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Abstract— In this paper, we introduce a Gaussian process
based moving horizon estimation (MHE) framework. The
scheme is based on offline collected data and offline hyper-
parameter optimization. In particular, compared to standard
MHE schemes, we replace the mathematical model of the system
by the posterior mean of the Gaussian process. To account for
the uncertainty of the learned model, we exploit the posterior
variance of the learned Gaussian process in the weighting
matrices of the cost function of the proposed MHE scheme.
We prove practical robust exponential stability of the resulting
estimator using a recently proposed Lyapunov-based proof
technique. Finally, the performance of the Gaussian process
based MHE scheme is illustrated via a nonlinear system.

I. INTRODUCTION

Moving horizon estimation (MHE) [1], [2], [3] is a nonlin-
ear, optimization-based state estimation technique. Loosely
speaking, at each time instant, we first measure the cur-
rent output of the system. Then, we solve an optimization
problem to determine an optimal estimated state sequence
over some (finite) estimation horizon. Inherent physical con-
straints of the system, such as, e.g., nonnegativity constraints
of chemical concentrations or hormone concentrations can be
accounted for in the optimization problem. Finally, the state
estimate is set to the last element of the optimal estimated
state sequence. MHE is particularly suitable for nonlinear
state estimation, as it can outperform other nonlinear state
estimation techniques such as the extended Kalman filter [1].

However, MHE crucially relies on the knowledge of
an accurate mathematical model of the dynamical system.
The derivation of such a mathematical model from first
principles can be difficult, time-consuming, and expensive.
Alternatively, an MHE scheme can be set up by solely relying
on data, or by learning the system dynamics using some
machine learning technique. In this work, we focus on the
latter approach, namely by learning a mathematical model
of the system dynamics using Gaussian Processes (GPs) [4].

GPs are a Bayesian machine learning technique which are
defined as a collection of random variables, any finite number
of which follows a joint Gaussian distribution [4, Def. 2.1].
In recent years, GPs have been increasingly used in the area
of learning-based control (compare, e.g., [5], [6]). Here, an
advantage is that they inherently allow for a quantification of
the model uncertainty, which is typically not the case when
using other machine learning techniques such as, e.g., neural
networks.
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Concerning the design of learning-based estimators, there
exist only few results in the literature, both in the context
of MHE and regarding the usage of GP based techniques. In
[7], a so-called state estimation function is learned by means
of a feedforward neural network. The authors in [8] develop
a learning-based MHE scheme, where the mapping of the
input data (including the system matrices and the measured
outputs) to the state estimates is learned offline. Moreover,
GPs have been exploited in the design of an extended Kalman
Filter [9] and to develop a joint dynamics and state estimation
framework [10]. Interestingly, in the robotics community
(which uses the term sliding window filtering instead of MHE
[11, Chapter 4.3.4]), the combination of MHE and GPs has
been suggested in various works, compare, e.g., [12], [13].
However, no stability analysis is offered in these works.

The contribution of this work is the introduction of a
novel GP based nonlinear MHE framework. We exploit
the posterior mean of the GP to approximate the system
dynamics and the posterior variance in the design of the
weighting matrices of the MHE. The advantages of this
approach are two-fold. First, we do not require that any
mathematical model of the system dynamics is available a
priori. Second, we directly account for the uncertainty of
the learned model by using weighting matrices that depend
on the regression1 inputs. Furthermore, we prove practical
robust exponential stability of the resulting estimator. In
a numerical example, we illustrate the performance of the
proposed GP based MHE scheme. In contrast to [13], where
the output map is assumed to be known and where the state
estimates are directly approximated by a GP, we here learn
the full state space model by means of GPs. Moreover, we
rigorously prove practical robust stability of the proposed
scheme, which has not been done in [13].

II. PRELIMINARIES AND SETTING

We denote the set of integers greater than or equal to
a ∈ R by I≥a. The set of non-negative real numbers is
denoted by R≥0. The weighted vector norm for a vector
x = [x1 . . . xn]> ∈ Rn and a symmetric positive definite
matrix P is written as ‖x‖P =

√
x>Px. The identity matrix

of dimension n is denoted by In. A diagonal matrix of
dimension n with q1, . . . , qn on the diagonal entries is written
as diag(q1, . . . , qn). The standard maximal eigenvalue of
a positive definite matrix P is denoted by λmax(P ). The
maximum generalized eigenvalue of square matrices P1

and P2 is denoted by λmax(P1, P2). For two symmetric

1In this paper, we clearly distinguish between regression inputs to the GP
and control inputs to the physical system.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 European Union 4087



matrices A, B, A ≤ B means that (B − A) is positive
semidefinite.

