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Abstract— We propose a data-driven control design method
for nonlinear systems that builds on kernel-based interpolation.
Under some assumptions on the system dynamics, kernel-based
functions are built from data and a model of the system, along
with deterministic model error bounds, is determined. Then, we
derive a controller design method that aims at stabilizing the
closed-loop system by cancelling out the system nonlinearities.
The proposed method can be implemented using semidefinite
programming and returns positively invariant sets for the
closed-loop system.

I. INTRODUCTION

Data-driven control is a cornerstone of automatic control.
Starting from the pioneering work by Ziegler–Nichols [1],
data-driven control has proved effective in contexts where
finding a model of the system from first principles is difficult
or time-consuming, and a controller is instead determined
using experimental data. In the last years, there has been a
renewed interest in data-driven control, and the reason is the
growing complexity of the engineering systems for which
first-principle laws are often difficult to determine.

The body of work on data-driven control is extremely vast,
and it is not our goal to provide here any comprehensive
review. We will focus on the basic problem of designing a
feedback controller and consider batch (i.e., non-iterative)
methods, that are methods in which a controller is computed
once and for all using a finite set of data collected from
the system. The interest for batch methods is related to the
possibility of having finite-sample stability guarantees, as
opposed to classic adaptive control schemes that usually only
provide asymptotic guarantees.

Related work. Batch methods can be classified as indirect
or direct. In the first case, data are used to build a model of
the system (within a selected model class, e.g. linear models).
In this process, explicit error bounds arising from noise in the
data or a mismatch between system and model class can also
be determined. Then, model-based control design techniques
are applied. In contrast, direct method go directly from data
to the controller. Also direct methods can involve notions of
model class and uncertainty but the decision variables are
directly the controller parameters, without any intermediate
identification step.

Most of the existing works consider linear systems and
assume that there are no unmodeled dynamics, which means
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that the plant-model mismatch is at most parametric. Recent
contributions in this context are [2], [3] for what concerns
indirect methods and [4], [5], [6] for what concerns direct
methods. Dealing with nonlinear systems is arguably much
more difficult. One main reason is that it becomes harder
to compute finite-sample uncertainty bounds, even when the
uncertainty is purely parametric. Another main reason is
that controller design for nonlinear systems is itself much
more complex. Recent contributions that consider parametric
uncertainty tackle bilinear systems [7], [8], polynomial (and
rational) systems [9], [10], [11], [12], and LPV systems [13].
For general nonlinear systems, but still in the context of
parametric uncertainty, we find linearly parametrized models
with known basis functions [14], [15]. The result in [15],
in particular, introduces a controller design technique that
provides, under rather mild conditions, finite-sample stability
guarantees along with an estimate of regions of attraction and
positive invariant sets for the closed-loop system.

Assuming the exact knowledge of the basis functions is
reasonable in many practical cases such as with mechanical
and electrical systems in which some prior information about
the dynamics is available but the exact systems parameters
may be unknown. In many other cases, however, this prior
information may be unknown. Methods that consider this
scenario include methods based on Gaussian process models
[16], [17], methods based on linear [4], [18], [19], [20],
[21] and polynomial approximations [22], [23], and methods
based on linearly parametrized models with partially known
basis functions [15]. Despite the differences, the common
idea is to describe the system via a quantity which is
known up to parametric uncertainty and treat unmodeled
dynamics as an error term, i.e., a remainder. The challenge
is thus twofold: (i) to derive finite-sample bounds for the
remainder and (ii) to design a control law that is robust to
the uncertainty that this remainder introduces.

