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Abstract— In this paper, an off-policy reinforcement learn-
ing algorithm is designed to solve the continuous-time linear
quadratic regulator (LQR) problem using only input-state data
measured from the system. Different from other algorithms in
the literature, we propose the use of a specific persistently ex-
citing input as the exploration signal during the data collection
step. We then show that, using this persistently excited data, the
solution of the matrix equation in our algorithm is guaranteed
to exist and to be unique at every iteration. Convergence of the
algorithm to the optimal control input is also proven. Moreover,
we formulate the policy evaluation step as the solution of a
Sylvester-transpose equation, which increases the efficiency of
its solution. A method to determine an initial stabilizing policy
using only measured data is proposed. Finally, the advantages
of the proposed method are tested via simulation.

I. INTRODUCTION

Reinforcement learning (RL) is a set of iterative algo-
rithms that allow a system to learn its optimal behavior as it
interacts with its environment [1], [2]. In the context of linear
optimal control, RL has been used in the last few decades
to solve the linear quadratic regulator (LQR) problem in
continuous-time [3], [4], [5], [6], [7], [8] and in discrete time
[9], [10], [11], [12]. For applications of RL procedures to
nonlinear systems and other extensions, the reader is referred
to the surveys [13], [14], [15] and the references therein.

In the continuous-time linear time-invariant (CT-LTI) case,
several RL algorithms with attractive properties have been
designed. Although the first proposed algorithms required
at least partial knowledge of the system model (e.g., [3]),
completely data-based methods are now well known [4],
[5], [6], [7]. These data-based algorithms replace the need
for model knowledge by measuring persistently excited data
directly from the system. Most of these data-based methods
are on-policy algorithms, meaning that they require the
application (or simulation) of an exciting input to the system
at every iteration, such that a new set of data can be collected.
In contrast, the authors in [8] proposed a data-based off-
policy RL algorithm. This method has the advantage of
requiring to collect data from the system only once, and then
every iteration of the algorithm is performed using the same
batch of measurements.

The method in [8], as well as most on-policy methods, is
formulated as the problem of determining the values of cer-
tain unknown matrices from a set of equations derived from
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the Bellman equation. Taking advantage of the properties of
the Kronecker product, this problem is then expressed as a set
of linear equations that can be easily solved. However, the
Kronecker product formulation generates matrices of large
size, and this procedure presents a high computational burden
that increases rapidly with the system dimension.

Another important issue in the existing learning-based
control literature is the selection of a proper persistently
exciting (PE) input. In most of the above literature, heuristic
approaches for persistence of excitation are employed, often
designing exciting inputs by adding sinusoidal, exponential
and/or random signals [14]. A different approach for persis-
tence of excitation was studied in [16], where conditions for
the design of a discrete-time PE input are formally estab-
lished. It is shown in [16] that their definition of persistence
of excitation provides data measurements that are so rich in
information that every possible trajectory of a controllable
discrete-time linear system can be expressed in terms of such
data. This result is now known as Willems’ lemma, and has
been successfully used in recent years in data-based analysis,
estimation and control of discrete-time systems (see, e.g.,
the survey [17] and the references therein). In [6], it was
proposed to use a PE signal as defined in [16] to excite
a continuous-time system during a Q-learning procedure,
which guarantees solvability of their policy evaluation step.
However, the method in [6] is an on-policy algorithm and the
authors require persistence of excitation of a signal composed
of both the input and the state of the system. This contrasts
with our objective of considering a PE signal in terms of the
input only. Moreover, in [6] a high order of persistence of
excitation is needed.

The contributions of this paper are as follows. We propose
a novel data-based off-policy RL algorithm to solve the LQR
problem for continuous-time systems. As in [8], we perform
the policy evaluation and policy improvement steps simulta-
neously. Different from the existing algorithms, we formulate
a Sylvester-transpose equation that can be efficiently solved
using known methods [18], [19], [20]. This avoids the use
of the Kronecker product and the ensuing large matrices
in our computations. Moreover, we use the results in [21],
where a continuous-time version of Willems’ lemma was
proposed. This allows us to design a PE input that guarantees
the solvability of the Sylvester-transpose equation in a data-
based fashion. In our formulation, persistence of excitation
depends only on the input of the system, and we require the
use of a PE input of lower order compared to [6]. Finally, we
propose a method to determine the required initial stabilizing
policy for the proposed algorithm using only measured data.
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Different from [7], this method does not require the solution
of linear matrix inequalities (LMIs).

