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Abstract— This paper addresses the problem of propagation
of opinions in a Signed Friedkin-Johnsen (SFJ) model, i.e., an
opinion dynamics model in which the agents are stubborn and
the interaction graph is signed. We provide sufficient conditions
for the stability of the SFJ model and for convergence to
consensus of a concatenation of such SFJ models.

I. INTRODUCTION

Opinion dynamics models try to describe the way in which
the opinions and beliefs of individuals within a group or a
community influence and are influenced by the opinions and
beliefs of others [1], [2]. This process plays a crucial role
in shaping societal attitudes and behaviors, and has been the
subject of much research in fields such as sociology [3],
psychology [4], and political science [5]. The state variables
that represent the opinions of the agents are modified in
response to information shared with nearby agents in a
network. The most basic updating rule is given by the
DeGroot model [6], in which the agents modify their states
according to a weighted average of their neighbors’ opinions
and thereby achieve consensus.

The Friedkin-Johnsen (FJ) model [7] extends the DeGroot
model by including the influence of the agents’ stubbornness
on the dynamics, based on their initial opinions [8]. Almost
all existing works on the FJ model consider a collaborative
behavior between the individuals in the social network [9],
in which the opinions of the agents get closer to each
other even though they do not reach a consensus. A recent
research direction for these collaborative FJ models consists
of concatenating a series of discussions events, each of them
represented as a FJ model [5], [10], [11], using a two time-
scale framework similar to the one introduced in [12]. Con-
catenation refers to the fact that the endpoint of a discussion
becomes the initial condition of the next discussion. In this
way, the opinions of the agents get progressively closer
even in presence of a persistent stubbornness, and eventually
converge to a consensus point.

The main contribution of this paper is to extend the FJ
model, in both “single discussion” FJ and concatenated FJ
versions, to signed graphs, i.e., to opinion dynamics models
in which collaboration and antagonism among the agents
are coexisting. Signed networks, i.e., graphs in which the
edges between nodes are assigned a positive or negative
weight according to the nature of the relationship between
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the corresponding agents, have gained significant attention
in recent years, due to their potential to capture more
nuanced social and information dynamics than traditional
unsigned networks [13]–[17]. There are essentially two ways
to construct Laplacian-based dynamics on a signed network.
In [16], the two signed Laplacians are termed “opposing”
and “repelling”, and differ in the way the diagonal elements
of the Laplacian are computed: in the former, we put on
the diagonal the sum of the absolute values of the row
elements, while in the latter we sum the row values with their
signs [17]. Similar “opposing” and “repelling” adjacency
matrices can be considered as replacements for stochastic
matrices when dealing with discrete-time opinion dynamics
models. In this study, we concentrate on the “repelling”
Laplacian, which has always zero as an eigenvalue but
may not be stable [18], or may be stable but may fail to
converge [17]. The FJ model on signed graphs we introduce
in this paper is henceforth denoted Signed FJ (SFJ), and its
concatenated counterpart concatenated SFJ. Notice that the
papers [19], [20] also consider a concatenated FJ-type model
for signed graphs, but only for the “opposing” Laplacian and
only in the structurally balanced case. Our model is much
more challenging to analyze and its behavior is richer (the
structurally balanced case becomes a special case).

To analyze the behavior of our SFJ models, we use
the tools developed in [17], in particular the notions of
Eventually Stochastic (ES) matrices (for discrete-time SFJ)
and Eventually Exponentially Positive (EEP) Laplacians (for
continuous-time SFJ). By itself, choosing an ES matrix (or an
EEP Laplacian) is however not enough to guarantee stability
of the SFJ, as easily shown in counterexamples. We show in
the paper that if we add the assumption of normality of the
ES signed interaction matrix (or normality of the EEP signed
Laplacian) the SFJ model becomes globally asymptotically
stable, and hence a unique equilibrium point always exists for
it. Furthermore, the same condition is sufficient to guarantee
that the concatenated SFJ model converges to consensus over
an infinite number of discussion events.

The paper is organized as follows: Section II introduces
preliminary concepts on signed graphs and matrix theory;
Section III introduces our SFJ models in continuous and dis-
crete time, and reviews the properties of ES and EEP matri-
ces. Section IV provides sufficient conditions for asymptotic
stability of the SFJ models, and Section V extends the results
for reaching a consensus in the concatenated SFJ models.

