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Abstract— An artificial lateral line (ALL) is a sensing system
that imitates the distributed perception organs of fish and plays
a major role in enhancing the flow estimation capability of
underwater robots. Whereas various ALLs have been designed
and developed, it is still an open question how to better
place ALL sensors on underwater robots, especially for those
with complex shapes and working in dynamic flow and robot
operating conditions. Aiming to answer this question, this paper
presents a novel data-driven sensor placement method for ALLs
of underwater robots. This method adopts distributed pressure
sensors to measure the flow field along the profile or the
outermost boundary of an underwater robot, and quantifies
the dynamic information embedded within these measurements
using multi-resolution dynamic mode decomposition (mrDMD).
The sensors are then positioned by optimizing the dynamic flow
information to enhance the perception. Compared with existing
sensor placement methods, such as observability maximization
and exhaustive experimental search, the proposed method
focuses on the modes of dynamics variability at various spatio-
temporal scales, thus leading to improved sensing ability espe-
cially in complex and dynamic flows. In addition, comprehen-
sively considering the sensor placement under different flow and
robot operating conditions, the proposed method is expected to
provide an optimal solution for the overall sensing performance
of the ALL system. To demonstrate the effectiveness of the
proposed method, a case study of background flow speed
estimation of oscillating underwater robots of different shapes
in a uniform flow is presented.

I. INTRODUCTION

With the increasing exploitation of the ocean, underwater
robots have attracted rapidly rising attention in the science
and engineering society during the past decades. The demand
for aquatic environmental monitoring, mineral exploitation,
national defense, etc., has been continuously expanding [1]–
[4]. The energy efficiency and the propulsion performance
of underwater robots have dramatically increased with the
advancement of robotics technology [2], [4], [5]. However,
conventional sensing technologies on land and/or in the air,
such as LiDAR, imaging sensors, GPS, etc., cannot be used
underwater due to the fast attenuation of electromagnetic
signals in water. The commonly-used underwater sensing
methods are acoustic and visual. However, their applications
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are limited. Acoustic sensing is susceptible to interference
and not environmental friendly to marine creatures [6]. The
visual sensing has a constrained field of view and is very
sensitive to light while it is mostly dark and murky in
underwater [7], [8]. In addition, acoustic and visual sensing
is generally unsuitable in small-sized underwater robots due
to the large installation space and high energy consumption.

To enhance the underwater sensing capability, researchers
have turned to nature for inspiration. They found that the
lateral line, one of the critical sensory systems in fish, plays
a crucial role in fish’s behaviors [9], [10]. By detecting
the surrounding pressure distribution and water vibration,
the ALL enables fish to perceive these environmental data
robust to hydrological, optical, and auditory variations. After
this extraordinary finding, researchers started to design and
develop numerous bioinspired ALL systems to enhance
underwater sensing. Analogous to fish’s lateral line that
comprises thousands of distributed sensing organs [10], an
ALL system typically consists of a number of distributed
sensors (mainly pressure sensors). A variety of ALL systems
have been designed for different tasks such as background
flow sensing, target detection, hydrodynamics estimation,
and localization and navigation [11]–[14].

Sensor placement in the ALL system is a non-trivial
research question for improving the sensing capability [10],
[15]–[17]. Sensors are mostly placed around the head and
uniformly along both sides of an underwater robot in existing
studies, either imitating fish’s lateral line or following one’s
design intuition. Very limited research has been reported
on the sensor placement of the ALLs. Our previous study
optimized the placement of sensors based on the observabil-
ity analysis, focusing on the observation sensitivity mainly
under (quasi-) steady flow conditions [15]. On the other hand,
existing studies on ALLs generally adopt underwater robots
of certain shapes that are easy to model mathematically [18]–
[20], however, inapplicable to those of complex shapes in
practice.

This paper proposes a data-driven method to optimize
the sensor placement of the ALL system for an underwater
robot of any shape under dynamic flow and robot operating
conditions. To capture the flow field dynamics at various
spatio-temporal scales, this paper uses the Koopman operator
theory and multi-resolution dynamic mode decomposition
(mrDMD) to recursively decompose the pressure measure-
ments collected around the underwater robot. This modal
decomposition process is conducted across various flow and
robot operating conditions. All the dynamic modes generated
form a modal library, which is expected to fully describe
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the flow in all the operating conditions of interest with
the spatial and temporal flow features decoupled [21], [22].
Selecting the sensor positions that capture the most dynamic
information embedded within time-scale dependent modes of
variability, this paper achieves sensor placement optimization
particularly in dynamic flows, which is then tested in a flow
sensing case study.