In the following, Section II introduces the preliminary
results that are used throughout the paper. The development
of the proposed efficient RL algorithm and its theoretical
analysis are shown in Section III. Section IV analyses
the computational efficiency of the proposed algorithm and
presents a procedure to compute the initial stabilizing gain. In
Section V, we illustrate the theoretical results with numerical
examples, and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we present existing results from the liter-
ature that are relevant for the remainder of this paper.

A. Matrix definitions for continuous-time data

Consider the integer N ∈ N and the positive scalar
T ∈ R+. Let ξ : [0, NT ]→ Rσ , with [0, NT ] ⊂ R, denote
a continuous-time signal of length NT . Using the trajectory
ξ, we define the following matrix

HT (ξ(t)) :=
[
ξ(t) ξ(t+ T ) · · · ξ(t+ (N − 1)T )

]
(1)

for 0 ≤ t ≤ T . Notice that (1) is a time-varying matrix
defined on the interval t ∈ [0, T ].

Now, consider the following CT-LTI system

ẋ(t) = Ax(t) +Bu(t), (2)

where x ∈ Rn and u ∈ Rm are the state and input vectors
of the system, respectively. The pair (A,B) is assumed to
be controllable throughout the paper.

Suppose that the input signal u : [0, NT ]→ Rm is applied
to (2), and the resulting state trajectory x : [0, NT ]→ Rn is
collected. From (2) and the definition in (1), we can write

HT (ẋ(t)) = AHT (x(t)) +BHT (u(t)).

Since it is unusual to have the state derivative ẋ available
as a measurement, integrate the expression above to obtain

HT (x(T ))−HT (x(0))

= A

∫ T

0

HT (x(τ))dτ +B

∫ T

0

HT (u(τ))dτ.

For convenience of notation, define the matrices

X̃ = HT (x(T ))−HT (x(0)), (3)

X =

∫ T

0

HT (x(τ))dτ, U =

∫ T

0

HT (u(τ))dτ.

Notice that the matrix X (and similarly U ) only requires
the computation of integrals of the form

∫ T
0
x(τ + jT )dτ ,

j = 0, . . . , N − 1. This corresponds to integrating vectors of
smaller dimension when compared to the existing methods
in the RL literature [6], [7], [8].

By definition, the following expression holds

X̃ = AX +BU. (4)

B. Persistence of excitation for discrete-time systems

Define the integer constants L,N ∈ N. The Hankel
matrix of depth L of a discrete-time sequence {µk}N−1k=0 =
{µ0, µ1, . . . , µN−1}, µk ∈ Rm, is defined as

HL(µ) :=


µ0 µ1 · · · µN−L
µ1 µ2 · · · µN−L+1

...
...

. . .
...

µL−1 µL · · · µN−1

 .
In [16], the following definition of a PE input for discrete-

time systems is made.
Definition 1: The discrete sequence {µk}N−1k=0 , µk ∈ Rm,

is said to be persistently exciting of order L if its Hankel
matrix of depth L has full row rank, i.e.,

rank(HL(µ)) = mL. (5)
It is important to highlight the fact that Definition 1

provides a condition that enables a straightforward design
of a PE input and that is easy to verify for any discrete
sequence.

Remark 1: A necessary condition for (5) to hold is that
N ≥ (m + 1)L− 1. This provides a minimum length for a
PE input sequence.

C. Persistence of excitation for continuous-time systems

It is shown in [21] that a piecewise constant input designed
by exploiting Definition 1 is persistently exciting for the
continuous-time system (2). This class of inputs is formally
described in the following definition.