II. PRELIMINARY MATERIAL

Notations. R, R≥0 corresponds to the real number set, and
non-negative real number set, respectively. Real numbers are
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denoted by lowercase letters a, b, c, . . . while bold lowercase
letters x,y, z, . . . represent vectors of length n in Rn. 0 and
1 are vectors of entries 0 and 1, respectively. Matrices are
represented by capital Latin or Greek letters X,Y, Z,Θ, . . . .
Given a square matrix Q = [Qij ] ∈ Rn×n, QT depicts its
transpose, Qk is its k-th power and ker(Q) its kernel. For
a vector x ∈ Rn, the diagonal matrix diag (x) ∈ Rn×n

has the entries of x on the diagonal. The eigenvalues of
the matrix Q are denoted by λ (Q), and the spectrum as
Λ (Q) = {λ1 (Q) , . . . , λn (Q)}. The spectral radius and
spectral abscissa of a matrix Q are defined as ρ (Q) =
maxi=1,...,n |λi (Q)| and µ (Q) = maxi=1,...,n ℜ (λi (Q))
where ℜ(·) denotes the real part of the complex number.
The matrix I represents an identity matrix of appropriate
dimensions.

A. Signed Graphs

A directed graph (digraph) with n vertices
V = {v1, v2, . . . , vn} and an edge set E is represented by
G = (V, E , A) where an edge pair (k, l) ∈ E denotes a link
from vertex vk to vl and the weighted adjacency matrix A
represents the interaction pattern in the graph with Akl = 0
if (l, k) /∈ E . For signed graphs, the values of Akl can be
positive or negative depending on the relationship between
the vertices (“friends” or “enemies”). For an undirected
graph, we have AT = A, while the digraph is called weight
balanced if A1 = AT1.
For a signed graph, the weighted in-degree and out-degree
vectors are defined as σin =

[∑n
j=1,i̸=j Aij

]
n×1

∈ Rn and

σout =
[∑n

i=1,i̸=j Aij

]
n×1

∈ Rn. The “repelling Laplacian”

[16] is defined as L = Σin − A where Σin = diag (σin).
Notice that by construction L1 = 0.
A path in the graph is defined as pairs of edges
(vk, v1) , (v1, v2) , . . . , (vr−1, vr) , (vr, vl) such that
AkrAr(r−1) . . . A21A1k ̸= 0. If vertex i can reach any
other vertex in the graph via a directed path, then a directed
spanning tree rooted at vertex i exists. If every pair of
vertices in the graph are connected through a directed path,
then the graph is said strongly connected.

B. Matrix Theory

If the eigenvalues of a square matrix Q have ℜ (λ (Q)) <
0 (resp. |λ (Q)| < 1), then the matrix is called Hurwitz (resp.
Schur) stable. It is marginally stable if ℜ (λ (Q)) ≤ 0 (resp.
|λ (Q)| ≤ 1), and the eigenvalues such that ℜ (λ (Q)) = 0
(resp. |λ (Q)| = 1) are simple eigenvalues. If there exists a

permutation matrix P such that PTAP =

[
Q1 Q2

0 Q3

]
where

Q1 and Q3 are non-trivial square matrices, then the matrix A
is said to be reducible. It is irreducible if it is not reducible.
A graph G is strongly connected if and only if the associated
adjacency matrix A is irreducible.
A matrix Q which has all its entries Qkl > 0 is said positive
and denoted Q > 0; it is said nonnegative if Qkl ≥ 0 and it
is denoted Q ≥ 0. The corank of a matrix Q is defined as the
dimension of the kernel space of Q, ker (Q). The matrix Q is

normal if QQT = QTQ. Positive definiteness (resp. positive
semi definiteness) of a matrix Q is defined as xTQsymx > 0
(resp. xTQsymx ≥ 0) for all x ∈ Rn,x ̸= 0 (resp. x ∈ Rn)
where Qsym = (Q+QT )/2, and it is denoted Q ≻ 0 (resp.
Q ⪰ 0). Negative definiteness (resp. semi-definiteness) is
denoted Q ≺ 0 (resp. Q ⪯ 0) and obviously corresponds to
−Q ≻ 0 (resp. −Q ⪰ 0).

C. Perron-Frobenious property and Eventual Positivity

The following definitions and properties can be found in
[17].