Contribution and outline of the paper. In this paper, we
consider the last scenario discussed above, that is the scenario
where the system to control has general dynamics (e.g. not
necessarily bilinear or polynomial) and there is no prior
knowledge of the true basis functions. We propose a new
method that combines ideas from kernel-based identification
[24] and the controller design method introduced in [15].
Specifically, we consider an indirect method that consists of
two steps: we first determine a kernel-based model of the
system along with deterministic error bounds, in line with
recent results on kernel learning [25]. Then, we consider
a controller design method that explicitly accounts for the
uncertainty around the nominal model. Since the nominal
model is generally nonlinear and lacks a specific structure,
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we consider a method in which the control law is designed
so as to render the dynamics in closed loop nearly linear
(as much as possible) by cancelling the nonlinearities of
the system. We show that the method returns positively
invariant sets for the closed-loop system and can be im-
plemented via semidefinite programming. For control design
purpose, kernel-based methods have been previously consid-
ered mostly in connection with Gaussian processes [16], [17].
In a deterministic setting, contributions have been proposed
in the realm of modelling and control [26], [27], [28], [29].
To the best of our knowledge, our work is the first work
on kernel learning that gives deterministic guarantees in the
context of feedback controller design. The proofs are omitted
due to space limitations and can be found in [30].

The rest of the paper is organized as follows: preliminaries
on kernels, RKHS and regularized interpolation are given in
Section II. Section III provides the main result in which we
derive a controller design method based on kernel models.
Section IV presents simulation results on a nonlinear system.
Conclusions and future work are discussed in Section V.

Notation. Throughout the paper, R denotes the set of real
numbers, and N>0 denotes the set of positive integers. Sn×n

denotes the set of real-valued symmetric matrices. Given a
matrix M , M ≻ 0 (M ⪰ 0) means that M is positive definite
(positive semidefinite), while M ≺ 0 (M ⪯ 0) means that
M is negative definite (negative semidefinite). Finally, we
denote by |x| the 2-norm of a vector x, and by ∥M∥ the
induced 2-norm of a matrix M . Other, less standard, notions
are introduced throughout the paper.

II. PRELIMINARIES

A. Kernels and their RKHS

Given a non-empty set Ω ⊆ Rn, a continuous function
K : Ω × Ω → R is called a positive definite kernel
on Ω if

∑
i,j αiαjK(xi, xj) > 0 for all N ∈ N>0, all

sets of pairwise distinct points x1, . . . , xN ⊆ Ω, and all
nonzero vectors α ∈ RN . K is called positive semidefinite
if

∑
i,j αiαjK(xi, xj) ≥ 0 for all N ∈ N>0, all points

x1, . . . , xN ⊆ Ω, and all vectors α ∈ RN . K is called
symmetric if K(x, y) = K(y, x) for all x, y ∈ Ω [31].

Definition 1: ([32, Def. 10.1]) Let H be a real Hilbert
space of functions f : Ω → R. The function K : Ω×Ω → R
is a reproducing kernel of H if

1) For every y ∈ Ω, the function K(·, y) belongs to H.
2) (Reproducing property) For every y ∈ Ω and every

f ∈ H, it holds that

f(y) = ⟨f(·),K(·, y)⟩H,

where ⟨·, ·⟩H is the inner product in H.
Fact 1: [31] To every positive semidefinite and symmetric

kernel K, there corresponds a unique Hilbert space admitting
K as a reproducing kernel. ■

A Hilbert space that admits a reproducing kernel is called
a reproducing kernel Hilbert space (RKHS). By Definition 1,
the kernel centred at a point a ∈ Ω, i.e., K(·, a), belongs to
H. For a function of the form f(·) =

∑N
i=1 αiK(·, xi) where

N ∈ N>0, αi ∈ R and xi ∈ Ω, we have that f ∈ H and its
RKHS function norm is ∥f∥H :=

√
⟨f, f⟩H. Further,

∥f∥2H =

N∑
i=1

N∑
j=1

αiαjK(xi, xj). (1)

B. Regularized interpolation and its error bound

Consider a positive semidefinite and symmetric reproduc-
ing kernel K : Ω × Ω → R and the associated RKHS H.
Consider an unknown function f : Ω → R belonging to H,
and let f generate the data points (yi, xi), i = 0, . . . , T − 1,
where yi = f(xi). Our objective is to find a function sf ∈ H
that minimizes the cost function