Definition 2 (Piecewise constant PE input): Consider a
time interval T > 0 such that

T 6= 2πk

|Im(λi − λj)|
, ∀k ∈ Z. (6)

where λi and λj are any two eigenvalues of matrix A
in (2), and Im(·) is the imaginary part of a complex
number. A piecewise constant persistently exciting (PCPE)
input of order L for continuous-time systems is defined as
u(t+ iT ) = µi for all 0 ≤ t < T , i = 0, . . . , N − 1, where
{µi}N−1i=0 is a sequence of constant vectors µi ∈ Rm that is
persistently exciting of order L in the sense of Definition 1.

Remark 2: Notice that the condition (6) is not restrictive,
even with no knowledge of the system model (2). This is
because the values of T that make this condition fail form
a set of measure zero and are unlikely to be encountered in
practice.

When a PCPE input is applied to system (2), the obtained
input-state data set satisfies an important rank condition, as
shown below.

Lemma 1 ([21]): Consider system (2), let the pair (A,B)
be controllable, and let u be a PCPE input of order n+ 1 as
defined in Definition 2. Then, the rank condition

rank
([
HT (x(t))
HT (u(t))

])
= rank

([
HT (x(t))
H1(µ)

])
= m+ n

(7)
holds for all 0 ≤ t ≤ T .
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Remark 3: In [21], the result in Lemma 1 was presented
considering persistence of excitation of any order L. For
simplicity of notation, we presented Lemma 1 directly for
PE inputs of order n+1. This is the only order of persistence
of excitation used throughout the paper.

D. The LQR problem and Kleinman’s algorithm
For a CT-LTI system (2), the infinite-horizon LQR prob-

lem concerns determining the control input u that minimizes
a cost function of the form

J(x(0), u) :=

∫ ∞
0

(
x>(t)Qx(t) + u>(t)Ru(t)

)
dt, (8)

where Q � 0 and R � 0. Throughout the paper, we assume
that the pair (A,Q1/2) is observable. This, together with the
assumed controllability of (A,B), implies that the optimal
control input is given by u∗(x) = −K∗x, where

K∗ = R−1B>P ∗

and the matrix P ∗ � 0 solves the algebraic Riccati equation

Q+ P ∗A+A>P ∗ − P ∗BR−1B>P ∗ = 0.

In [22], Kleinman proposed a model-based iterative algo-
rithm to solve the LQR problem. This algorithm starts by
selecting an initial stabilizing matrix K0, i.e., a matrix such
that A − BK0 is Hurwitz stable. At every iteration i, the
Lyapunov equation

Pi(A−BKi) + (A−BKi)
>Pi +Q+K>i RKi = 0 (9)

is solved for Pi. Then, a new feedback matrix is defined as

Ki+1 = R−1B>Pi. (10)

The algorithm iterates the equations (9) and (10) until con-
vergence. With the main drawback of being a model-based
method, Kleinman’s algorithm otherwise possesses highly
attractive features. Namely, at each iteration the matrix Ki+1

is stabilizing, the algorithm converges such that

lim
i→∞

Ki+1 = K∗,

and convergence occurs at a quadratic rate [22].
The following section presents the main developments of

this paper.

III. AN EFFICIENT DATA-BASED ALGORITHM
FOR THE CT LQR PROBLEM

In this section, we present an efficient data-based off-
policy RL algorithm to determine the optimal controller
that minimizes (8). We show that the proposed procedure
is equivalent to Kleinman’s algorithm (9)-(10), and therefore
preserves all of its theoretical properties. For the clarity of
exposition, we introduce first a model-based algorithm that
is then used as the basis of our data-based method.

A. A model-based algorithm
Combining (9) and (10), we readily obtain the following

expressions

PiA−K>i+1RKi +A>Pi−K>i RKi+1 +Q+K>i RKi = 0

and B>Pi −RKi+1 = 0. Therefore, the matrix equation[
A B
−RKi −R

]> [
Pi
Ki+1

] [
In 0

]
+

[
In
0

] [
Pi
Ki+1

]> [
A B
−RKi −R

]
+

[
Q+K>i RKi 0

0 0

]
= 0 (11)

holds, where In is an n×n identity matrix and 0 represents
a matrix of zeros with appropriate dimensions.