Definition 1 (Perron-Frobenius property) The matrix Q ∈
Rn×n satisfies the Perron-Frobenius (PF) property (denoted
Q ∈ PF), if ρ(Q) is a simple real positive eigenvalue of Q
such that ρ(Q) > |λ(Q)| for all λ ∈ Λ(Q), λ ̸= ρ(Q), and
the corresponding right eigenvector is positive.

Definition 2 (Eventually Positive) The matrix Q ∈ Rn×n is
said Eventually Positive (EP) if ∃ an integer ko such that
Qk > 0 for k ≥ ko, and it is denoted Q

∨
> 0.

Lemma 1 [21] For a matrix Q ∈ Rn×n, the following
properties are equivalent (i) Q, QT ∈ PF; (ii) Q

∨
> 0; (iii)

QT
∨
> 0.

Definition 3 (Eventually Exponentially Positive) The ma-
trix Q ∈ Rn×n is said Eventually Exponentially Positive
(EEP), if ∃ d ∈ R≥0, such that Q+ dI

∨
> 0.

An equivalent characterization of EEP is that eQt > 0, ∀ t >
to, for some to ∈ R≥0.

D. Eventually Stochastic Matrices

Definition 4 (Eventually Stochastic) The matrix Q ∈ Rn×n

is said Eventually Stochastic (ES) if Q
∨
> 0 and Q1 = 1.

If in addition it is 1TQ = 1T , then Q is said Eventually
Doubly Stochastic (EDS).

Lemma 2 [22] For a ES matrix Q, ρ (Q) = 1 is a simple
and strictly dominant eigenvalue, and the right and left
eigenvectors v and w corresponding to the eigenvalue ρ (Q)
are positive.

III. PROBLEM FORMULATION

In this section, we formulate the SFJ model for both
discrete and continuous time.

A. Discrete-time SFJ

According to [23], in discrete time (DT), the Friedkin-
Johnsen model is defined as the convex combination:

x (t+ 1) = ((I −Θ)W )x (t) + Θx (0) (1)

where x (t) ∈ Rn defines the state (“opinion”) of n agents,
Θ = diag(θ1, . . . , θn) is the diagonal matrix containing the
stubbornness coefficients θi ∈ [0, 1) of the agents (i.e. their
“attachment” to their initial opinions x(0)), and W is the
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weighted adjacency matrix representing the communication
graph G of the agents. In this work we assume that the agents
can have antagonistic interaction, and hence that W is a
signed weighted adjacency matrix.

In the case that no agent is stubborn, i.e., when Θ = 0n×n,
the model (1) becomes

x (t+ 1) = Wx (t) (2)

and we want this special case to behave as a DeGroot model,
namely to achieve consensus. In order to obtain this for
signed graphs, we need to impose conditions on W . In
particular, we will typically work with W which is a ES
matrix, as per Definition 4. In fact, for ES matrices, we can
recall the following properties, from [17].

Lemma 3 ( [17], Lemma 7, Theorem 6, and Corollary 3)
Consider the DT system (2), where the signed matrix W is
such that W1 = 1. Consider the following conditions:

(i) The system (2) achieves consensus;
(ii) W is marginally Schur stable with a simple and strictly

dominant eigenvalue ρ(W ) = 1;
(iii) W is ES.

Condition (i) and (ii) are equivalent. Conditions (iii) implies
conditions (i) and (ii) but not viceversa. However, if in
addition W is weight balanced, then all three conditions are
equivalent (and W is EDS). Furthermore, if W is normal,
then W is EDS and I −WTW ⪰ 0 of corank 1.

B. Continuous-time SFJ

A signed Friedkin-Johnsen model can be built also in
continuous-time (CT), for instance as follows:

ẋ (t) = − ((I −Θ)L+Θ)x (t) + Θx (0) (3)

where L = Σin −A is the signed Laplacian associated with
the adjacency matrix A of the signed graph G and Θ =
diag (θ1, . . . , θn) represents again the stubbornness matrix.
Also in this case, the requirement on L is that when Θ = 0
the resulting system

ẋ (t) = −Lx (t) (4)

achieves consensus. For signed graphs, this is achieved when
−L is an EEP matrix. The equivalent of Lemma 3 for the
CT case can be found in [17] (in particular, see Lemma 4,
Theorem 4, and Corollary 1 of [17]).