GPs are an increasingly popular method to approximate
a nonlinear function f(d). GPs are fully defined by a mean
function m : Z → R (where Z ⊆ Rnd ) and a covariance
function (also referred to as kernel) k : Z×Z → R for some
regression inputs d, d′ ∈ Z

f(d) ∼ GP(m(d), k(d, d′)). (1)

In this work, we consider (as commonly done in the context
of GPs) a prior mean m ≡ 0 and the squared exponential
automatic relevance determination (ARD) kernel, i.e.,

k(di, dj) := σ2
f exp(−1

2
(di − dj)>Λ−1(di − dj)),

where σf ∈ R≥0, Λ = diag(ϕ2
1, ϕ

2
2, . . . , ϕ

2
nd

)
with ϕ1, ϕ2, . . . , ϕnd

∈ R≥0.
The GP is trained by conditioning it on some given

regression input data2 Dd =
[
dd1 dd2 . . . ddN

]>
and

some output data Y d =
[
yd1 yd2 . . . ydN

]>
, where each

output data point yd is given by f(dd) + εd with εd being
normally distributed with distribution N (0, σ2

ε). Then, the
posterior mean at some regression test input d∗ is given by

m+(d∗|Dd, Y d) = k(d∗, D
d)(K(Dd, Dd) + σ2

εI)−1Y d

and the posterior variance (which corresponds to the inherent
uncertainty quantification) by

σ2
+(d∗|Dd, Y d) =

k(d∗, d∗)− k(d∗, D
d)(K(Dd, Dd) + σ2

εI)−1k(Dd, d∗),

where k(d∗, D
d) =

(
k(d∗, di)

)
di∈Dd = k(Dd, d∗)

>,
with k(d∗, D

d) ∈ R1×N , and K(Dd, Dd) =
(k(di, dj))di,dj∈Dd with K(Dd, Dd) ∈ RN×N .
The posterior mean depends on the hyperparame-
ters σf , ϕ1, . . . , ϕnd

, σε that crucially influence the quality
of the learned model, compare the discussion in [4, Sec.
2.3]. As commonly done in the literature, we determine the
hyperparameters by maximizing the log marginal likelihood,
see, e.g., [4, Eq. (2.30)].

After this general introduction to GPs, we now describe
how they are exploited in this work. We consider discrete-
time nonlinear systems with additive disturbances, i.e.,

x(t+ 1) = f(x(t), u(t)) + w(t) (2a)
y(t) = h(x(t), u(t)) + v(t) (2b)

with x(t), w(t) ∈ Rn, u(t) ∈ Rm, and y(t), v(t) ∈ Rp,
where w and v denote the process and the measurement
noise, respectively.

Throughout this paper, we assume that the states and
inputs evolve in compact sets, i.e., x(t) ∈ X ⊂ Rn
and u(t) ∈ U ⊂ Rm ∀t ∈ I≥0. In the following, we
model f and h using GPs. Hence, for modeling purposes
only, we consider w and v to be normally distributed. Note

2Here, we use Dd to denote the regression input data (instead of the
commonly used notation X) to avoid confusion with respect to the actual
system states.

that such a setting (assuming bounded states and employing
GP models) is common in the GP-based control/estimation
literature, compare, e.g., [6], [10]. This corresponds to the
realistic scenario in which the real process and measure-
ment disturbances w and v in (2) are not unbounded in
practical applications, despite being assumed to be normally
distributed within the GP modeling. The hyperparameter σε
is determined such that the GP approximates the unknown
function as well as possible, compare the discussion in [10,
Sec. II C]. Furthermore, we assume that the state transition
function f as well as the output mapping h are continuous.

The objective is to learn the state-space model (2) (i.e.,
the state transition function f and the output mapping h)
by means of GPs. In this case, the regression input data is
composed of the states and the control inputs at time t, i.e.,
d(t) =

[
x1(t) . . . xn(t) u1(t) . . . um(t)

]>
. Since

standard GPs only map on scalar regression outputs, we need
to learn n+p independent GPs to approximate the complete
dynamics (i.e., n GPs for the components f1, f2, . . . , fn of
the function f , and p GPs for the components h1, h2, . . . , hp
of the function h). In the following, we denote the kernels
associated to the GPs approximating the components of f
and h by kx1

, kx2
, . . . , kxn

and ky1
, ky2

, . . . , kyp , respec-
tively. We collect training data, condition the GPs on the
training data, and tune the hyperparameters by maximizing
the marginal log-likelihood. To simplify the notation, we
write

m+,x(d(t)|Dd, Xd) =


m+,x1

(d(t)|Dd, Xd
1 )

m+,x2
(d(t)|Dd, Xd

2 )
...