Denoting the fixed matrices as

Φi :=

[
A B
−RKi −R

]
, E :=

[
In 0

]
,

Q̄i :=

[
Q+K>i RKi 0

0 0

]
(12)

and the unknown matrix as

Θi+1 :=

[
Pi
Ki+1

]
, (13)

we can write (11) in the compact form

Φ>i Θi+1E + E>Θ>i+1Φi + Q̄i = 0. (14)

The matrix Θi+1 ∈ R(n+m)×n consists of the unknown
matrices in Kleinman’s algorithm, Pi and Ki+1. It is of
our interest to design a method in which solving a matrix
equation as in (14) for Θi+1 corresponds to solving both (9)
and (10) simultaneously. However, it can be noted that (14),
as it is formulated, in general does not have a unique solution
Θi+1. To address this issue, first express the unknown
submatrices of Θi+1 as

Θi+1 =

[
Θ1
i+1

Θ2
i+1

]
, (15)

with Θ1
i+1 ∈ Rn×n and Θ2

i+1 ∈ Rm×n. In the following
lemma, we show that there exists only one matrix Θi+1 that
solves (14) such that the submatrix Θ1

i+1 is symmetric.
Lemma 2: Consider the equation (14) with the matrices

Φi, E and Q̄i defined as in (12). Moreover, let the matrix
Ki be stabilizing. Then, there exists a unique solution (15)
to this equation for which Θ1

i+1 = (Θ1
i+1)>.

Proof: Considering the partition in (15), notice that (14)
holds for any matrix Θi+1 such that

A>Θ1
i+1 −K>i RΘ2

i+1 + (Θ1
i+1)>A− (Θ2

i+1)>RKi

+Q+K>i RKi = 0,

and
B>Θ1

i+1 −RΘ2
i+1 = 0.

From the second equation it is clear that Θ2
i+1 =

R−1B>Θ1
i+1. Substituting this and the fact that Θ1

i+1 =
(Θ1

i+1)> in the first equation, we get

(A−BKi)
>Θ1

i+1 + Θ1
i+1(A−BKi) +Q+K>i RKi = 0.

(16)
Since Ki is stabilizing, we use Lyapunov arguments to
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conclude that Θ1
i+1 (and therefore also Θ2

i+1) is unique.
Lemma 2 implies that constraining the solution of (14)

to include a symmetric submatrix Θ1
i+1 leads to the desired

solution (13). The following lemma shows that we achieve
this by properly modifying Φi in (12).

Lemma 3: Consider the matrix equation

(Φ−i )>Θi+1E + E>Θ>i+1Φ+
i + Q̄i = 0, (17)

where

Φ+
i :=

[
A+ I B
−RKi −R

]
, Φ−i :=

[
A− I B
−RKi −R

]
,

(18)
and the matrices E and Q̄i are defined as in (12). Moreover,
let the matrix Ki be stabilizing. Then, the solution (15) of
(17) is unique, and Θ1

i+1 = (Θ1
i+1)>. Moreover, the solution

of (17) is also a solution of (14).
Proof: First, define the matrix

S =

[
Θ1
i+1 − (Θ1

i+1)> 0
0 0

]
.

Using this definition, it is straightforward to express (17) in
terms of the matrix Φi in (12) as

Φ>i Θi+1E + E>Θ>i+1Φi + Q̄i = S.

Notice that the left-hand side of this expression is symmetric,
and therefore so must be S. Now, S is symmetric if and only
if Θ1

i+1 = (Θ1
i+1)>, that is, S = 0. This implies both that

the solution of (17) also solves (14) and, by Lemma 2, that
this solution is unique.

Remark 4: Equation (17) is a case of the generalized
Sylvester-transpose equation, and algorithms to solve it effi-
ciently are well known [18], [19], [20].

