error
are depicted in Figures 4 and 5, respectively.

VI. Conclusion

In this paper, a probabilistic framework for joint model
learning and safe control of linear systems with parametric
uncertainty is proposed. The scenario approach is employed
to provide a tractable optimization by the proper sampling
of safety constraints, reducing a semi-infinite optimization
problem into a convex optimization problem with the finite
number of constraints. The experience replay model learning
is leveraged as the outer control loop, which learns the
uncertainty with convergence guarantee and enables stability
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Fig. 5. Weight error for system modeling
guarantee using the perturbation theory. In addition, the
bound of the uncertain set is exponentially reduced, thus
more accuracy is achieved through proactive sampling.
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