m+,xn
(d(t)|Dd, Xd

n)

 (3)

to denote the stacked posterior means approximating the
function f and analogously m+,y(d(t)|Dd, Y d) to denote the
stacked posterior means approximating the function h. Here,
the regression output Xd

i (and analogously Y dj ) is given by
Xd
i =

[
xdi (1) . . . xdi (N)

]>
. Hence, the learned system

dynamics can be expressed as

x(t+ 1) = m+,x(d(t)|Dd, Xd) + w̌(t) (4a)

y(t) = m+,y(d(t)|Dd, Y d) + v̌(t) (4b)

with w̌ ∈ Rn and v̌ ∈ Rp. Note that we recover the original
system (2) for

w̌(t) := f
(
x(t), u(t)

)
−m+,x

(
d(t)|Dd, Xd

)
+ w(t) (5)

v̌(t) := h
(
x(t), u(t)

)
−m+,y

(
d(t)|Dd, Y d

)
+ v(t). (6)

In this work, we consider two different phases. On the one
hand, an offline phase, in which noise-free measurements of
the control inputs and noisy measurements of the outputs and
states are available. This assumption allows us to condition
the GPs on the training data and to perform the hyperparam-
eter optimization offline. On the other hand, an online phase,
in which noise-free measurements of the control inputs, but
only noisy measurements of the outputs (but not the states)
are available, meaning that the states must be estimated. To
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perform the state estimation, we apply the GP based MHE,
which is explained in the following section. The assumption
of having noisy state measurements available in an offline
phase might be restrictive in general, but is certainly fulfilled
in cases where one can measure all the states in a laboratory
setting using sophisticated hardware that is not available
online, compare also the discussion in [14], [15].

III. GP BASED MHE SCHEME

In this section, we explain in detail the GP based MHE
scheme. As usual in MHE, at each time step t, an optimiza-
tion problem is solved taking the past measurements over
some horizon M into account. Namely,

minimize
x̄(t−Mt|t),w̄(·|t)

J
(
x̄(t−Mt|t), w̄(·|t), v̄(·|t), t

)
(7a)

s. t. x̄(j + 1|t) = m+,x(d̄(j|t)|Dd, Xd) + w̄(j|t), (7b)

y(j) = m+,y(d̄(j|t)|Dd, Y d) + v̄(j|t), (7c)
∀j ∈ I[t−Mt,t−1]

x̄(j|t) ∈ X ∀j ∈ I[t−Mt,t] (7d)

with Mt = min{t,M} (M being the horizon length),

d̄(j|t) :=
[
x̄1(j|t) . . . x̄n(j|t) u1(j) . . . um(j)

]>
and

J(x̄(t−Mt|t), w̄(·|t), v̄(·|t), t)
:=2||x̄(t−Mt|t)− x̂(t−Mt)||2P2

ηMt

+

Mt∑
j=1

2ηj−1
(
||w̄(t− j|t)||2

Q−1

d̄(t−j|t)

+ ||v̄(t− j|t)||2
R−1

d̄(t−j|t)

)
. (7e)

In (7e), η ∈ (0, 1) is a discount factor. The notation d̄(j|t)
denotes the estimated state (together with the measured
control input) at time j, estimated at time t. The estimated
process and measurement noise trajectories, estimated at
time t, are denoted by w̄(·|t) and v̄(·|t), respectively. The cost
function is composed of two terms: the prior weighting and
the stage cost. Hence, the cost function trades off how much
we believe the measurements within the current horizon and
how much we believe the prior x̂(t − Mt). The optimal
estimated state sequence is denoted by x̂(·|t) (analogous
for d̂(·|t)) and the estimated system state at time t is set
to the last element of the estimated state sequence, i.e.,
x̂(t) := x̂(t|t).

Note the first main difference to standard model-based
MHE schemes in (7b) and in (7c). We exploit the posterior
mean functions of the GPs to approximate the state transition
function f and the output mapping h.