The main contribution of this paper is the novel sen-
sor placement approach that aims to maximize the multi-
resolution flow dynamics information collected by the ALL
system. The advantages are threefold: (1) the proposed
approach is data-driven and easy to implement, unlike the
methods that depend on theoretical flow modeling for regular
shaped robots, is suitable for underwater robots of arbitrarily
complex shapes; (2) the adopted mrDMD algorithm captures
flow dynamics and decomposes it into dynamic modes at
different temporal and spatial levels, thus leading to the
improved sensing capability considering the overall spatio-
temporal flow dynamics; (3) the sensor positioning method
comprehensively considers different flow and robot operating
conditions via constructing a library of dynamic decomposi-
tion modes, expected to be scalable and applicable in various
sensing tasks.

The remainder of the paper is organized as follows.
Section II describes the sensor placement problem of the
ALL system of an underwater robot. Section III presents
the proposed method for selecting the sensor positions with
maximized flow dynamics information using mrDMD de-
composition. Section IV presents the case study of flow sens-
ing using the proposed sensor placement strategy. Finally,
conclusion remarks are presented in Section V.

II. PROBLEM FORMULATION

This paper focuses on the optimization problem of dis-
tributed sensor placement of the ALL system for underwater
robots of arbitrary shapes under various flow and robot
operating conditions.

Following flow analysis conventions, we define a two-
dimensional coordinate reference frame with the origin lo-
cated at the center of mass (or the center of geometry) of the
underwater robot of interest, the x-axis along its longitudinal
axis, and y-axis generated by the right-hand rule. The profile
or outermost boundary of the robot is then described by
a closed curve c(x, y) = 0 and the sensor positions to be
selected belong to a set of points on the curve discretized
based on the physical constraits donated by {xj , yj} s.t.
c(xj , yj) = 0.

The flow speed scalar field around the robot, evaluated
at possible sensor positions of the ALL, is represented by
a time series of real-valued matrix Ui(xj , yj), where i =
1, 2, . . .M , and M ∈ Z+ is the total number of discretized
time instants of interest; and j = 1, 2, 3, ...N , where N ∈ Z+

is the total number of discretized points on the closed curve
c(x, y) = 0. Ui(xj , yj) is defined to be the snapshot at i-
th time instant referred to as Ui for the sake of brevity.
Each element in Ui represents the local flow speed at point

(xj , yj) on the profile or the outermost boundary of the
underwater robot at the i-th time instant [14].

According to the Koopman operator theory [23], [24],
there exists a linear operator that closely approximates the
nonlinear flow dynamics. Reshape each snapshot Ui into a
column vector ui = [u1,i,u2,i, ...uN,i]

T . The time series of
flow snapshots u1,u2 . . .uM sampled at a fixed time interval
follows a linear dynamical system, i.e.,

Y = AX (1)

where A is a finite approximation of the Koopman oper-
ator [23], [24], X = [ u1 u2 . . . uM−1 ] and Y =[
u2 u3 . . . uM

]
.

Concatenating the flow snapshots, we represent the time
series of flow measurements with U = [u1,u2, ...uM ]
[14]. Each row in U represents the sensor measurement at
a specific location in the flow field at different sampling
time instants, while each column represents the flow field
snapshot at a given time measured at different locations.
The information contained at the position (xj , yj) in the
history of flow measurement U is denoted by Id(U)(xj , yj)
which is typically described by statistical quantities such as
mean, variance, and entropy. This paper adopts the overall
magnitude of spatiotemporal dynamic modes of variability
as the measure which will be discussed in detail in the next
section.

The sensor placement is then formulated as an optimiza-
tion problem to find the points (xj , yj) along the profile of
the robot c(xj , yj) = 0 that maximize the information Id(U)
given the total number of the sensors to be used. Without loss
of generality, we consider the optimization problem of find
the most informative sensor, i.e.,

(xj , yj) = argmax
j∈{1,2,...N}

Id(U)(xj , yj) (2)

subject to the flow dynamics governed by Eq. (1).