IV. CONVERGENCE IN SFJ MODELS

In this section we study the asymptotic stability of both
models (1) and (3). In both cases, we need the assumption
that all agents are partially stubborn, i.e., that their stubborn-
ness coefficients are positive (perhaps small) and always less
than 1. In other words, we exclude both cases of completely
non-stubborn and of totally stubborn agents.

Assumption 1 Every agent in the network is partially stub-
born, i.e. θi ∈ (0, 1) ∀i = 1, . . . , n.

The assumption leads to a stubbornness matrix Θ which is
invertible.

A. Discrete Time Case

Theorem 1 Consider the DT SFJ model (1), with W a
ES and normal matrix. Under Assumption 1, then it is
ρ ((I −Θ)W ) < 1, and the system (1) converges to
the equilibrium point x∗ = PWx (0), where PW =
(I − (I −Θ)W )

−1
Θ, with PW1 = 1.

Proof. The stability analysis of the affine system (1) and
of the linear system obtained from (1) applying the change
of basis z (t) = x (t) − x∗ are the same whenever x∗

exists uniquely, i.e, when ρ((I − Θ)W ) < 1. Hence
this condition can be checked on the system z (t+ 1) =
(I −Θ)Wz (t), and for it the Lyapunov function V (z (t)) =
zT (t) (I −Θ)

−2
z (t) , leads to

∆V = zT (t)
(
WTW − (I −Θ)

−2
)
z (t) .

When θi < 1 ∀ i, the following Neumann series is converging

(I −Θ)
−2

=

( ∞∑
k=0

Θk

)2

= I +

∞∑
k=1

Θk
∞∑
k=0

Θk +

∞∑
k=1

Θk.

So, we get

∆V = −zT (t)
(
I −WTW

)
z (t)

− zT (t)

( ∞∑
k=1

Θk
∞∑
k=0

Θk +

∞∑
k=1

Θk

)
z (t) .

From Lemma 3, normality of W implies
(
I −WTW

)
⪰

0, which, together with
∑∞

k=1 Θ
k ≻ 0, leads to ∆V < 0,

i.e., ρ((I − Θ)W ) < 1. Consequently, z (t)
t→∞−−−→ 0 and

x (t)
t→∞−−−→ x∗. The rest of the proof is straightforward.

Remark 1 The normality condition on W is also needed
in Theorem 1, as the following counterexample (Example 1)
shows. In the proof of Theorem 1, positive semidefinitness of
the symmetric part of W (i.e.,

(
I −WTW

)
⪰ 0 for ρ(W ) ≤

1), which requires normality of W , is used in the calculation
of ∆V . Normality of W is a sufficient but not necessary
condition for stability of the SFJ model, see Example 2.

Example 1 The following signed matrix

W =


0.6683 −0.5264 0.2627 0.5954
0.0580 0 0.3073 0.6347
0.1093 0.1965 0.9058 −0.2115
0.5888 −0.4422 0.1360 0.7173


is ES but not normal. If we choose the stubbornness values
Θ = diag(0.0587, 0.4962, 0.3003, 0.0877), it results in
ρ ((I −Θ)W ) = 1.0261 > 1, i.e., the system (1) becomes
unstable.

Example 2 The matrix

W =


0 0.6154 −0.1787 0.5633

−0.1603 0.7406 0.4073 0.0124
0.7207 0.0273 0.4964 −0.2443
0.7157 −0.0338 −0.3664 0.6845
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is ES but not normal. With stubbornness e.g.
Θ = diag(0.6355, 0.7138, 0.9971, 0.1395), it is
ρ ((I −Θ)W ) = 0.7543 < 1. Hence the SFJ model
is stable.

Remark 2 One of the properties of a FJ model on G
nonnegative is that x∗ belongs to the convex hull of the initial
conditions: x∗

i ∈ co(x(0)) = [mini xi(0), maxi xi(0)]. The
following example shows that this is no longer true for SFJ
models, even when convergence is guaranteed, i.e., when
ρ ((I −Θ)W ) < 1.