T−1∑
i=0

|yi − sf (xi)|2 + λ∥sf∥2H, (2)

where λ > 0 is the regularization parameter. By the repre-
senter theorem [33], the minimizer takes the form

sf (x) = αk(x) (3)

where α ∈ R1×T and

k(x) :=
[
K(x, x0) K(x, x1) · · · K(x, xT−1)

]⊤
. (4)

The functions K(x, xi) are called kernel-based basis func-
tions that are the kernels centered at the data points xi, i =
0, . . . , T − 1. The number of kernel-based basis functions is
equal to the number of data points, and when the dataset is
fixed, determining the model sf is equivalent to computing
the coefficients α. By [24, Th. 2], we have

sf (x) = yX(λIT +KX)−1k(x) (5)

where
yX :=

[
y0 y1 · · · yT−1

]
, (6)

and

KX :=


K(x0, x0) K(x1, x0) · · · K(xT−1, x0)

K(x0, x1) K(x1, x1) · · · K(xT−1, x1)

...
...

. . .
...

K(x0, xT−1) K(x1, xT−1) · · · K(xT−1, xT−1)

.
(7)

The following result gives a deterministic finite-sample error
bound associated with (5).

Theorem 1: Consider a positive semidefinite symmetric
reproducing kernel K : Ω × Ω → R with Ω ⊆ Rn along
with the associated RKHS H. Let f ∈ H generate the data
points (yi, xi), i = 1, . . . , T−1, where yi = f(xi). Then the
interpolating function sf (x) in (5) provides an estimate of the
function f(x) for x ∈ Ω with interpolation error satisfying

|f(x)− sf (x)| ≤ ∥f∥H
√
K(x, x)− k(x)⊤K̂−1

X k(x),
∀x ∈ Ω.

(8)
where K̂X := (λIT +KX)(2λIT +KX)−1(λIT +KX). □
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III. MAIN RESULTS

Consider a discrete-time affine-input nonlinear system

x+ = f(x) +Bu (9)

where x ∈ Rn is the state and u ∈ Rm is the control input,
f is the drift vector field, and B is a constant matrix. Both
f and B are considered unknown. We instead assume that
(xe, ue) = (0, 0) is a known unstable equilibrium point of
the system, and the set Ω contains the origin. The objective
is to design a feedback controller that stabilizes the dynamics
around the origin.

As anticipated in the Introduction, we will consider an
indirect method that consists of two steps: we first construct
a kernel-based model of the system along with deterministic
error bounds (Theorem 1). Then, we will derive a controller
design method that explicitly accounts for the uncertainty
around the nominal model. This method is inspired by [15]
but presents some differences that will be discussed later on
in the paper.

A. Kernel-based functions and error bounds

To derive a model of the system, we proceed in two steps.
As a first step, we set the control input u = 0 and collect
from the system a dataset

D := {x(k)}Tk=0 (10)

of samples satisfying x(k+1) = f(x(k)), k = 0, . . . , T −1,
with T > 0. We note that the samples can be computed
from a single trajectory or from multiple trajectories of the
system.

X0 :=
[
x(0) x(1) · · · x(T − 1)

]
(11)

X1 :=
[
x(1) x(2) · · · x(T )

]
. (12)

Let now K denote a kernel function chosen by the designer.
Given K and the dataset D, let

k(x) =
[
K(x, x(0)) K(x, x(1)) · · · K(x, x(T − 1))

]⊤
.

(13)
The function k(x) represents the vector of basis functions
that will generate the interpolation function sf (x).

To use Theorem 1, we need the following assumption.
Assumption 1: All the n components of f in (9) belong

to the RKHS H associated to K. Moreover, an upper bound
Γi for ∥fi∥H, i = 1, . . . , n, is known. ■

Methods for estimating Γi are discussed in [25]. Here we
just point out that the bound can be loose, although this may
render the control design step more difficult. By solving (5),
the interpolation function of f(x) takes the form

sf (x) = Ak(x) (14)

where A := X1(λIT +KX0)
−1 and where the matrix KX0

is as in (7) with X replaced by X0. Let

d(x) := f(x)− sf (x). (15)

