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Abstract— Controlling evolutionary game-theoretic dynamics
is a problem of paramount importance for the systems and
control community, with several applications spanning from
social science to engineering. Here, we study a population of
individuals who play a generic 2-action matrix game, and whose
actions evolve according to a replicator equation —a nonlinear
ordinary differential equation that captures salient features
of the collective behavior of the population. Our objective
is to steer such a population to a specified equilibrium that
represents a desired collective behavior —e.g., to promote
cooperation in the prisoner’s dilemma. To this aim, we devise an
adaptive-gain controller, which regulates the system dynamics
by adaptively changing the entries of the payoff matrix of
the game. The adaptive-gain controller is tailored according
to distinctive features of the game, and conditions to guarantee
global convergence to the desired equilibrium are established.

I. INTRODUCTION

Evolutionary game theory is a mathematical framework
that models the dynamics of large populations, whose in-
dividuals repeatedly engage in strategic interactions [1],
[2]. Such a framework, originally proposed for biological
systems [3], has found applications in a broad range of
population dynamics, spanning from economics to social
science and ecology, attracting a growing interest [4]–[7]. In
particular, controlling evolutionary game-theoretic dynamics
has emerged as a problem of interest for the systems and
control community [4], [8], [9]. Notably, even steering the
population to a desired equilibrium constitutes a challenge,
since such an equilibrium may be one among several, and
may even be unstable or not globally attractive for the
uncontrolled population dynamics.

Diverse open-loop approaches have been proposed in the
literature to tackle this problem. Several methods rely on the
assumption that it is possible to act on the individuals directly
—e.g., by setting the behavior of part of the population who
can act as a committed minority [10], [11]— or indirectly
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—e.g., by incorporating features into their decision-making,
such as sensitivity to trends [12]–[14], reciprocity [15],
[16], or reputation [17]. However, such interventions on
the individuals are not always feasible. To address this
limitation, alternate methods have been proposed, in which
incentives are used to modify the structure of the payoff in
order to favor the adoption of the desired action [18]–[21].
However, these methods also suffer from critical limitations.
Namely, they require accurate information on the structure
and characteristics of the game in order to design and tune
the incentives in an open-loop fashion. This hinders the
possibility to use them in many real-world scenarios, where
uncertainty in the payoffs may cause open-loop approaches
to fail, calling for the development of closed-loop schemes
to control evolutionary game-theoretic dynamics.

In this paper, we fill in this gap by proposing a novel
adaptive-gain controller for game-theoretic evolutionary dy-
namics [1], [3]. In particular, we focus on the broad class
of symmetric 2-player matrix games [8] and we consider a
population where each individual plays the 2-player game
against all the others, yielding a population game [1]. The
emergent behavior of the action revision processes is cap-
tured at the population-level by a replicator equation [22],
which is one of the most widely used and studied revision
protocols in evolutionary game theory [1], [23]. In such a
framework, the state of the population (i.e., the fraction of
adopters of each action) is modeled by way of a nonlinear
ordinary differential equation (ODE) [1], [2], [22]. For such
dynamics, it has been shown that the population converges to
a Nash equilibrium (NE) of the game [1]. For instance, in the
well-known prisoner’s dilemma, the replicator equation leads
the entire population to the Pareto-inefficient equilibrium in
which all players defect [23]. Adaptive-gain control [24] has
been used to stabilize complex network systems [25], [26],
with applications to epidemics [27], but to our knowledge,
has not been used to control evolutionary dynamics.

Here, we encapsulate a feedback control scheme in the
revision protocol to steer the population to a desired equi-
librium. In particular, we consider scenarios in which the
desired equilibrium is either unstable or not globally at-
tractive for the uncontrolled dynamics. To this aim, we
propose a class of adaptive-gain controllers and we incor-
porate the adaptive gain within the payoff matrix. We tailor
the adaptive-gain controllers to the three different classes
of 2-action matrix games —coordination, dominant-strategy,
and anti-coordination games [8], [28] by suitably designing
their adaptation functions, and we analytically study the
corresponding nonlinear system of ODEs to assess their
performance. In particular, we prove that an appropriately de-
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signed adaptive-gain controller is able i) lead the population
to the desired equilibrium in coordination games, ii) promote
cooperation in social dilemmas, and iii) enforce consensus
in anti-coordination games. Moreover, we show that in all
these scenarios the gains converge to a constant value, which
is key for the real-world applicability of our control scheme.
Importantly, our adaptive-gain controller does not require
full information on the payoff matrix to achieve its goal,
addressing the limitations of other methods mentioned above.