Example 3 The following signed matrix

W =


0.8219 −0.0173 −0.0862 0.2816
−0.0173 0.9242 −0.0147 0.1079
0.2816 0.1079 0.7708 −0.1603
−0.0862 −0.0147 0.3301 0.7708


is ES and normal. Choosing the stubbornness values
Θ = diag(0.9575, 0.9649, 0.1576, 0.9706) results in
ρ ((I −Θ)W ) = 0.6458 < 1, i.e., the system (1)
is stable. Also any other combination of Θ results in
ρ ((I −Θ)W ) < 1 (Theorem 1 applies). Figure 1 shows
a simulation for the system dynamics with initial conditions
x(0) = [0.4640, 0.1014, 0.5177, −0.8688], where we can
notice that the state of agent x3 leaves the convex hull.
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Fig. 1. A simulation for the SFJ model of Example 3.

When normality is missing, convergence of the SFJ model,
i.e., ρ ((I −Θ)W ) < 1, does not guarantee that PW =
(I − (I −Θ)W )

−1
Θ has ρ(PW ) ≤ 1. For instance, in Ex-

ample 2, it is ρ(PW ) = 1.0041. Also in this case, obviously,
x∗ /∈ co(x(0)), i.e., the SFJ model is not contracting in
opinion space. More importantly, ρ(PW ) > 1 implies that
PW cannot be a ES matrix. The following theorem shows
that normality of W is a sufficient condition for ρ(PW ) = 1.

Theorem 2 Consider the DT SFJ model (1), with W
a ES and normal matrix. Under Assumption 1, PW =
(I − (I −Θ)W )

−1
Θ is a ES matrix. The left eigenvector

w > 0 associated to ρ(PW ) = 1 has entries wi =
θi/ (1− θi).

In order to prove this theorem, we need the following
lemma.

Lemma 4 Consider W ES and Θ such that Assumption 1
is obeyed. Whenever (I − (I −Θ)W )

−1 exists, then the
condition ρ(PW ) ≤ 1, where PW = (I − (I −Θ)W )

−1
Θ,

is equivalent to (I − Θ−1)(I − W ) having all eigenvalues
outside (or on the boundary of) the unit disk centered at 1:∣∣λ (I − (I −Θ−1)(I −W )

)∣∣ ≥ 1

Proof. Under the assumptions of the Lemma, Θ is invertible
and (I − (I −Θ)W )−1 exists, and we can write

PW = (I − (I −Θ)W )
−1

Θ

=
(
Θ−1 (I − (I −Θ)W )

)−1

=
(
Θ−1 −Θ−1W +W

)−1

=
(
W +Θ−1(I −W )

)−1
.

Hence ρ(PW ) ≤ 1 is equivalent to∣∣∣λ((W +Θ−1(I −W )
)−1
)∣∣∣ ≤ 1 for all eigenvalues

of
(
W +Θ−1(I −W )

)−1
, which corresponds to say

that for all eigenvalues of W + Θ−1(I − W ) it is∣∣λ(W +Θ−1(I −W ))
∣∣ ≥ 1. Some further manipulations

give the following eigenvalue localization condition:∣∣λ(I − (I −Θ−1)(I −W ))
∣∣ ≥ 1 which corresponds to say

that the eigenvalues of (I −Θ−1)(I −W ) cannot be in the
interior of the unit disc centered at 1 in C.

Example 4 For Example 1, we see that H = (I−Θ−1)(I−
W ) has the eigenvalue λ(H) = 0.4154 inside the unit disk
centered at 1. Example 2 instead has λ(H) = 0.0042 ±
0.0165i. Lastly, for Example 3 it is ℜ (λ(H)) ≤ 0.

Proof of Theorem 2 Let us first show that under the
assumptions of the theorem I − (I − Θ)W is an invertible
matrix. From Theorem 1, ρ((I − Θ)W ) < 1, hence I −
(I − Θ)W has all eigenvalues in the open right half plane:
ℜ(λ(I−(I−Θ)W )) > 0. Therefore, Lemma 4 is applicable.
From Lemma 4, showing that ρ(PW ) ≤ 1 is equivalent to
showing that (I −Θ−1)(I −W ) has all eigenvalues outside
(or on the boundary of) the unit disk centered at 1. This can
be achieved for instance by imposing the more conservative
criterion that (I − Θ−1)(I −W ) has all eigenvalues in the
left half plane (possibly on the imaginary axis). From W
ES and normal, it follows that also I − W ⪰ 0 is normal.
Denote D = −(I −Θ−1) and F = I −W . Note that since
0 < θi < 1 for all i, it is D ≥ 0 and D ≻ 0. Then we
can write F = Fs +Fa where Fs and Fa are the symmetric
and antisymmetric part of F : Fs = (F + FT )/2 and Fa =
(F − FT )/2. We need to show that the following quadratic
form is nonnegative:

xTDFx ≥ 0 ∀x ̸= 0. (5)