The weighting matrices in the cost function are chosen as

Qd̄(t−j|t) = diag
(
σ2

+,x1
(d̄(t− j|t)|Dd, Xd

1 ), . . . ,

σ2
+,xn

(d̄(t− j|t)|Dd, Xd
n)
)

+Q0 (8)

Rd̄(t−j|t) = diag
(
σ2

+,y1
(d̄(t− j|t)|Dd, Y d1 ), . . . ,

σ2
+,yp(d̄(t− j|t)|Dd, Y dp )

)
+R0 (9)

with Q0, R0 positive definite (and P2 positive definite)
and σ+,xi , σ+,yj denoting the posterior variances of the n+p
GPs modeling the components of the functions f and h,
respectively. This choice of the weighting matrices consti-
tutes the second main difference to standard MHE schemes.
The weighting matrices Qd̄(t−j|t) and Rd̄(t−j|t) are a sum
of two matrices. The first one is a diagonal matrix, where
the diagonal entries correspond to the posterior variances of
the corresponding states/outputs, as in the work related to
GP based extended Kalman filtering [9]. Loosely speaking,
the beneficial effect of this choice is the following: in a
region of low (high) training data availability, the posterior
variance, representing the uncertainty of the learned model, is
rather large (small). In turn, the inverse weighing matrices,
on which the cost function is based, induce a low (high)
weight on w̄ and v̄. Consequently, we allow for large (small)
magnitudes of w̄ and v̄. This is meaningful, since in areas
of low (high) training data availability, the mean functions
will be poor (good) approximations of the true functions f
and h. The second matrix corresponds to the standard MHE
weighting matrix. The matrices Q0 and R0 are typically set
according to the variance of the process/measurement noise
affecting the online measurements [16]. The choice of the
matrix P2 is more difficult in the general nonlinear case [16,
Sec. 3.1]. One model-based approach to design this matrix
has recently been proposed in [17, Cor. 3].

As long as t < M , we use the so-called full information
estimator, i.e., Mt = t, meaning that all available measure-
ments are taken into account.

IV. ROBUST STABILITY ANALYSIS

In this section, we prove robust stability of the GP based
MHE scheme based on the following definition, which is
similar to [17, Def. 2], with the main difference that we
consider a practical stability notion that can capture the mis-
match between the posterior means and the true functions f
and h.

Definition 1: A state estimator for system (2) is prac-
tically robustly exponentially stable (pRES) if there exist
C1, C2, C3 > 0, λ1, λ2, λ3 ∈ [0, 1), and α > 0 such that
the resulting state estimates x̂(t) satisfy

‖x(t)− x̂(t)‖ ≤ max
{
C1‖x(0)− x̂(0)‖λt1,

max
j∈I[0,t−1]

C2‖w(j)‖λt−j−1
2 , max

j∈I[0,t−1]

C3‖v(j)‖λt−j−1
3 , α

}
(10)

for all t ∈ I≥0, all initial conditions x(0), x̂(0) ∈ X,
and every trajectory (x(t), u(t), w(t), v(t))∞t=0 satisfying the
system dynamics (2).

Next, we introduce the matrices Q−1
min, R−1

min

and Q−1
max, R

−1
max such that

Q−1
min ≤ Q

−1
d̄(t)
≤ Q−1

max, (11)

R−1
min ≤ R

−1
d̄(t)
≤ R−1

max. (12)
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The matrices Q−1
min and R−1

min represent the case when the
regression test inputs are (infinitely) far away from the re-
gression training inputs, meaning that the posterior variance
is maximal. In case of the here considered squared exponen-
tial ARD kernel, an upper bound for the maximal posterior
variance is given by σ2

f , i.e., a lower bound for Q−1
min is

given by Q−1
min :=

[
diag(σ2

f,x1
, . . . , σ2

f,xn
)+Q0

]−1
and R−1

min

is defined analogously. In turn, the matrices Q−1
max, R

−1
max

correspond to the minimal possible posterior variances. A
lower bound for the minimal posterior variance is 0, which
occurs in the noise-free case, when a regression test input
corresponds exactly to a regression training input. Conse-
quently, an upper bound for Q−1

max (and similarly R−1
max)

is given by Q−1
max := Q−1

0 . To prove robust stability of
the GP based MHE scheme, we assume that the learned
system (4) satisfies a detectability notion called incremen-
tal input/output-to-state stability (δ-IOSS), which has been
frequently used to prove stability of various MHE schemes,
compare [17], [18], [1]. The assumption applied in this work
is proposed in a similar way in [17] with the main difference
that we here consider the learned system dynamics and not
the true system dynamics.