II. MODEL AND PRELIMINARIES

We start by gathering the notational conventions used in
this paper. The set of real and nonnegative real numbers are
R and R+, respectively. Given two positive integers n and
m, a matrix A ∈ Rn×m is denoted with bold capital font,
with Aij denoting the generic jth entry of its ith row.

A. 2-player matrix game

We consider a population where each individual plays a
symmetric 2-player matrix game [8] against all the others,
yielding a population game [1]. We start by presenting the
formalism of such matrix game. In this game, each player
can choose between two actions, termed action 1 and action
2, characterized by a payoff matrix

A =

[
a b
c d

]
∈ R2×2. (1)

In other words, a player would receive payoff equal to a or
b for selecting action 1 against an opponent who plays 1 or
2, respectively; while they would receive c or d for selecting
action 2 against an opponent who plays 1 or 2, respectively.

Following a standard classification for 2-player matrix
games [28], the payoff matrix in Eq. (1) determines three
different classes of games, summarized in the following.

Proposition 1. The payoff matrix in Eq. (1) determines three
classes of games:

1) If d > b and a > c, the game is a coordination game;
it has two pure NE1 (1, 1) and (2, 2), and a mixed NE,
where action 1 is played with probability equal to

x∗ :=
d− b

a+ d− b− c
. (2)

2) If d > b and a < c, or d < b and a > c, the game is
a dominant-strategy game, which has the unique (pure)
NE: i) (2, 2) if d > b and a < c; or ii) (1, 1) if d < b
and a > c.

3) If d < b and a < c, the game is an anti-coordination
game, which has two pure NE ((1, 2) and (2, 1)), and
a mixed NE where action 1 is played with probability
x∗.

To illustrate these three classes of games, we provide one
example for each class, which will be used later in the paper.

1A Nash equilibrium (NE) is a configuration of actions in which no player
can increase their payoff by unilaterally changing their action. A NE is said
to be pure if each player chooses a strategy and mixed if at least one player
chooses a probability distribution over the strategies.

Example 1 (Pure coordination game). A game with diagonal
and strictly positive payoff matrix (b = c = 0, a, d >
0) is a particular type of coordination game, called pure
coordination game, in which a player receives a (positive)
payoff only if they coordinate with their opponent.

Example 2 (Prisoner’s dilemma). A game with c < a <
d < b is a prisoner’s dilemma in which action 1 and 2
represent defection and cooperation, respectively. A player
receives d for mutual cooperation, while b > d captures the
temptation to cheat (i.e, to defect if the other cooperates);
a is the punishment for mutual defection, which provides a
smaller payoff than mutual cooperation (d), but larger than
cooperating if the other defects (c). Prisoner’s dilemma is
a dominant-strategy game, with mutual defection (action 1)
as the unique NE. This is somewhat counter-intuitive, since
the NE is not socially optimal: the players would receive a
larger joint payoff if they both cooperate.

Example 3 (Minority game). A minority game is a game
with zero-diagonal and strictly positive off-diagonal payoff
matrix (a = d = 0, b, c > 0). This is an anti-coordination
game in which a player receives a (positive) payoff only if
they do not coordinate with their opponent.