Using this result, we formulate Algorithm 1 below. As in
any policy iteration procedure, Algorithm 1 is initialized with
a stabilizing matrix K0. Using this matrix (as well as model
knowledge), (17) is solved for Θi+1. Then, partitioning Θi+1

as in (15), a new feedback matrix is obtained as Ki+1 =
Θ2
i+1.

Algorithm 1: Model-based RL algorithm
1: procedure
2: Let i = 0 and initialize a stabilizing feedback matrix K0.
3: Using the definitions in (12) and (18), solve for Θi+1 from

the equation

(Φ−i )>Θi+1E + E>Θ>i+1Φ+
i + Q̄i = 0.

4: Partitioning Θi+1 as in (15), define

Ki+1 = Θ2
i+1.

5: If ‖Ki+1 −Ki‖ > ε for some ε > 0, let i = i+ 1 and go
to Step 3. Otherwise, stop.

6: end procedure

Using the results obtained so far, we conclude that Algo-
rithm 1 is equivalent to Kleinman’s algorithm in the sense
that, starting from the same initial matrix K0, they provide
the same updated policies Ki+1 at every iteration. This
implies that Algorithm 1 preserves all the properties of

Kleinman’s algorithm. In the following, we use this result
to design a data-based algorithm.

B. The data-based algorithm

To avoid the need for model knowledge in Algorithm 1,
we collect persistently excited data from the system (2) as
described in Section II-C. Using this data, we define the
constant matrices X , U and X̃ as in (3).

Lemma 1 showed that the collected data set satisfies the
rank condition (7). In the following lemma, we extend this
result to the matrices X and U .

Lemma 4: Consider system (2), let the pair (A,B) be
controllable, and let u be a PCPE input of order n + 1 as
defined in Definition 2. Using the resulting input-state data,
define the matrices X and U as in (3). Then,

rank
([

X
U

])
= n+m. (19)

Proof: Notice that, since the applied input is piecewise
constant, an expression for the resulting state of (2) is

x(t+ iT ) = eAtx(iT ) +

∫ t

0

eAτdτBµi,

for i = 0, . . . , N − 1 and 0 ≤ t ≤ T . Thus, we can write[
X
U

]
=

∫ T

0

[
HT (x(τ))
H1(µ)

]
dτ

=

∫ T

0

[
eAτ

∫ τ
0
eAsdsB

0 I

]
dτ︸ ︷︷ ︸

W

[
HT (x(0))
H1(µ)

]
.

Notice that W is nonsingular since the condition (6) holds
(the fact that

∫ T
0
eAτdτ is nonsingular follows from the

fact that T corresponds to a non-pathological sampling time
[23]). Moreover, by Lemma 1 the second matrix on the right-
hand side has full row rank, completing the proof.

Define Z = [X> U>]>. Since Z has full row rank by
Lemma 4, we can select n+m linearly independent columns
from it. Let zk represent the kth column of Z, and let η =
{k1, . . . , kn+m} be a set of indices such that

Zη :=
[
zk1 · · · zkn+m

]
(20)

is a nonsingular matrix. Then, Θi+1 is a solution of (17) if
and only if it is a solution of

Z>η (Φ−i )>Θi+1EZη + Z>η E
>Θ>i+1Φ+

i Zη + Z>η Q̄iZη = 0.
(21)

From the definitions in (12) and (18), and using the expres-
sion (4), we have the following

Φ+
i Zη =

[
AXη +Xη +BUη
−RKiXη −RUη

]
=

[
X̃η +Xη

−RKiXη −RUη

]
,

Φ−i Zη =

[
AXη −Xη +BUη
−RKiXη −RUη

]
=

[
X̃η −Xη

−RKiXη −RUη

]
,

Z>η Q̄iZη = X>η (Q + K>i RKi)Xη and EZη = Xη , where
the subindex η represents a matrix constructed using the
columns specified by the set η from the corresponding
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original matrix as in (20), e.g.,

Xη :=
[
xk1 · · · xkn+m

]
.

Substituting in (21), we obtain

(Y −i )>Θi+1Xη+X>η Θ>i+1Y
+
i +X>η (Q+K>i RKi)Xη = 0.