Assumption 1: The system (4) admits a δ-IOSS Lyapunov
function Wδ : Rn × Rn → R≥0 with quadratic bounds and
supply rate, i.e., there exist η ∈ [0, 1), P1, P2, Q0, R0 > 0
such that

||x− x̃||2P1
≤Wδ(x, x̃) ≤ ||x− x̃||2P2

, (13a)

Wδ

(
m+,x(d|Dd, Xd) + w̌,m+,x(d̃|Dd, Xd) + w̌′

)
≤ ηWδ(x, x̃) + ||w̌ − w̌′||2

Q−1
min

+ ||m+,y(d|Dd, Y d)−m+,y(d̃|Dd, Y d)||2
R−1

min

(13b)

for all (x, u, w̌), (x̃, u, w̌′) with x, x̃ ∈ X and u ∈
U, where d =

[
x1 . . . xn u1 . . . um

]>
, d̃ =[

x̃1 . . . x̃n u1 . . . um
]>

, and Q−1
min and R−1

min are
from (11) and (12), respectively.
Note that existence of a δ-IOSS Lyapunov function is equiv-
alent to the system being δ-IOSS [19]. This property is
necessary and sufficient for the existence of state estimators
for nonlinear systems and has widely been used in the recent
MHE literature, compare [17] for a more detailed discussion.

Remark 1: After having determined the posterior mean
and variance, one can verify Assumption 1 using the results
of [17, Sec. IV]. An interesting property for future research
is to study whether Assumption 1 is always satisfied (i.e.,
the learned GP model admits a δ-IOSS Lyapunov function)
if the true unknown system (2) admits a δ-IOSS Lyapunov
function (i.e., is detectable).

To simplify the notation in the following proof, we define

αmax
1 := max

x∈X,u∈U

{
‖f
(
x, u

)
−m+,x

(
d|Dd, Xd

)
‖Q−1

max

}
(14)

αmax
2 := max

x∈X,u∈U

{
‖h
(
x, u

)
−m+,y

(
d|Dd, Y d

)
‖R−1

max

}
(15)

and αmax := max{αmax
1 , αmax

2 }. Notice that these constants
exist, since we assume that (i) the states and the inputs evolve
in compact sets, (ii) the functions f and h are continuous and
since the here considered squared exponential ARD kernel
leads to a continuous posterior mean.

Theorem 1: Let Assumption 1 hold. Then, there exist µ ∈
[0, 1) and a minimal horizon length M̄ such that for all M ∈
I≥M̄ , the state estimation error of the GP based MHE (7) is
bounded for all t ∈ I≥0 by

‖x̂(t)− x(t)‖P1
≤ max

{
6
√
µ
t‖x̂(0)− x(0)‖P2

,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖w(t− q − 1)‖Q−1

max

}
,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖v(t− q − 1)‖R−1

max

}
,

12

1− 4
√
µ
αmax

}
. (16)

Consequently, the GP based MHE (7) is pRES according to
Definition 1.

The proof of Theorem 1 can be found in Appendix A. It
mainly relies on the Lyapunov-based robust stability proof
technique recently proposed in the context of model-based
MHE in [17, Prop. 1, Thm. 1, Cor. 1]. Nevertheless, in our
case we need to take into account two crucial differences,
namely, (i) that the estimated system trajectory is based on
the learned dynamics and (ii) that the weighting matrices in
the cost function are not constant.

Theorem 1 shows that the state estimation error is upper
bounded by means of (i) the initial state estimation error, (ii)
the true process noise, (iii) the true measurement noise, and
(iv) the mismatch between the learned system model and the
true system dynamics.

Remark 2: In case of higher training data availabil-
ity, R−1

min and Q−1
min increase, since the maximal posterior

variances decrease. Larger values of R−1
min and Q−1

min in (13b)
allow for a larger Wδ , which then allows for a larger P1

in (13a). In turn, this results in a less conservative error
bound (16). Hence, a higher training data availability results
in less conservative state estimation error bounds.

Note that the estimation error bound (16) of Theorem 1
depends on αmax that accounts for the mismatch between the
learned system dynamics and the true system dynamics. A
probabilistic upper bound for this mismatch can be obtained
[20] by making the following additional assumption.

Assumption 2: Each component of the unknown func-
tions f and h is Lipschitz continuous and a sample from
a GP, i.e., fi is a sample of GP(0, kxi(d, d

′)), i = 1, . . . , n
and hj a sample of GP(0, kyj (d, d′)), j = 1, . . . , p.
Furthermore, for a grid constant τ , we define

β(τ) := 2 log

(
B(τ,X)

δ

)
(17)

γf1
(τ) := (Lm+,x1

+ Lf1
)τ +

√
β(τ)ωσ+,x1

(τ), (18)

γh1(τ) := (Lm+,y1
+ Lh1)τ +

√
β(τ)ωσ+,y1

(τ), (19)
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and similarly γfi ,∀i = 2, . . . , n and γhj
,∀j =