B. Evolutionary dynamics

We consider a continuum of players, each one playing the
2-action game in Eq. (1) against the entire population. Let us
denote by x(t) ∈ [0, 1] the fraction of adopters of action 1 at
time t ∈ R; consequently, the fraction of adopters of action 2
is equal to 1− x(t). Then, following the standard approach
of population games [1], the total reward associated with
action 1 and 2 is given by the average payoff that a player
receives for choosing action 1 and 2 from all games played,
respectively, which is equal to[

r1(x,A)
r2(x,A)

]
= A

[
x

1− x

]
=

[
ax+ b(1− x)
cx+ d(1− x)

]
. (3)

For the sake of readability, we have omitted to explicitly
write the dependence of the variables on time, i.e., to use
the notation x(t). Throughout this paper, we adopt this con-
vention except when we wish to highlight the dependence.

In population games [1], the players’ actions revision is
captured at the population-level by means of ODEs. Here,
we use the replicator equation [22], yielding:

ẋ = x(1− x)(r1(x,A)− r2(x,A))
= x(1− x)((a+ d− b− c)x+ b− d),

(4)

with initial condition x(0) ∈ [0, 1]. Briefly, Eq. (4) captures
the tendency of players to imitate their peers who have higher
payoff: the rate at which individuals switch action from 2 to
1 is proportional to the difference in the reward for playing
2 with respect to the reward for playing 1.

The (uncontrolled) replicator equation in Eq. (4) has been
extensively studied in the literature [1], [22], and we can fully
characterize it through the following result. For its proof,
omitted due to space constraints, we refer to [1], [22].
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Fig. 1: Trajectories of the (uncontrolled) replicator equation in Eq. (4) for
(a) a pure coordination game with a = d = 1; (b) a prisoner’s dilemma
with c = 0, a = 1, d = 2, and b = 3; and (c) a minority game with
b = c = 1.

Proposition 2. Consider the replicator equation in Eq. (4).
If the payoff matrix A in Eq. (1) is

1) a coordination game (d > b, a > c), then x(t) → 0 if
x(0) < x∗, and x(t) → 1 if x(0) > x∗;

2) a dominant-strategy game, and
a) d > b and a < c, then x(t) → 0 for any x(0) < 1;
b) d < b and a > c, then x(t) → 1 for any x(0) > 0;

3) an anti-coordination game (d < b, a < c), then x(t) →
x∗ for any x(0) ∈ (0, 1),

where x∗ is defined in Eq. (2).

Remark 1. The behavior of Eq. (4) can be related to the
Nash equilibria of the game and to the concept of evolu-
tionary stability [3]. In fact, all Nash equilibria of Eq. (1)
are associated with equilibria of Eq. (4). However, Eq. (4)
may have some equilibria that are not Nash —e.g., x = 1 in
scenario 2). Moreover, the equilibria that are asymptotically
stable coincide with the evolutionarily stable strategies of
the game. Hence, the replicator equation converges almost
everywhere to an evolutionarily stable strategy [1], [3].

Figure 1 illustrates Proposition 2. In particular, it depicts
the trajectories for the (uncontrolled) replicator equation
in three representative examples of the classes of games
described above. In the pure coordination game (Fig. 1a), the
population converges to a pure configuration that depends on
the initial condition; in the prisoner’s dilemma, we observe
convergence to the all-defector configuration (Fig. 1b); in
the minority game (Fig. 1c), the population converges to the
unique (mixed) NE.

III. PROBLEM FORMALIZATION

Proposition 2 identifies two problems of interest. First,
in scenario 1), the uncontrolled dynamics has two locally
asymptotically stable equilibria (x = 0 and x = 1) and the
initial condition determines the equilibrium reached by the
system. An important problem is to design control strategies
to steer the system to a desired equilibrium, regardless of
the initial condition. In the context of social change (where
action 1 and 2 represent the status quo and the innovation,
respectively), the problem translates into designing interven-
tion policies to incentivize social change when the innovators
are initially a small minority [29].

Second, in scenarios 2) or 3), the uncontrolled system
has a unique globally asymptotically stable equilibrium,
which is the unique NE of the game —either a pure NE

2), or a mixed NE in 3). For these two scenarios, one
problem of interest is to steer the system to a different
equilibrium, e.g., to promote cooperation in the prisoner’s
dilemma (Example 2) [7], [30] or reach coordination in an
anti-coordination game (Example 3) [31].