(22)
where

Y −i :=

[
X̃η −Xη

−RKiXη −RUη

]
,

Y +
i :=

[
X̃η +Xη

−RKiXη −RUη

]
.

(23)

Now, (22) is a data-based equation that does not require
any knowledge about the system model. Algorithm 2 uses
this expression to solve the LQR problem. For convenience,
for Algorithm 2 we define

Qi := X>η (Q+K>i RKi)Xη. (24)

Algorithm 2: Data-based RL algorithm
1: procedure
2: Select N ≥ (n + 1)m + n and T > 0, apply a PCPE

input of order n+ 1 to (2) and collect an NT -long input-state
trajectory.

3: Compute the matrices X , U , and X̃ as in (3).
4: Select a set of indices η = {k1, . . . , kn+m} such that

[X>η U>η ]> is nonsingular.
5: Let i = 0 and initialize a stabilizing feedback matrix K0.
6: Define the matrices Y +

i , Y −i and Qi as in (23)-(24), and
solve for Θi+1 from the equation

(Y −i )>Θi+1Xη +X>η Θ>i+1Y
+
i +Qi = 0. (25)

7: Partitioning Θi+1 as in (15), define

Ki+1 = Θ2
i+1.

8: If ‖Ki+1 −Ki‖ > ε for some ε > 0, let i = i+ 1 and go
to Step 6. Otherwise, stop.

9: end procedure

The following theorem states the main properties of this
algorithm.

Theorem 1: Consider the CT-LTI system (2), and the
partitioning (15) of Θi+1. Every iteration of Algorithm 2
has the following properties: (i) the solution Θi+1 of (25)
exists and is unique; (ii) the gain Ki+1 is stabilizing; and
(iii) Θ1

i � Θ1
i+1 � P ∗. Moreover,

lim
i→∞

Ki = K∗

and the rate of convergence of the algorithm is quadratic.
Proof: The proof is obtained by showing that Al-

gorithm 2 is equivalent to Kleinman’s algorithm at ev-
ery iteration. First, notice that by Lemma 4, the matrix
[X> U>]> has full row rank and, therefore, a nonsingular
matrix [X>η U>η ]> can always be constructed. This means
that (25) is equivalent to (17). Now, noting that K0 is
stabilizing, use an induction argument to assume that Ki

is stabilizing. Lemma 3 shows the existence and uniqueness
of Θi+1 from (17). Moreover, the expression (16) in the
proof of Lemma 2 shows that Θ1

i+1 = Pi, where Pi is the

solution of the Lyapunov equation (9). Also in the proof of
Lemma 2 it was shown that Θ2

i+1 = R−1B>Θ1
i+1, which

now corresponds to Kleinman’s updated gain (10). Therefore,
Algorithm 2 is equivalent to Kleinman’s algorithm and shares
all of its properties [22].

Algorithm 2 is a purely data-based, off-policy method to
solve the continuous-time LQR problem. Using Definition 2,
we are able to guarantee the existence of a solution Θi+1 of
(25) at every iteration for data trajectories of fixed length.
This contrasts with the methods in the literature that must
keep collecting data until a matrix gets full rank, such as,
e.g., [7], [8]. Moreover, we avoid the use of the Kronecker
product and its resulting large matrices in Algorithm 2. As
stated in Remark 4, methods to efficiently solve a Sylvester-
transpose equation as in (25) are well known.

Remark 5: Step 4 of Algorithm 2 instructs to select n+m
linearly independent columns of Z = [X> U>]>. This step
is only performed in benefit of efficiency, as it decreases
the size of the matrices in (25). However, since Z has full
row rank, skipping this step in Algorithm 2 and using the
complete data matrices instead does not affect the result at
each iteration.

IV. PRACTICAL CONSIDERATIONS

A. Efficiency analysis of Algorithm 2

In this subsection, we analyze the theoretical computa-
tional complexity of Algorithm 2. Moreover, we compare
this complexity with that of the algorithm proposed in [8].
This is because [8] is also an off-policy data-based method
that shares many of the characteristics of Algorithm 2.