2, . . . , p. The constant B denotes the covering num-
ber, which corresponds to the minimum number of
points in a grid over X considering the grid con-
stant τ . The constants Lmx1

, . . . , Lmxn
, Lmy1

, . . . , Lmyp

denote the Lipschitz constants of the mean functions
and ωσ+,x1

, . . . , ωσ+,xn
, ωσ+,y1

, . . . ωσ+,yp
, the moduli of

continuity of the kernels. Finally, δ ∈ (0, 1) and
Lf1 , . . . , Lfn , Lh1 , . . . , Lhp are the Lipschitz constants of
the components of the unknown functions of f and h. The
definitions (17) - (19) were made in [20], and the reader is
referred to this reference for additional details. Moreover, we
introduce

∆max
x (τ) :=

√
λmax(Q−1

max)×
n∑
i=1

max
x∈X,u∈U

{
‖
√
β(τ)σ+,xi(d|Dd, Xd

i ) + γfi(τ)‖
}
,

(20)

∆max
y (τ) :=

√
λmax(R−1

max)×
p∑
i=1

max
x∈X,u∈U

{
‖
√
β(τ)σ+,yi(d|Dd, Y di ) + γhi(τ)‖

}
,

(21)

which will be used in the following corollary to simplify the
notation.

Corollary 1: Let Assumptions 1 - 2 hold. Then, there exist
µ ∈ [0, 1) and a minimal horizon length M̄ such that for
all M ∈ I≥M̄ the state estimation error of the GP based
MHE (7) is (probabilistically) bounded for all t ∈ I≥0 by

P

(
‖x̂(t)− x(t)‖P1 ≤ max

{
6
√
µ
t‖x̂(0)− x(0)‖P2

,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖w(t− q − 1)‖Q−1

max

}
,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖v(t− q − 1)‖R−1

max

}
,

12

1− 4
√
µ

∆max
x (τ),

12

1− 4
√
µ

∆max
y (τ),

})
≥ (1− δ)n+p. (22)

The proof of Corollary 1 is shown in Appendix B. The
key idea of the proof is to bound each component of the
difference between the functions f , h and the posterior
means by applying the probabilistic bound developed in [20,
Thm. 3.1].

Corollary 1 uses a probabilistic upper bound for the mis-
match between the learned and the true unknown dynamics.
As a result, also the obtained estimation error bound (22) is
probabilistic in nature. Note that the final probability in (22)
decreases for a higher state/output dimension. This is due
to the current (conservative) proof technique of bounding
component-wise the difference between the functions f , h
and the posterior means. Developing a less conservative
proof is an interesting subject for future research.

As can be seen from the definition of β in (17), a higher
probability (i.e., a smaller δ) results in more conservative
upper bounds and vice versa. Furthermore, as discussed
in Remark 2, more training data will improve the poste-
rior variance and thus the (probabilistic) estimation error
bounds (22) that explicitly depend on σ+,x1

, . . . , σ+,xn
and

σ+,y1 , . . . , σ+,yp .

V. APPLICATION TO BATCH REACTOR SYSTEM

In this section, we illustrate the performance of the GP
based MHE. To this end, we consider the following Euler-
discretized system

x1(t+ 1) = x1(t) + T (−2k1x
2
1(t) + 2k2x2(t)) + w1(t)

x2(t+ 1) = x2(t) + T (k1x
2
1(t)− k2x2(t)) + w2(t)

y(t) = x1(t) + x2(t) + v(t)

with sampling time T = 0.1, constants k1 = 0.16, k2 =
0.0064 which corresponds to a batch reactor system [1, Ch.
4], [21]. This system is a benchmark example in the MHE
literature, since other nonlinear state estimation techniques,
such as the extended Kalman filter, can fail to converge,
compare, [1].

As mentioned in Section II, we consider two different
phases. In both phases, we consider w ∼ N (0, σ2

wIn) with
σw = 0.01 and v ∼ N (0, σ2

vIp) with σv = 0.1. In the
offline phase, we collect five different state/output trajectories
(of length 31) with the following initial conditions x01 =[
3 1

]>
, x02 =

[
1.2 4.5

]>
, x03 =

[
0.5 3.5

]>
, x04 =[

1 3
]>

, x05 =
[
2 4

]>
and perform the hyperparameter

optimization by maximizing the log marginal likelihood.
In the online phase, we apply the MHE scheme (7) using
η = 0.91, M = 15, initial condition x0 =

[
3 1

]>
, and

P2 = In, R0 = 100 and Q0 = diag(1000, 1000). As in [17,
Sec. V], we consider that the states evolve in a compact
set X = {x ∈ R2 : 0.1 ≤ xi ≤ 4.5, i = {1, 2}}. In
addition, we illustrate the performance of the GP based MHE
with the same parameters, when only three trajectories (for
initial conditions x01 =