By (8), each component of the vector d thus satisfies

|di(x)| ≤ ∥fi∥H
√

K(x, x)− k(x)⊤K̂−1
X0

k(x),

i = 1, . . . , n, ∀x ∈ Ω,
(16)

with K̂X0 as in Theorem 1 with X replaced by X0. Hence,
by letting Γ :=

[
Γ1 Γ2 · · · Γn

]⊤ and defining

δ(x) := |Γ|
√

K(x, x)− k(x)⊤K̂−1
X0

k(x), (17)

it follows from Assumption 1 that the interpolation error on
the function f satisfies the deterministic bound

|d(x)| ≤ δ(x), ∀x ∈ Ω. (18)

B. Controller design method based on approximate nonlin-
earity cancellation

As a second step, we derive a control design method that
exploits the bound on the interpolation error. By previous
analysis, the dynamics (9) can be written as

x+ = Ak(x) +Bu+ d(x) (19)

where A ∈ Rn×T is known and B ∈ Rn×m is still unknown.
To determine the feedback controller, we make a second

experiment on the system where we apply a nonzero input
sequence u and collect a new dataset

D := {x(k), u(k)}Tk=0 (20)

of samples satisfying x(k + 1) = f(x(k)) + Bu(k), where
k = 1, · · · , T and T > 0. These data are grouped in the data
matrices

X0 :=
[
x(0) x(1) . . . x(T − 1)

]
∈ Rn×T (21a)

X1 :=
[
x(1) x(2) . . . x(T )

]
∈ Rn×T (21b)

U0 :=
[
u(0) u(1) . . . u(T − 1)

]
∈ Rm×T (21c)

K0 :=
[
k(x(0)) k(x(1)) . . . k(x(T − 1))

]
∈ RT×T

(21d)

which satisfy the identity

X1 = AK0 +BU0 +D0 (22)

where D0 :=
[
d(x(0)) d(x(1)) · · · d(x(T − 1))

]
is the

(unknown) data matrix of samples of d.
We assume that this second experiment is carried out with

an input such that the corresponding matrix U0 has full row
rank. This can be interpreted as an excitation condition on the
experiment. We will write this condition as an assumption
but it is indeed a design condition.

Assumption 2: U0 has full row rank. ■
By letting X̂1 := X1 −AK0, we have BU0 = X̂1 −D0.

Assumption 2 thus implies

B = (X̂1 −D0)U
⊤
0 (U0U

⊤
0 )−1︸ ︷︷ ︸

=:U†
0

(23)

and the dynamics can be written as

x+ = Ak(x) + (X̂1 −D0)U
†
0u+ d(x). (24)
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Arrived at this point, note that the dynamics of k(x) depend
on the selected kernel. We will consider the general case in
which k(x) consists of both linear and nonlinear functions,
so that Ak(x) can be decomposed as Ak(x) = Ax+ Âk̂(x)
with k̂ : Rn → RS that contains only nonlinear functions.
The special case k(x) = x, gives Â = 0n×S . In contrast,
A = 0n×n when k(x) contains only nonlinear functions.
Note that for a fixed k(x), the choice of k̂(x) is not unique,
and different choices of k̂(x) generate different matrices A
and Â. With this decomposition, (24) reads equivalently as

x+ = Ax+ Âk̂(x) + (X̂1 −D0)U
†
0u+ d(x). (25)

This decomposition suggests a control law in the form

u = Kx+ K̂k̂(x) (26)

which gives the closed-loop dynamics

x+ = (A+ (X̂1 −D0)U
†
0K)x

+(Â+ (X̂1 −D0)U
†
0K̂)k̂(x) + d(x). (27)

A natural way to design the control law is then to design
K so as to stabilize the linear part of the dynamics, and to
design K̂ so as to try to cancel out the nonlinear terms. This
approach has been originally proposed in [15], and we refer
the reader to it for a discussion regarding the connections
between this approach and the classic feedback linearization.
By Lyapunov theory, a necessary and sufficient condition for
the linear dynamics ξ̇ = (A+(X̂1−D0)U