III. METHOD

This section presents the sensor positioning method for the
ALL of an underwater robot. First, a data-driven approach,
mrDMD captures the dynamic flow modes of spatio-temporal
variations. Next, a library of all the possible dynamic modes
under various flow and robot conditions of interest is con-
structed. Finally, the sensor locations are determined via
optimization of the dynamics information possibly collected
by the given sensors.

A. Overview of MrDMD

The DMD method has attracted lots of attention in the
fluid dynamics field since Peter Schmid first introduced it
in 2010 due to its advantages in identifying the dynamics
modes in flow [14], [25]–[27]. It is a data-driven generalized
dimensionality reduction method that uses time series data
to decompose a nonlinear, high-dimensional, or infinite-
dimensional dynamical system (flow field) into a linear
combination of a finite number of basis modes. Stemming
from the Koopman operator theory, DMD uses a set of

4760



dynamic modes related to certain oscillation frequencies or
attenuation/growth rates to describe a flow field [14], [28].
In other words, the temporal evolution can be reconstructed
as the weighted sum of the DMD modes.The contribution
of each DMD mode to dynamic reconstruction changes
periodically with time, and the oscillation frequency and
growth/decay rate are determined by their relevant DMD
eigenvalues [14], [28].

As researchers continue to investigate DMD, more vari-
ants have been developed in terms of but not limited to
multiscale analysis, control design, and sparse perception.
Among them, mrDMD is a newly-developed trending al-
gorithm that performs multiscale analysis (MRA) similarly
to the wavelet transform. By combining MRA with DMD,
mrDMD separates the spatial and temporal characteristics of
the flow dynamics, providing a powerful tool for analyzing
the multiscale features in the dynamical flow system [21],
[22]. This paper uses mrDMD to analyze and quantify the
flow field dynamics and applies it in the determination of the
optimal sensor locations.

MrDMD extends the traditional DMD concerning the
spatial and temporal multiscale features. MrDMD adopts lay-
ered recursive computation similar to wavelet decomposition
and characterizes phenomena of multiple time scales and
important transient behaviors in nonlinear dynamical systems
[21], [22]. To fully capture the flow dynamics around the
underwater robot, the selection of the number of snapshots
M should include measurement data that reflects both the
high frequency and low frequency portion of the system
dynamics. The mrDMD algorithm applies recursively to the
M snapshots as follows. First, mrDMD decomposes the
system into the dynamic modes [21] and extracts the slowest
m1 modes, i.e.,

XmrDMD(t) =

M∑
k=1

bk(0)ψ
(1)
k exp (ωkt)

=

m1∑
k=1

bk(0)ψ
(1)
k exp (ωkt)

( slow modes )

+

M∑
k=m1+1

bk(0)ψ
(1)
k exp (ωkt)

( fast modes )

(3)

where bk(0) is the corresponding k-th DMD coefficient, ψ(1)
k

is the k-th DMD spatial mode and exp (ωkt) is the k-th
temporal exponential mode [21]. The oscillation frequency
of each mode is ranked and the DMD modes are separated
into two groups including the low frequency modes of total
number m1 and the remaining high frequency modes of total
number M −m1.

After romoving the slow modes, the remaining M −m1

fast modes together create a new time series of snapshots

XM/2(t) =

M∑
k=m1+1

bk(0)ψ
(1)
k exp (ωkt) . (4)

To achieve multi-scale analysis, divide the freshly created
snapshot collection into two parts according to time

XM/2 = X
(1)
M/2 +X

(2)
M/2 (5)

The iteration process works by recursively removing slow
frequency components and building the new matrices
XM/2,XM/4,XM/8, ... until the desired level of decompo-
sition is reached [21], [22]. MrDMD decomposition is then
expressed as

XmrDMD (t) =

m1∑
k=1

b
(1)
k ψ

(1)
k exp

(
ω
(1)
k t

)
+

m2∑
k=1

b
(2)
k ψ

(2)
k exp

(
ω
(2)
k t

)
+

m3∑
k=1

b
(3)
k ψ

(3)
k exp

(
ω
(3)
k t

)
+ · · ·

(6)

Here, ψ(l)
k is the k-th DMD mode at the l-th decomposi-

tion level, ω(l)
k is the k-th DMD eigenvalue at the l-th de-

composition level, b(l)k is the corresponding DMD coefficient.
ml is the total number of slow modes reserved at the l-th
decomposition level. Compared to standard DMD, mrDMD
provides multi-resolution spatial and temporal features of the
system [21].