Here, we consider both problems of interest. Without loss
of generality, we focus on the case in which we aim to
steer the system to the equilibrium x = 0, i.e., all players
collectively adopt action 2. Before formalizing our research
problems, we want to point out that a naive intervention
would be to permanently change the payoff matrix to shift
the system to resemble scenario 2a) of Proposition 2. How-
ever, such a structural intervention has several limitations.
First, in many real-world scenarios it may not be feasible,
since permanent changes to the payoff structure may be
economically unsustainable and unnecessary. In fact, in some
scenarios (in particular, for coordination games), it may
not be necessary to permanently change the payoff, since
interventions might be needed only in a transient phase. In
other scenarios, permanent changes could be necessary, but
their implementation may not be required throughout the
process, and can be limited to some specific conditions in
which it is needed. Second, the aforementioned approaches
would require knowledge of the exact values in the payoff
matrix. For these reasons, we focus here on designing more
refined and dynamic control schemes.

Specifically, we assume that one or multiple entries of the
payoff matrix A are controllable through the addition of a
gain, i.e., that the payoff matrix can be written as

A(t) = Â+Gg(t) =

[
a b
c d

]
+

[
G11 G12

G21 G22

]
g(t), (5)

where Â is the nominal payoff matrix of the uncontrolled
game from Eq. (1), g(t) : R+ → R+ is a continuous function
that quantifies the control gain, and G ∈ {0, 1}2×2 is a 2×2
matrix that determines which entries of the payoff function
are controlled via the gain. We term G the control matrix. In
practical terms, the gains capture some temporary changes
to the structure of the payoff matrix, which may be designed
in order to achieve the desired equilibrium.

We want to design control gains in an adaptive fashion, to
obtain a closed-loop controller for the evolutionary dynamics
that requires limited information on the game. Hence, we
assume that the gain g(t) is governed by the following ODE:

ġ(t) = ϕ(x(t))g(t), (6)

where the adaptation function ϕ(x) : [0, 1] → R is con-
tinuously differentiable on its domain, with initial condition
g(0) > 0. Hence, an adaptive-gain controller can be char-
acterized by the pair (G, ϕ), yielding the following planar
system of coupled nonlinear ODEs:

ẋ = x(1− x)
(
(a+ d− b− c)x+ b− d

+(G11 −G21)gx+ (G12 −G22)g(1− x)
)
,

ġ = ϕ(x)g,
(7)

for which we can prove the following property.
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Lemma 1. The domain Ω := [0, 1] × R+ is positively
invariant under Eq. (7).

Proof. The regularity of ϕ and the presence of the term g
on the right-hand side of Eq. (6) guarantees that g(t) ∈ R+

for all t ∈ R+ [32].

Besides guaranteeing convergence to the desired equi-
librium x = 0, it also makes sense for many practical
applications to enforce that the gain converges to some
constant value ḡ. An intuitive difference between the two
problems of interest is that, for a coordination game the
controller should be able to guide the system out of the
basin of attraction of the undesired equilibrium and into
the basin of the desired one; in the second problem the
controller should enforce stability for an equilibrium that
would otherwise be unstable. Consequently, while in the first
problem it may be suitable to consider control policies that
are only active in the transient, and for which g(t) → 0,
in the second scenario we may need the control to remain
active in the steady state to ensure stability. Hence, we can
now finally formulate our two research problems of interest.

Problem 1. Design (G, ϕ) so that i) the system in Eq. (4)
for a coordination game converges to the desired equilibrium
x(t) → 0 and ii) the gain g(t) → 0.

Problem 2. Design (G, ϕ) so that i) the system in Eq. (4)
for a dominant-strategy game or an anti-coordination game
converges to the desired equilibrium x(t) → 0 and ii) the
gain g(t) → ḡ, for some constant ḡ ∈ R+.