†
0K)ξ to be stable

is that for any Q ≻ 0 there exists a matrix S ≻ 0 that solves
the Lyapunov equation

(A+ (X̂1 −D0)U
†
0K)⊤S(A+ (X̂1 −D0)U

†
0K)

−S + SQS ⪯ 0.
(28)

Letting P = S−1 and multiplying both sides by P , this turns
out to be equivalent to

(AP + (X̂1 −D0)U
†
0Y )⊤P−1(AP + (X̂1 −D0)U

†
0Y )

−P +Q ⪯ 0
(29)

having set Y = KP . As we will see, this form is particularly
convenient because it can be expressed as a linear matrix
inequality (LMI) constraint. However, we cannot implement
directly (29) because D0 is unknown. The idea is thus to
ensure that the constraint is satisfied for all the matrices D
in a given set D to which D0 is known to belong, i.e.,

(AP + (X̂1 −D)U†
0Y )⊤P−1(AP + (X̂1 −D)U†

0Y )

−P +Q ⪯ 0 ∀D ∈ D.
(30)

Let

∆ :=

T−1∑
k=0

δ(x(k))2In

1/2

. (31)

Since D0D
⊤
0 ⪯ ∆2, we can therefore solve (30) with respect

to the set

D := {D ∈ Rn×T : DD⊤ ⪯ ∆2}. (32)

Condition (30) cannot be implemented directly because it
involves infinitely many constraints. The next result provides
a tractable (and convex) condition for (30).

Lemma 1: Given Q ≻ 0 and ∆ defined in (31), if there
exist P ∈ Sn×n, Y ∈ Rm×n and a scalar ϵ > 0 such that P −Q (AP + X̂1U

†
0Y )⊤ (U†

0Y )⊤

AP + X̂1U
†
0Y P − ϵ∆2 0n×T

U†
0Y 0T×n ϵIT

 ⪰ 0

(33)
then (30) holds. □

Condition (33) guarantees stability of the linear dynamics
ξ̇ = (A+(X̂1−D0)U

†
0K)ξ with K = Y P−1. The remaining

part of the controller, i.e., the matrix K̂, can be determined
so as to minimize the effect of the nonlinearities in the closed
loop. Including the design of K, a prototypical formulation
is the following:

minimizeP,Y,K̂,ϵ ∥Â+ X̂1U
†
0K̂∥+ α ∥P∥ (34a)

subject to (33) (34b)

where α ≥ 0 is a design parameter. As shown, (33) ensures
stability of the linear dynamics ξ̇ = (A+(X̂1−D0)U

†
0K)ξ.

Instead, minimizing ∥Â+ X̂1U
†
0K̂∥ tries to reduce as much

as possible the effect of the nonlinearities in the closed loop.
In this context, the term α ∥P∥ acts as a regularization term
that permits to enlarge the estimate of the positive invariant
set for the closed-loop dynamics, as detailed in the sequel.
Before proceeding, we remark that (34) should be viewed as
an example. An alternative is to explicitly account for D0

for the nonlinear term as well:

minimizeP,Y,K̂,ϵ ∥Â+ (X̂1 −D)U†
0K̂∥+ α ∥P∥ (35a)

subject to (33), D ∈ D. (35b)

Also this problem can be cast as a semidefinite program.
The rest of this section is devoted to show that this method

guarantees the existence of a positively invariant set for the
closed loop if the modelling error is sufficiently small.

Definition 2: For the system x+ = f(x), if for every
x(0) ∈ S , it holds that x(t) ∈ S for t > 0, then S is
called a positively invariant (PI) set. ■

Let V (x) = x⊤P−1x, which acts as a Lyapunov function
for the linear part of the dynamics, and define for brevity
Ψ = A + (X̂1 − D0)U

†
0K and Ξ = Â + (X̂1 − D0)U

†
0K̂.