The most expensive steps in Algorithm 2 are obtaining the
solution of (25) and selecting n + m linearly independent
vectors from [X> U>]>. Methods to solve the Sylvester-
transpose equation (25) with a complexity of O((n + m)3)
are known [19]. The selection of linearly independent vectors
can be performed using a simple procedure like Gaussian
elimination to transform the matrix of interest into row
echelon form. This method has a complexity of O((n +
m)2N) operations [24]. This step, however, only needs to
be performed once in Algorithm 2 (in Step 4). Thus, we
conclude that Algorithm 2 requires once O((n+m)2N) and
then in each iteration O((n+m)3) floating point operations.

The algorithm in [8] was also shown to be equivalent
to Kleinman’s algorithm at every iteration. However, their
method uses a Kronecker product formulation that yields
matrices of large dimensions. Let N⊗ be the amount of data
samples used in [8]. Then, the most expensive step at each
iteration of their algorithm is the product of a matrix with
dimensions ( 1

2n(n + 1) + mn) × N⊗ times its transpose.
This product, and hence each iteration of the algorithm,
requires O(( 1

2n(n+1)+mn)2N⊗) floating point operations
[25]. Clearly, as the dimension of the system increases, the
difference in performance of both algorithms becomes more
significant. Moreover, we notice from [8] that the amount
of collected data must satisfy N⊗ ≥ 1

2n(n + 1) + mn for
the algorithm to yield a unique solution at every iteration.
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Compare this with the bound N ≥ (n + 1)m + n in Algo-
rithm 2. In Section V, we test this theoretical comparison
using numerical examples.

B. An initial stabilizing policy
In [26, Remark 2], a procedure to design a stabilizing

controller for continuous-time systems using only measured
data was described. This method is based on the solution
of a linear matrix inequality (LMI). The authors in [7]
proposed to use a similar LMI-based procedure to determine
the initial stabilizing gain for a Q-learning algorithm. Since
one of the goals in this paper is computational efficiency, we
would like to avoid the computationally expensive step of
solving an LMI. In this subsection, we present an alternative
method to determine the initial stabilizing matrix K0 for
Algorithm 2. The following development follows closely a
procedure proposed in [27, Section IV] for discrete-time
systems.

Let F be the Moore-Penrose pseudoinverse of the matrix
X in (3). Since X has full row rank (see Lemma 4), F is a
right inverse of X . Furthermore, let G be a basis for the null
space of X , such that X(F − GK̄) = I for any matrix K̄
of appropriate dimensions. Using the matrices F , G and U
from (3), we propose to compute the initial stabilizing gain
K0 for Algorithm 2 as

K0 = −U(F −GK̄) (26)

where K̄ is a matrix to be determined.
From (4) and (26), notice that

X̃(F −GK̄) = [A B]

[
X
U

]
(F −GK̄)

= [A B]

[
I
−K0

]
Therefore, by designing the poles of the matrix X̃(F −
GK̄), we also set the poles of A − BK0. Since (A,B) is
controllable and hence the poles of A−BK0 can be assigned
arbitrarily, also the poles of X̃(F − GK̄) can be placed
arbitrarily by a suitable choice of K̄. Moreover, since X̃ ,
F and G are matrices obtained from data, we can operate
with them without any need of model knowledge. This
procedure is summarized in the following theorem. The proof
of this theorem is straightforward considering the procedure
described in this subsection and is hence omitted.

Theorem 2: Let the matrices X̃ , X and U be defined as
in (3) using data collected from (2) during the application of
a PCPE input of order n+1. Define F as the Moore-Penrose
pseudoinverse of X and G as a basis for the null space of
X . Moreover, define the virtual system matrices Ā = X̃F
and B̄ = X̃G. Using pole-placement methods, determine a
matrix K̄ such that Ā − B̄K̄ is Hurwitz. Then, the matrix
K0 defined by (26) is stabilizing for system (2).