B. Flow Modal Library

This paper uses mrDMD to analyze the distributed pres-
sure measurement data and characterize the dynamic flow
around an underwater robot. Creating a library of dynamic
modes under different flow and robot operating conditions is
essential for a complete representation of the flow dynamics.

The mrDMD decomposition is applied to the flow field
around the underwater robot given a certain operating con-
dition c ∈ Z+, and all the dynamic modes of the flow are
obtained and combined into a matrix

Ψc = [ψ
(1)
1 ψ

(1)
2 · · · ψ(1)

k1
ψ
(2)
1 · · · ψ(2)

k2
· · · ψ(L)

1 · · · ψ(L)
kL

]
(7)

where L ∈ Z+ represents the total number of decomposition
levels, kl ∈ Z+ (l = 1, 2, · · ·L) represents number of modes
extracted at level l.

Considering all the flow and robot operating conditions of
interest, we create a library of dynamic modes that describe
the complete spatiotemporal flow features, denoted by Φ =
[Ψ1 Ψ2 Ψ3 · · ·ΨC ], where C represents the total number of
the operating conditions of interest.

C. Sensor Placement

The comprehensive consideration of the sensor placement
under different operating conditions requires using the modal
sets of the flow field in different operating conditions.
However, due to the different information contained in each
mode of the flow field in different operating conditions,
there are significant differences in the values between the
sets of modes, and it is impossible to form a modal library
directly. To balance the dynamics information embedded in
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Fig. 1. The schematic of selecting optimal sensor locations based on
the constructed mrDMD modal library. The left figure shows the modal
library, and the red box represents the selected rows with the top three most
flow dynamics information. The right figure shows the profile or outermost
boundary of the underwater robots along which the ALL sensors are possibly
placed. The red dots represent the selected sensor positions for optimizing
flow dynamics information.

the dynamic modes under different operating conditions, it
is natural to normalize the mode collection Ψc. This paper
adopts the min-max normalization, i.e.,

Ψn
c (j, k) =

Ψc(j, k)−min(Ψc)

max(Ψc)−min(Ψc)
. (8)

Here j = 1, 2, 3, ...N , where N ∈ Z+ is the total number
of discretized points on the closed curve c(x, y) = 0; and
k = 1, 2, · · ·

∑L
l=1 kl, where

∑L
l=1 kl ∈ Z+ is the total

combined number of dynamic modes of the flow at all
the decomposition levels; max(·) and min(·) represent the
maximum and minimum operator, respectively.

To favor some particular operating conditions, the modal
library can take different weights accordingly, i.e.,

Φw = [s1Ψ
n
1 s2Ψ

n
2 . . . sCΨ

n
C ] . (9)

In this paper, we consider the flow dynamics information
captured at a specific sensor location is represented by the
time series of measurement data collected at that position.
Each row vector of the mode library Φw consists of the
coefficients of modes that are decomposed from the time
series of measurement data at a certain sensor location.
Therefore, to measure the flow dynamics information given
a sensor location, we compute the Euclidean norm of the
corresponding coefficients over all dynamic modes, or the
two-norm of the corresponding row vector of Φw. To find
the best sensor location that contains possibly the maximum
flow dynamics information, we compute the information
measure Id(U)(xj , yj) at all sensor locations (xj , yj), where
j = 1, 2, · · · , N by

Id(U) = diag
(
ΦwΦ

T
w

) 1
2

= [||Φw (1, :) ||2 ||Φw (2, :) ||2 ... ||Φw (N, :) ||2]T
(10)

where matrix Id(U)(xj , yj) consists of all the Euclidean
norm of the row vectors of the matrix Φw. As shown in
Fig. 1, the rows in the modal library matrix represent the
flow dynamics at corresponding sensor locations along the
profile or the outermost boundary of the underwater robot.
The red points have the top three Euclidean norms, indicating
that these points contain the most dynamics information in

flow. The optimal sensor positions are corresponding to the
rows with the maximum Euclidean norms.