IV. MAIN RESULTS

A. Coordination Games

Let us consider a coordination game with payoff matrix
from Eq. (5) (a > c and d > b). For the sake of readability,
we define two constants α = a− c > 0 and β = d− b > 0.
Using this notation, the replicator equation in Eq. (4) reads

ẋ = x(1− x)
(
(α+ β)x− β

)
. (8)

As a consequence of Proposition 2, the trajectories of the
uncontrolled dynamics in Eq. (8) converge to x = 0 if x(0) <
x∗ = β

α+β , and to x = 1 if x(0) > x∗, with a saddle point
equilibrium at x∗, as illustrated in Fig. 1a.

In order to solve Problem 1 for any initial condition
(especially when x(0) > x∗), we observe that the gain
dynamics should be such that ġ is strictly positive when x
is far from 0, and negative in the proximity of x = 0 so
that g(t) can converge to 0. For this reason, we propose an
adaptation function of the form

ϕ(1)(x) = k(x− h), (9)

with k > 0 and h > 0 that regulate the rate of adaptation
and the rate of the decay of the gain, respectively.

Since our objective is to steer the population toward
collective adoption of action 2 and avoid reaching the other
locally attractive equilibrium in which the entire population
adopts action 1, we will consider a control matrix that

provides an adaptive advantage for choosing action 2 against
a player who plays action 1, which can be interpreted as
an incentive for innovators and early adopters of action 2.
Hence, we adopt

G(1) =

[
0 0
1 0

]
. (10)

Theorem 1. The adaptive-gain control (G(1), ϕ(1)) solves
Problem 1 for any initial condition x(0) ∈ [0, 1) and for any
k > 0 and h ∈ (0, β

α+β ).

Proof. Using Eq. (9) and Eq. (10), Eq. (7) for the coordina-
tion game reduces to the planar system

ẋ = x(1− x)
(
(α+ β)x− β − gx

)
ġ = kg(x− h).

(11)

which has three equilibria: (0, 0), which is (locally) asymp-
totically stable; (1, 0), which is an (unstable) saddle point;
and ( β

α+β , 0), which is an (unstable) source.
We now analyze Eq. (11), to prove convergence to the

desired equilibrium (0, 0) from any initial condition with
g(0) > 0 and x(0) < 1. To this aim, we partition the
positively invariant domain Ω of Eq. (11) into three regions
A = [0, β

α+β )×R+, B = [ β
α+β , 1)×R+, and C = {1}×R+.

In the following, we prove that any trajectory with initial
conditions in A ∪ B converges to (0, 0). The proof is
structured into two steps: i) we prove that any trajectory with
initial conditions in A converges to (0, 0); then, ii) we prove
that any trajectory starting from B exits such set reaching A.

In A, we can bound the first equation in Eq. (11) as ẋ ≤
x(1−x)((α+β)x−β), which is independent of g. Gronwall’s
inequality [33] establishes that x(t) → 0 for any x(0) ∈ A.
As a consequence, we further have that g(t) → 0, being
ġ < 0 in the neighborhood of x = 0. Hence, the basin of
attraction of (0, 0) includes the entire set A.

We focus now on the behavior of Eq. (11) in B. Define
µ := k( β

α+β − h) > 0, and observe from Eq. (11) that
ġ ≥ µg. Hence, using Gronwall’s inequality, we conclude
that g(t) ≥ g(0)eµt, for any t ≥ 0 provided that x(t) ≥
β

α+β . Inserting this bound into the first equation of Eq. (11)
yields after some simplifications, ẋ(t) ≤ x(t)(1−x(t))(α−
β

α+β g(0)e
µt), which holds for any x ∈ [ β

α+β , 1) and is
strictly negative for t ≥ t̄ = 1

µ ln(α)+ 1
µ ln(α+β)− 1

µ ln(β)−
1
µ ln(g(0)), which is a finite constant. This implies that x(t)
monotonically decreases for t ≥ t̄, until it is below β

α+β
reaching A. Once A is reached, the first part of this proof
guarantees convergence to (0, 0), yielding the claim.