Remark 6: Notice that the matrices Ā = X̃F and B̄ =
X̃G in Theorem 2 do not correspond to the actual system
matrices A and B. In fact, B and B̄ in general do not have
the same dimensions. No model identification is performed
in the proposed procedure.

V. NUMERICAL EXPERIMENTS

In this section, we compare in simulation the efficiency
of the proposed Algorithm 2 with that of the algorithm pre-
sented in [8]. As described above, these algorithms have the
same characteristics: they are data-based off-policy methods
that are equivalent to Kleinman’s algorithm at every iteration.

To compare the efficiency of both algorithms, several
simulations are performed for different, randomly generated
linear systems (2). In particular, 100 different linear sys-
tems are generated using the command rss in Matlab, and
both algorithms are applied to each of them. The system
dimensions considered for each set of 100 experiments are
n = 2, 3, 5 and 7. In every case, we consider single input
systems (m = 1), and we define the cost function (8) with
Q = I and R = 2.

Each implementation of Algorithm 2 had the following
characteristics. A PCPE input as in Definition 2 was used to
collect data from the system. A sample of data was collected
every 10−4 time units. We considered a time interval of T =
0.2, and we collected data for a total of NT time units, with
N = (n+1)m+n. The method described in [18] was used to
solve the Sylvester-transpose equation (25) at every iteration.

For the implementation of the Kronecker product-based
method in [8], we followed the same simulation character-
istics described in the simulation section of that paper. The
only exception is in the amount of data collected, which
was reduced for small system dimensions in order to make
a fairer comparison.

Finally, notice that the command rss in Matlab yields
stable systems. Thus, an initial stabilizing matrix of K0 = 0
was used for all experiments and both algorithms. The
simulations were performed using Matlab R2020b on an Intel
i7-10875H (2.30 GHz) with 16 GB of memory.

The results of our simulations are displayed in Table I. In
this table, we refer to Algorithm 2, which is based on the
solution of a Sylvester-transpose equation, as ‘SYL’. The
algorithm in [8] that is based on the use of the Kronecker
product is denoted as ‘KRO’. To compare the computational
efficiency of the methods, we present the average time that
it takes the algorithms to complete 10 iterations. Due to
their quadratic rate of convergence, 10 iterations yield a
very accurate result of the optimal control gain for both
algorithms. In the table we can observe a confirmation of
our theoretical analysis regarding the improved performance
of Algorithm 2.

During the execution of these experiments, we noted some
issues in the performance of both methods when applied
to systems of large dimensions. First, Algorithm 2 requires
the application of a solver from the literature to solve (25).
We found that, if the data matrix Zη in Algorithm 2 has a
large condition number, the solvers considered often failed to
provide the correct result. To address this problem, methods
to construct a matrix Zη with low condition number from a
larger matrix Z could be considered. Regarding the algorithm
in [8], determining a proper input in order to satisfy the
required persistence of excitation condition for the collected
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Dimension
n

Average time (sec)
SYL KRO

2 0.0099 0.0953
3 0.0144 0.1719
5 0.0287 0.4317
7 0.1046 1.8021

TABLE I
RUN-TIME COMPARISON BETWEEN ALGORITHM 2 (SYL) AND THE

ALGORITHM IN [8] (KRO).

data (compare the discussion in the Introduction) becomes
ever more difficult as the dimension of the system increases.
In this case, it is uncertain how to solve this issue.

A Matlab code for Algorithm 2 has been made publicly
available in https://codeocean.com/capsule/3042979/tree.

VI. CONCLUSIONS

In this paper, a computationally efficient algorithm was
proposed to solve the continuous-time LQR problem. The
proposed algorithm is equivalent to Kleinman’s method, it
does not require any knowledge from the system model and
it requires collecting data from the system only once. We
presented a persistently exciting input that guarantees that the
matrix equation (25) in our algorithm has a unique solution
at every iteration. Finally, we showed a method to determine
an initial stabilizing feedback matrix using only measured
data and that does not require to solve LMIs. Simulation
results show that our algorithm significantly improves the
performance of an algorithm with similar properties in the
literature.
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