This method selects the sensor positions by selecting the
rows with the maximum Euclidean norms in the modal
library. Therefore, the main computational complexity of this
algorithm is on the calculation and sorting of the Euclidean
norm of the matrix in terms of its rows. The number of rows
represents the number of sensors that are possibly installed
on the robot, determined by the dimension of the robot
and the selected sensors. Therefore, the size of the flow
field determines the number of rows in the modal library,
and the number of dynamic modes and operating conditions
determine the number of columns. Since, the number of rows
is generally far greater than the number of columns, the
computational complexity mainly depends on the size of the
flow field.

IV. THE CASE STUDY

A. Simulation Setup

The paper is concerned with sensor placement in various
flow conditions for the ALL system of an arbitrarily shaped
underwater robot. To demonstrate the effectiveness of the
proposed method, a case study is designed which estimates
the background flow speed of selected underwater robots.

The case-study experiment uses two shapes, including
a rectangle and a triangle to test the adaptability of the
proposed method with respect to robots of different shapes.
The rectangle is 20 cm long and 12 cm wide. The isosceles
triangle is 20 cm high with a base of 12 cm. The back-
ground flow is set to 0.4 m/s, 0.5 m/s, 0.6 m/s, 0.7 m/s,
respectively, to generate different flow work conditions in
terms of the flow speed. In addition, to test the performance
of the proposed method when applied to dynamic flow
fields, the underwater robots of the two selected shapes will
oscillate following a sinusoidal waveform at two oscillation
frequencies f of 9

π Hz and 9
2π Hz with oscillation amplitudes

of π
3 and 2π

3 . The total simulation time is 40 s for all the
tests. The method proposed in this paper provides a strategy
for selecting the optimal sensor positions given the number
of sensors. Without loss of generality, this case study selects
five sensors.

The experiment aims to classify the background flow
speed based on pressure measurements from these five
sensors. While classification methods such as Bayesian and
deep neural networks are widely studied these days, consid-
ering the limitation of computing resources of underwater
robots and the convenience of the classifier training, this
paper adopts a traditional decision tree algorithm for the
background flow speed estimation. The decision tree uses
the direct pressure measurements of the five sensors as input
features and the background flow speed as output labels.

B. Selection of Sensor Locations

The case study simulates the flow using computational
fluid dynamics (CFD) for both the rectangular and triangu-
lar shaped robots. The pressure measurements around the
underwater robot in CFD simulation provide all the data
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(a) f = 9
π

Hz, t = 31s (b) f = 9
π

Hz, t = 32.5 s (c) f = 9
π

Hz, t = 34 s (d) f = 9
π

Hz, t = 35.5 s

(e) f = 9
2π

Hz, t = 31 s (f) f = 9
2π

Hz, t = 32.5 s (g) f = 9
2π

Hz, t = 34 s (h) f = 9
2π

Hz, t = 35.5 s

(i) f = 9
π

Hz, t = 31 s (j) f = 9
π

Hz, t = 32.5 s (k) f = 9
π

Hz, t = 34 s (l) f = 9
π

Hz, t = 35.5 s

(m) f = 9
2π

Hz, t = 31 s (n) f = 9
2π

Hz, t = 32.5 s (o) f = 9
2π

Hz, t = 34 s (p) f = 9
2π

Hz, t = 35.5 s

Fig. 2. Simulation results of sensor placement optimization in background flow estimation using distributed pressure sensors. With the background flow
speed set at 0.4 m/s. The first and second rows show the dynamic flow snapshots around the rectangular shape at oscillation frequencies f of 9

π
Hz and

9
2π

Hz, respectively. The third and fourth rows show the dynamic flow snapshots around the triangular shape at oscillation frequencies f of 9
π

Hz and
9
2π

Hz, respectively. The red dots represent the selected optimal sensor positions, the green dots represent the randomly selected sensor positions, and the
white dots represent the selected worst sensor positions.

to generate the flow snapshots forming matrices X and Y
in Eq. (1). Considering practical engineering constraints of
sensor installation, the sensor measurement locations are
selected with an offset of 0.3 cm away from the profile or
the outermost boundary of the robot.

The mrDMD is used to decompose the flow data X and Y
under different background flow conditions. The coefficients
sc in Eq. (9) are all set equal to 1 in simulation to generate the
modal library Φw. Finally, by ranking the Euclidean norms
of the rows in Φw, the sensor positions with the highest
measure of dynamic variability are selected. In addition,
as comparison trials, we select sensor positions with the
lowest measures of dynamic variability that correspond to

the smallest Euclidean norms among the rows in Φw as well
as the sensor positions randomly selected around the head
of the robot following existing studies.