Then, the Lyapunov function satisfies

V (x+)− V (x)

= (Ψx+ Ξ k̂(x) + d(x))⊤P−1(Ψx+ Ξ k̂(x) + d(x))

− x⊤P−1x

Bearing in mind the expressions of Ψ and Ξ, the fact that
D0D

⊤
0 ⪯ ∆2, and |d(x)| ≤ δ(x), simple (although tedious)

calculations give

V (x+)− V (x) ≤ l(x) + g(x, δ(x)) (36)
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where

l(x) := −x⊤P−1QP−1x+ l1(x) + l2(x) + l3(x) + l4(x)

l1(x) := (2(A+ X̂1U
†
0K)x

+ (Â+ X̂1U
†
0K̂)k̂(x))⊤P−1(Â+ X̂1U

†
0K̂)k̂(x)

l2(x) := ∥∆∥|(2(A+ X̂1U
†
0K)x

+ (Â+ X̂1U
†
0K̂)k̂(x))⊤P−1||U†

0K̂k̂(x)|
l3(x) := ∥∆∥|2U†

0Kx+ U†
0K̂k̂(x)||P−1(Â+ X̂1U

†
0K̂)k̂(x)|

l4(x) := ∥∆∥2∥P−1∥|2U†
0Kx+ U†

0K̂k̂(x)||U†
0K̂k̂(x)|

g(x, δ(x)) := r1(x)δ(x) + r2(x)δ(x) + r3δ(x)
2

r1(x) := 2|((A+ X̂1U
†
0K)x+ (Â+ X̂1U

†
0K̂)k̂(x))⊤P−1|

r2(x) := 2∥∆∥∥P−1∥|U†
0Kx+ U†

0K̂k̂(x)|
r3 := ∥P−1∥.

Let X := {x : l(x) + g(x, δ(x)) ≤ 0} and let X c be its
complement. Let Rγ := {x : V (x) ≤ γ}, where γ > 0 is
arbitrary, and define Z := Rγ ∩X c, which characterizes all
the points in Rγ for which the Lyapunov difference V (x+)−
V (x) can be positive. Then the following main result holds.

Theorem 2: Consider a nonlinear system as in (19), and
suppose that (34) is feasible with a given Q ≻ 0 and where
∆ is defined in (31). Consider the closed-loop system with
the controller (26) obtained from (34). If

V (x) + l(x) + g(x, δ(x)) ≤ γ ∀x ∈ Z (38)

then Rγ is a PI set for the closed-loop system. □
We close this section with remarks regarding the compar-

ison with [15]. In [15, Th. 8], a similar result is given that
takes unmodeled dynamics into account. In this respect, the
results presented here give a systematic principled method
for bounding modelling errors. [15, Th. 7] also shows that
asymptotic stability follows when the error bound δ(x)

satisfies lim|x|→0
δ(x)
|x| = 0, e.g. when δ(x) acts as remainder

in a power series expansion of f about 0. The same result
holds also here but we have to bear in mind that the condition
lim|x|→0

δ(x)
|x| = 0 may fail to hold depending on the choice

of the kernel function. In any case, invariance sets provide
a safe region where we can perform additional experiments
to estimate regions of attraction.

Another remark concerns the experimental conditions. We
have assumed noise-free data, but bounds similar to the one
in (8) can be given also in case of noisy data [25] and,
combined with robust control design tools (cf. [15, Sec. VI]),
can be used to extend the results of this paper.

IV. NUMERICAL EXAMPLE

Consider the nonlinear system

x+
1 = x2 + x3

1 + u (39a)

x+
2 = 0.5x1 + 0.2x2

2. (39b)

We consider a polynomial kernel of the degree 3:

K(x, y) := x⊤y + (x⊤y)2 + (x⊤y)3 (40)

on the domain Ω = [−20, 20] × [−20, 20] ⊂ R2. We set
u = 0 and collect a dataset D containing T = 10 samples by
performing multiple one-step experiments with initial states
uniformly distributed in [−2, 2]. With these data we construct
the vector k(x) of basis functions. The kernel K(x, y) is
symmetric positive semidefinite and there exists a unique
RKHS H that admits K(x, y) as a reproducing kernel by
Fact 1. We just need to show that the nonlinear dynamics
f1(x) = x2 + x3