[
0.5 3.5

]>
, x04 =

[
1 3

]>
, x05 =[

2 4
]>

), i.e., less data, are collected in the offline phase.
Finally, we implement a standard model-based MHE scheme
(that is based on exact model knowledge) with the same
characteristics, i.e., using the same P2, Q0, R0, η, and M .
The obtained results are illustrated in Figure 1. As guaranteed
by Theorem 1, the GP based MHE scheme is robustly stable.
The estimation performance improves when more training
data is available. Furthermore, the GP based MHE (related
to five collected trajectories) performs similarly well as the
model-based MHE.

VI. CONCLUSION

In this paper, we introduced a GP based MHE framework
for which we proved practical robust exponential stability.
The framework leverages the posterior mean of the GP to
replace the required mathematical model in the MHE scheme
and the posterior variance to account for the uncertainty of
the learned model within the cost function. This allows for
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Fig. 1. Simulation results of the GP based MHE scheme (7).

an effective way to estimate the states of unknown nonlinear
systems, as was also illustrated by a batch reactor example.

Future work includes investigating how detectability (δ-
IOSS) can efficiently be verified for the learned system,
in particular whether/when the learned model inherits this
property if the true unknown system is detectable.
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APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 is based on the developments
shown in [17]. Here, due to space restriction, we mainly
comment on the steps that are conceptually different from
the proof in [17], without describing the similar steps of the
proof in all detail.

Proof: The constraints in the MHE problem guaran-
tee that the (optimal) estimated system trajectory (denoted
by x̂(j|t), u(t), ŵ(j|t), v̂(j|t) for all j ∈ I[t−Mt,t−1]) fulfills
the learned system dynamics. The unknown (true) system
trajectory cannot necessarily be represented by the posterior
means. Therefore, we use the introduced auxiliary vari-
ables w̌ (5) and v̌ (6) to represent the true system trajectory
by the posterior means in the following. Exploiting that due
to (7c) m+,y(d(t−j)|Dd, Y d)−m+,y(d̂(t−j|t)|Dd, Y d) =
v̂(t − j|t) − v̌(t − j) for all j ∈ I[t−Mt,t−1] and applying
inequality (13b) Mt times yields

Wδ(x̂(t), x(t))
(13b)

≤
Mt∑
j=1

ηj−1
(
||ŵ(t− j|t)− w̌(t− j)||2

Q−1
min

+ ||v̂(t− j|t)− v̌(t− j)||2
R−1

min

)
+ ηMtWδ(x̂(t−Mt|t), x(t−Mt)).

Moreover, using (13a), the triangle inequality, the Cauchy-
Schwarz inequality, and Young’s inequality, it holds

Wδ(x̂(t), x(t))

≤2ηMt ||x̂(t−Mt)− x(t−Mt)||2P2

+

Mt∑
j=1

2ηj−1
(
||w̌(t− j)||2

Q−1
min

+ ||v̌(t− j)||2
R−1

min

)
+ Jmin(x̂(t−Mt|t), ŵ(·|t), v̂(·|t), t). (23)
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with

Jmin(x̂(t−Mt|t), ŵ(·|t), v̂(·|t), t)
:= 2ηMt ||x̂(t−Mt|t)− x̂(t−Mt)||2P2

+

Mt∑
j=1

2ηj−1
(
||ŵ(t− j|t)||2

Q−1
min

+ ||v̂(t− j|t)||2
R−1

min

)
.

Note that Jmin(x̂(t−Mt|t), ŵ(·|t), v̂(·|t), t) does not corre-
spond to the optimal cost of problem (7). In fact, Jmin(x̂(t−
Mt|t), ŵ(·|t), v̂(·|t), t) corresponds to the cost of the optimal
trajectory, when R−1

min, Q−1
min (and P2) are considered in the

cost function (7e) (but not the variable R−1
d̄(t−j|t), Q

−1
d̄(t−j|t)).