Fig. 2a shows an exemplifying trajectory of the controlled
replicator equation for a scenario in which the uncontrolled
system converges to the NE x = 1. Our controller, instead, is
able to steer the system to the desired equilibrium x = 0. It is
important to highlight that, even though Theorem 1 imposes
a constraint on the parameter h that depends on the entries
of Â, it is not necessary to know their precise values. In
fact, one just needs a bound on the quantities α and β (in
particular, on their relative magnitude), in order to design the
parameter h to satisfy the condition in Theorem 1.
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Fig. 2: Trajectories of Eq. (7) for (a) a coordination game (k = 1, h = 0.4);
(b) a prisoner’s dilemma (k = 2, h = 1); and (c) a minority game (k = 0.1,
h = 1). Common parameters are α = β = 1 and x(0) = 0.99.

B. Dominant-Strategy Games

We consider a dominant-strategy game in which coordi-
nation on action 1 is the NE (a > c and b > d). The case in
which action 2 is the unique NE is trivial for Problem 2, since
no control is needed to guarantee convergence to the desired
equilibrium. The prisoner’s dilemma illustrated in Example 2
is an example of this scenario. Similar to the coordination
game, we define two strictly positive constants α = a−c > 0
and β = −d+ b > 0. Using this notation, Eq. (4) reduces to

ẋ = x(1− x)(α+ β(1− x)), (12)

and all trajectories with x(0) > 0 converge to x = 1
(Proposition 2), as can be observed in Fig. 1b.

In order to solve Problem 2, we want ġ to be positive
when x is far from 0, and g(t) should converge. The latter
implies ġ → 0 by Eq. (6). For this reason, we propose

ϕ(2)(x) = kxh, (13)

with k > 0 regulating the rate of adaptation and h > 0
its sensitivity. Moreover, since our goal is to stabilize the
equilibrium in which the entire population adopts action 2,
which would otherwise be unstable, we use a control matrix
that promotes coordination on action 2:

G(2) =

[
0 0
0 1

]
. (14)

Theorem 2. The adaptive-gain control (G(2), ϕ(2)) with k >
α solves Problem 2 for a dominant-strategy game, for any
initial condition x(0) ∈ [0, 1).

Proof. Using (13–14), the controlled replicator dynamics in
Eq. (7) for a dominant-strategy game with action 1 as the
unique NE reduces to the following planar system of ODEs:

ẋ = x
(
1− x

)(
α+ (β − g)(1− x)

)
ġ = kgxh.

(15)

Being x(t) ∈ [0, 1] for all t ∈ R+ (Lemma 1), then ġ ≥ 0,
and thus g(t) is monotonically nondecreasing. So either it
converges to some constant ḡ or it diverges to +∞.

In the first scenario (g(t) → ḡ), then necessarily ġ(t) → 0.
This implies x(t) → 0, solving Problem 2. In the following,
we rule out the second scenario by way of contradiction.

To obtain a contradiction, assume that g(t) diverges to
+∞. First, we exclude the possibility that x(t) converges to
1. To this aim, we observe that, if k > α, then g(t) grows
in a neighborhood of x = 1 faster than an exponentially-
growing function with exponent α, while the exponential

rate at which x(t) → 1 cannot be larger than α. Hence,
the term g(1 − x) grows exponentially large, guaranteeing
that there exists a time t̄ such that ẋ(t) < 0 for all t ≥ t̄,
and thus x(t) eventually decreases and cannot converge to
1. Technical details are omitted due to space constraint.

Since x(t) does not converge to 1 and we have assumed
that g(t) converges to +∞, then we can find two positive
constants ε > 0 and τε < ∞ such that i) x(τε) ≤ 1 − ε
and ii) g(τε) ≥ α/ε + β + γ, where γ > 0 is a small but
positive constant. This implies that ẋ(τε) ≤ −γx(1 − x)2.
By continuity, and since g(t) is monotonically increasing,
we can conclude that the bound ẋ(t) ≤ −γε2x holds true
for any t ≥ τε. Therefore, Gronwall’s lemma yields

x(t) ≤ (1− ε)e−γε2(t−τε), (16)

for any t ≥ τε. Finally, by integrating the second equation
in Eq. (15), and inserting Eq. (16) into it, we obtain

lim
t→∞

g(t) = lim
t→∞

g(0)ek
∫ t
0
x(s)hds

= g(0)ek
∫ τε
0

x(s)hdsek
∫ ∞
τε

x(s)hds

≤ g(0)ek
∫ τε
0

1dsek(1−ε)h
∫ ∞
τε

(e−γε2(t−τε))hds

≤ g(0)ekτεek(1−ε)h
∫ ∞
0

e−hγε2sds

≤ g(0)ekτε exp k(1−ε)h

hγε2 < +∞,

(17)

which contradicts the assumption that g(t) diverges to +∞,
yielding the claim.