1 and f2(x) = 0.5x1 + 0.2x2
2 in (39) are

members of H. By Definition 1, all of the components of
k(x) belong to H. Then, it is sufficient to show that f1(x)
and f2(x) are linear combinations of k(x). Denote by M(x)
the vector of all monomials up to degree 3. We can write
f1(x) = c1M(x), f2(x) = c2M(x) and k(x) = MkM(x).
Note that when the matrix Mk has full column rank, there
exists αi such that ci = αiMk, i = 1, 2, and this implies that
f1(x) and f2(x) can be written as the linear combinations
of k(x). Hence, the collected data in D should satisfy the
condition that the corresponding matrix Mk is full column
rank, and this condition is indeed satisfied for the collected
samples. Finally, in order to find an upper bound Γ on ∥f∥H
as in Assumption 1, we compute ∥f∥H explicitly. By (1), we
have ∥f1∥H = α1KX0

α⊤
1 = 2 and ∥f2∥H = α2KX0

α⊤
2 =

0.29. For controller design we select Γ1 = 3 and Γ2 = 0.4,
which over-approximate the true values by more than 30%.
Finally, we select λ = 10−7. We note that large values of
λ results in large bounds δ(x) (Theorem 1), and this may
eventually render the controller design program infeasible.

Next, we collect a dataset D containing T = 10 samples by
performing again multiple one-step experiments with input
uniformly distributed in [−0.5, 0.5], and with initial states
within [−2, 2]. With these data, we compute the two matrices
K0 and U†

0 as in (21d) and (23), respectively. Note that the
first term of K(x, y), i.e. x⊤y, produces the linear part of
Ak(x), and gives

Ax = A
[
x⊤x(0) x⊤x(1) · · · x⊤x(T − 1)

]⊤
= A

[
x(0) x(1) · · · x(T − 1)

]⊤
x

= AX⊤
0 x,

and thus A = AX⊤
0 . In addition, we set

k̂(x) := [(x⊤x(0))2 + (x⊤x(0))3 (x⊤x(1))2 + (x⊤x(1))3

· · · (x⊤x(T − 1))2 + (x⊤x(T − 1))3]⊤

and thus Â = A. We solve (34) with Q = I2, and α = 1.
For the dynamics not depending on D0 in (27), we obtain

(A+ X̂1U
†
0K)x+ (Â+ X̂1U

†
0K̂)k̂(x) =

[
0.2481x2

0.5x1 + 0.2x2
2

]
We note that the program (34) correctly forces u to cancel
out the nonlinearity in (39a).

For the obtained controller, we numerically determine the
set X = {ξ : l(ξ) + g(ξ, δ(ξ)) ≤ 0}. Any sub-level set Rγ

of the Lyapunov function V (x) = x⊤P−1x contained in
X ∪ {0} and satisfying (38) gives an estimate of the PI set
for the closed-loop system. The set X and a sublevel set of
V are shown in Figure 1. We can numerically verify that the
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PI set in Figure 1 is also a region of attraction (ROA), and
one possible reason is that both k̂(x) and δ(x) converge to
0 when x converges to 0 since we use the polynomial kernel
K(x, y). Remarkably, the obtained estimate of the ROA is
almost the same as the one obtained in [15] with knowledge
of the true basis functions.

Fig. 1. The grey set represents the set X , while the blue set is the PI set
Rγ ; here, P =

[
1.3350 0

0 1.3350

]
and γ = 11.5. We observe that the set Z

is empty and hence the PI set also provides an estimate of the ROA for the
closed-loop system.

V. CONCLUSIONS

We have investigated the problem of designing feedback
controllers for affine-input nonlinear systems from data using
kernel learning techniques. We have considered a method in
which a nominal model of the system is determined using
kernel-based functions, along with an explicit upper bound
on the modelling error. Then, a controller design method is
proposed that involves the solution of a semidefinite program.
We have shown that the method ensures, despite the presence
of unmodeled dynamics, the existence of positively invariant
sets for the closed-loop dynamics. An important venue for
future research is the problem of understanding what kernels
are more suited for control goals.
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