This quadratic form can be rewritten as

xTD1/2D1/2(Fs + Fa)D
−1/2D1/2x

= xTD1/2(D1/2FsD
−1/2 +D1/2FaD

−1/2)D1/2x

= yTEsy + yTEay
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where y = D1/2x, Es = D1/2FsD
−1/2 and Ea =

D1/2FaD
−1/2. By construction Es is symmetric and has

the same eigenvalues as Fs, while Ea is antisymmetric and
isospectral with Fa. Furthermore, since Fs ⪰ 0, so is Es.
Instead Fa (and hence Ea) has eigenvalues on the imaginary
axis. Since D ≻ 0, then (5) follows.
Since W is ES, for it ρ (W ) = 1 is a simple, strictly
dominant eigenvalue. This means that F has µ (F ) = 0
which is simple, strictly, dominant eigenvalue, i.e., the matrix
DF in the quadratic from (5) has corank 1.
In other words

(
I −Θ−1

)
(I −W ) has corank 1 and all

eigenvalues strictly outside the unit disk centered at 1 except
for one at the origin. Lemma 4 then tells us that ρ(PW ) ≤ 1
and PW has at most one eigenvalue on the unit circle.
From Theorem 1, we know that PW1 = 1. Hence, it follows
that ρ (PW ) = 1 is an eigenvalue of PW and that it is
strictly dominating all other eigenvalues of PW . To complete
the proof we need to show that the left eigenvector of PW

associated to ρ(PW ) = 1, call it w, is positive.
For w, it is wT

(
(I − (I −Θ)W )−1Θ

)
= wT , or

equivalently wT
(
I −

(
I −Θ−1

)
(I −W )

)−1
= wT or

wT
(
I −

(
I −Θ−1

)
(I −W )

)
= wT , which leads to

wT
(
Θ−1 − I

)
(I −W ) = 0T . Using the notation above,

this expression becomes wTD (I −W ) = 0T or wTDW =
wTD, i.e., the vector Dw is a left eigenvector of W
associated to the eigenvalue ρ (W ) = 1. However, since W
is ES and normal, it is EDS, and therefore 1TW = 1T .
Combining the two expressions, it must be Dw = 1, or
w = D−11. Since D is diagonal, in components we get
wi = (1/θi − 1)

−1
= θi/(1−θi). This completes the proof.

B. Continuous Time Case

The CT case can be treated in a similar way to the DT
case (all proofs are therefore omitted).

Theorem 3 Consider the CT SFJ model (3), with −L
marginally stable of corank 1 and normal. Under Assump-
tion 1, then − ((I −Θ)L+Θ) is Hurwitz and the system
(3) converges to the equilibrium point x∗ = PLx (0), where
PL = ((I −Θ)L+Θ)

−1
Θ, with PL1 = 1.

Similarly, the normality condition on L is also needed
in Theorem 3, as L not a normal matrix may result in
− ((I −Θ)L+Θ) which is not Hurwitz, as shown in the
following counterexample (Example 5). Example 6, instead,
shows that the normality of L is a sufficient but not necessary
condition for the stability of the SFJ model.

Example 5 Consider the Laplacian

L =


0.7286 −0.7384 −0.3274 0.3373
0.8639 0.4008 −0.4472 −0.8175
−0.0755 −0.0585 0.5208 −0.3868
−0.3806 −0.7311 0.4908 0.6208

 .

The matrix −L is EEP but not normal.
Choosing the stubbornness values Θ =

diag {0.9635, 0.0160, 0.5799, 0.3105} results in
µ (− ((I −Θ)L+Θ)) = 0.0847, i.e. the system (3)
is unstable.