Analogously, we define Jmax by replacing R−1
d̄(t−j|t) and

Q−1
d̄(t−j|t) in (7e) with R−1

max and Q−1
max, respectively. Next,

we upper bound Jmin(x̂(t−Mt|t), ŵ(·|t), v̂(·|t), t) as follows

Jmin(x̂(t−Mt|t),ŵ(·|t), v̂(·|t), t)
≤ J∗(x̂(t−Mt|t), ŵ(·|t), v̂(·|t), t)
≤ J(x(t−Mt), w̌(·), v̌(·), t)
≤ Jmax(x(t−Mt), w̌(·), v̌(·), t),

where the first inequality holds by (11) - (12), the second is
due to optimality (i.e., the true unknown system trajectory
x(·), w̌(·), v̌(·) is a feasible but in general suboptimal solu-
tion to problem (7)), and the third again follows from (11)
- (12). We consider these bounds in inequality (23) together
with (11) and (12) and obtain

Wδ(x̂(t), x(t))

≤4λmax(P2, P1)ηMtWδ(x̂(t−Mt), x(t−Mt))

+

Mt∑
j=1

4ηj−1
(
||w̌(t− j)||2

Q−1
max

+ ||v̌(t− j)||2
R−1

max

)
.

We choose M large enough such that µM :=
4λmax(P2, P1)ηM < 1 with µ ∈ [0, 1), and get for
all t ∈ I≥M

Wδ(x̂(t), x(t)) ≤ µMWδ(x̂(t−M), x(t−M))

+

M∑
j=1

4ηj−1
(
||w̌(t− j)||2

Q−1
max

+ ||v̌(t− j)||2
R−1

max

)
.

Performing similar steps as the ones in the proof of [17, Cor.
1] results in the following state estimation error bound

‖x̂(t)− x(t)‖P1

≤ max

{
6
√
µ
t‖x̂(0)− x(0)‖P2 ,

max
q∈I[0,t−1]

{
6

1− 4
√
µ

4
√
µ
q‖w̌(t− q − 1)‖Q−1

max

}
,

max
q∈I[0,t−1]

{
6

1− 4
√
µ

4
√
µ
q‖v̌(t− q − 1)‖R−1

max

}}
.

(24)

We replace w̌ and v̌ according to (5) and (6), respectively.
Then, we apply the triangle inequality and bound the differ-
ence between the functions f , h and the posterior means
m+,x, m+,y by (14) and (15), respectively. Furthermore,
using that maxq∈I[0,t−1]

4
√
µq = 1 and a+ b ≤ max{2a, 2b}

for any a, b ≥ 0, we have

‖x̂(t)− x(t)‖P1 ≤ max

{
6
√
µ
t‖x̂(0)− x(0)‖P2 ,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖w(t− q − 1)‖Q−1

max

}
,

max
q∈I[0,t−1]

{
12

1− 4
√
µ

4
√
µ
q‖v(t− q − 1)‖R−1

max

}
,

12

1− 4
√
µ
αmax

1 ,
12

1− 4
√
µ
αmax

2

}
. (25)

Finally, we use αmax to bound the last two terms of (25),
which leads to the expression of Theorem 1. �

B. Proof of Corollary 1
Proof: From the expressions in (14) - (15), we can bound

αmax
1 and αmax

2 as follows

αmax
1 ≤

√
λmax(Q−1

max)×
n∑
i=1

max
x∈X,u∈U

{
||fi(x, u)−m+,xi

(d|Dd, Xd
i )||
}
. (26)

αmax
2 ≤

√
λmax(R−1

max)×
p∑
i=1

max
x∈X,u∈U

{
||hi(x, u)−m+,yi(d|Dd, Y di )||

}
. (27)

From here on, we apply [20, Thm 3.1] to probabilistically
bound the difference between the true function components
of f , h and the corresponding posterior means

P
(
||fi(x, u)−mxi

(d|Dd, Xd
i )||

≤
√
β(τ)σ+,xi(d|Dd, Xd

i ) + γfi(τ),∀x ∈ X, u ∈ U
)

≥ 1− δ i = 1, . . . , n

P
(
||hj(x, u)−myj (d|Dd, Y dj )||

≤
√
β(τ)σ+,yj (d|Dd, Y dj ) + γhj

(τ),∀x ∈ X, u ∈ U
)

≥ 1− δ j = 1, . . . , p.

Since the GPs are considered to be independent, the proba-
bility that all the components of f jointly fulfill their bounds
is lower bounded by (1 − δ)n (the same holds for h with
probability (1−δ)p). We replace the right-hand sides of (26)
and (27) by these probabilistic bounds, i.e.,

P
(
αmax

1 ≤ ∆max
x (τ)

)
≥ (1− δ)n (28)

P
(
αmax

2 ≤ ∆max
y (τ)

)
≥ (1− δ)p. (29)

Finally, the probability that both αmax
1 ≤ ∆max

x (τ) and
αmax

2 ≤ ∆max
y (τ) hold jointly is lower bounded by (1 −

δ)(n+p). Using this bound in (25), we obtain the left-hand
side of (22). �
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