In Fig. 2b we illustrate the effectiveness of our approach,
whose validity was proved in Theorem 2. In this example, we
illustrate how our adaptive-gain controller is able to promote
cooperation for the prisoner’s dilemma (see Example 2), and
the gain, after a steep increase, converges to a constant value,
which guarantees stability of the desired equilibrium x = 0.

C. Anti-coordination game

We consider an anti-coordination game. Defining two
strictly positive constants α = c−a > 0 and β = b−d > 0,
the replicator equation in Eq. (4) can be written as

ẋ = x(1− x)(β − (α+ β)x), (18)

for which all the trajectories with x(0) ∈ (0, 1) converge to
the mixed NE x∗ = β

α+β (Proposition 2).
In order to solve Problem 2, we want ġ to be positive

when x is far from 0, while g(t) should eventually converge,
implying ġ → 0. For this reason, we use a control matrix that
promotes cooperation on action 2 (i.e., control matrix G(2)),
with the same adaptation function defined in Eq. (13).

Theorem 3. The adaptive-gain control (G(2), ϕ(2)) solves
Problem 2 for an anti-coordination game, for any initial
condition x(0) ∈ [0, 1).

Proof. The proof follows the one of Theorem 2, i.e., after
inserting Eq. (13) and Eq. (14) into Eq. (7), we proceed by
contradiction, showing that g(t) cannot diverge, and thus x(t)
must converge to 0. Here, we do not need any requirement
on the velocity of the adaptation process, since ẋ is always
negative close to x = 1, regardless of the value of g(t).
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Figure 2c illustrates the effectiveness of our algorithm for
a minority game (see Example 3), which is guaranteed by
Theorem 3. We observe that, after an initial transient in
which the system quickly approaches the mixed NE x∗ of
the uncontrolled system, the adaptation function adaptively
increases the gain in order to leave such an equilibrium
and enforce convergence to the desired consensus state.
Importantly, we observe that no information on the payoff
structure is needed (not even estimates of α and β), as the
adaptive-gain mechanisms is able to autonomously change
the value of the gain in order to reach our goal.

V. CONCLUSION

In this paper, we proposed and analyzed a novel adaptive-
gain controller for evolutionary-game dynamics. In particu-
lar, we focused on a population of individuals who play a
2-action matrix game and revise their actions following a
replicator equation. In this scenario, we illustrated how to
design the controller to steer the system to a desired equilib-
rium, in terms of deciding which entry of the payoff matrix to
control and how to design the adaptation function depending
on the characteristics of the game, and we establish analytical
guarantees on its effectiveness. In view of its close-loop
structure and on the limited amount of information on the
game needed to design it, our controller may have important
applications in designing interventions to promote a desired
collective behavior, such as cooperation in social dilemmas.

The promising results in this paper pave the way for
several directions of future work. First, our results suggests
that, while always able to solve the problem of interest, the
efficiency of the adaptive-gain control schemes may vary
depending on the adaptation function. Here, we analyzed
three specific implementations, while a general treatment of
the adaptive-gain controller and the study of optimal control
policies is left for future research. Second, it will be of
interest to consider evolutionary dynamics in networked and
structured populations [5], [6], [34], where each population
may have access only to local information to update their
gain, as well as to consider more complex classes of revision
protocols and games [1]. Third, in many real-world scenarios
the population behavior affects some boundary conditions of
the system, ultimately impacting the game’s payoff matrix.
This is captured by population dynamics with environmental
feedback [20], for which our controllers should be extended.
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