Example 6 For the Laplacian

L =


0.0418 0.1131 −0.1398 −0.0152
−0.7470 0.1598 −0.0359 0.6232
0.4106 0.0892 0.3206 −0.8205
0.6004 −0.9164 −0.9666 1.2827

 ,

we have that −L is EEP but not normal. The stubbornness
values Θ = diag {0.9940, 0.9514, 0.1993, 0.5663} lead
to − ((I −Θ)L+Θ) which is Hurwitz. Hence, the SFJ
model (3) is stable.

The following is an example in which −L marginally stable
of corank 1 and normal yields − ((I −Θ)L+Θ) Hurwitz
for all possible choices of 0 < θi < 1.

Example 7 For the Laplacian

L =


0.2199 −0.2464 0.0557 −0.0293
−0.2464 0.4507 −0.0880 −0.1163
−0.0293 −0.1163 0.1045 0.0410
0.0557 −0.0880 −0.0723 0.1045

 ,

−L is EEP and normal.

Convergence of the FJ model, i.e., − ((I −Θ)L+Θ) Hur-
witz, does not guarantee that PL = (Θ− (I −Θ)L)

−1
Θ

has ρ(PL) ≤ 1. For instance in Example 6, it is ρ(PL) =
1.6993. However, if we add the normality condition on L,
then we have that PL is a ES matrix.

Theorem 4 Consider the CT SFJ model (3), with −L
marginally stable of corank 1 and normal. Under Assump-
tion 1, PL = ((I −Θ)L+Θ)

−1
Θ is a ES matrix, and

its left eigenvector w > 0 associated to ρ(PL) = 1 has
components wi = θi/ (1− θi).

V. EXTENSION TO CONCATENATED SFJ MODELS

A concatenated SFJ model is a two-time scale model
representing a sequence of discussion events, each of which
is represented by a (DT or CT) SFJ model. The main
motivation for studying concatenated SFJ models is that
complex decisions typically require a series of intermediate
negotiation steps (here our discussion events) rather than
being resolved in a single meeting by the participants. Using
the setting we developed in [11], a second index s = 1, 2, . . .
provides the clock for the sequence of discussion events,
hence the opinion vector becomes x(s, t), and the SFJ
dynamics at event s is

x(s, ∞) = P x(s, 0), (6)

where P ∈ {PW , PL} depending on whether we are
dealing with DT or CT dynamics (recall from the previ-
ous section that PW = (I − (I −Θ)W )

−1
Θ and PL =

((I −Θ)L+Θ)
−1

Θ). Concatenation refers to the endpoint
of the s − 1 meeting becoming the initial condition of the
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s meeting: x(s, 0) = x(s − 1, ∞), with the understanding
that x(0, ∞) = x(1, 0) is the initial opinion of the agents
at the begin of the first meeting. This implies that (6) can be
rewritten as

x(s, ∞) = P x(s− 1,∞), P ∈ {PW , PL} (7)

i.e., a DT dynamics in s in which P is a signed matrix.
Notice that for simplicity in this paper we assume that P is
the same on each discussion event. Under the assumptions
of Theorems 2 and 4, P has special properties, and we have
that the concatenated SFJ system (7) converges to consensus.

Theorem 5 Under Assumption 1, if
(i) [DT case:] W is ES and normal,

(ii) [CT case:] −L is EEP and normal,
then the concatenated SFJ model (7) converges to consensus.

Proof. In the DT case, from Theorem 2, W ES and normal
means that PW is ES. Using Lemma 3, the concatenated FJ
model (7) achieves consensus. A similar argument holds for
the CT case, using Theorem 4 and the equivalent of Lemma 3
for CT. This completes the proof.

Example 8 Figure 2 shows a simulation plot of the concate-
nated SFJ case for the DT Example 3. Notice how the convex
hull violation observed in Fig. 1 in the fast time scale of the
single discussion gets reabsorbed as the discussion events
concatenate. Notice further that unlike standard consensus
problems (i.e., with PW row stochastic) which are always
contracting, our concatenated SFJ model is not contracting,
even though it is converging asymptotically.
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Fig. 2. A simulation for a concatenated SFJ model built on Example 3.

VI. CONCLUSION

In this paper, we give sufficient conditions for existence
of a stable equilibrium point in the SFJ model. Any value
of stubbornness leading to an invertible Θ suffices to get a
stable equilibrium point if W is ES and normal for the DT
case, and −L is EEP and normal for the CT case. We show
that the same conditions are required also for the convergence
to consensus in the concatenated case.
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