Figure 2 shows the flow snapshots in the case study and the
sensor positions selected when the background flow speed is
0.4 m/s. The red dots represent the optimal sensor positions
selected based on the proposed sensor placement method, the
white dots represent the selected worst sensor positions, and
the green dots represent the randomly selected sensor posi-
tions. The first and second rows represent the flow snapshots
around the rectangular shaped underwater robot when the
oscillation frequency f is 9

π Hz and 9
2π Hz, respectively. The

third and fourth rows represent the flow snapshots around the
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Fig. 3. The statistical estimation results of background flow speed. The first row shows the estimation results of the rectangular robot tested at different
oscillation frequencies f of 9

π
Hz and 9

2π
Hz, different background flow speeds at 0.4 m/, 0.5 m/, 0.6 m/, 0.7 m/s, and different level of noise variances

of 5 Pa and 20 Pa. The second row represents the estimation results of the triangular robot tested under the same conditions. The blue bar corresponds
to the worst sensor positions selected, the red bar corresponds to the randomly selected sensor positions, and the orange bar corresponds to the optimal
sensor positions selected.

triangular shaped robot when the oscillation frequency f is
9
π Hz and 9

2π Hz, respectively. From the figure, we observe
that the flow velocities at the optimal sensor positions have
a larger dynamic variation compared to that of the worst and
random sensor positions, which is consistent with our design
objective.

C. Background Flow Speed Estimation

Background flow speed estimation is conducted to demon-
strate the performance of the selected sensor locations. The
data set is from CFD simulation sampled at 10 Hz for
40 s in total. All the 400 data samples have been splitted
into the training set and the test set at a ratio of 3 : 1.
In addition, we add a Gaussian process noise with mean
0 and a variance of 5 Pa and 20 Pa separately to the
pressure data sampled from the CFD simulation. The flow
sensing experiments are conducted following combinations
of configuration parameters including the robot shapes of
triangle and rectangle, the oscillation frequencies of 9

π Hz

and 9
2π Hz, the noise variance of 5 Pa and 20 Pa, and the

background flow speed of 0.4 m/s, 0.5 m/s, 0.6 m/s, 0.7 m/s,
with a total number of 32 experimental configurations. Each
configuration is repeatedly tested ten times.

Figure 3 shows the statistical results of the 320 exper-
iments. The bar graph represents the averaged accuracy
rate over ten repeated experiments at different background
speeds. The error bar represents the standard deviation of
these experiments. Figures 3(a) and 3(b) present the flow
estimation when the rectangular robot oscillates at 9

π Hz
and 9

2π Hz, respectively. The colors blue, red, and orange
correspond to the worst, random, and optimal sensor posi-
tions selected based on the proposed optimization approach.
Figures 3(c) and 3(d) show the estimation results with the
triangular robot.

From Fig. 3, we observe that the optimal sensors selected
following the proposed sensor placement method identi-
fies/classifies the background flow velocity at an accuracy
rate between 70% and 80% in general, while the randomly
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selected sensors lead to an overall estimation accuracy rate
between 50% and 60 %, and the worst sensor positions
between 40% and 50%. The superior estimation performance
by the optimized sensor positions demonstrates that the
proposed sensor placement method effectively improves the
sensing capability of the ALL system. In addition, based
on the standard deviation of the estimation results with
respect to the added measurement noise, we consider the
performance improvement brought by the optimal sensor
placement is consistent.

V. CONCLUSIONS

In this study, we proposed a data-driven sensor placement
strategy for the ALL of an underwater robot. We adopted
the mrDMD algorithm to decompose the flow dynamics
around the robot into multiscale spatiotemporal modes and
ranked the possible sensor positions based on the measure
of dynamic variability for the optimization of the sensor
locations in terms of the flow dynamics information. This
method is expected to be applicable to any underwater robot
of an arbitrary shape under various flow/and robot operating
conditions. The case-study experiment of background flow
estimation was conducted, the results of which validated the
proposed sensor placement method.

In future work, we will investigate the influence of the
number of sensors on the flow estimation and design an
algorithm to select the number that balances the performance
and the cost. In addition, we will apply the proposed sensor
placement algorithm to the design of the ALL system of
the autonomous underwater robot developed in the lab and
explore its application in flow-relative navigation and control.
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