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Abstract— This paper considers the problem of asymptotic
stabilization of a class of MIMO control-affine systems with
unknown nonlinear terms subject to prescribed transient con-
straints. We propose a novel control methodology, Barrier
Integral Control (BRIC), that achieves asymptotic results while
complying with the aforementioned constraints. BRIC relies on
a novel integration of reciprocal barrier functions, commonly
used in funnel-constrained control, and error-integral terms.
The proposed methodology does not use any information from
the model’s dynamic terms and, unlike previous works in the
related literature, consists of smooth feedback. Theoretical guar-
antees are provided for three different classes of control-affine
nonlinear systems, without adopting boundedness assumptions,
growth conditions, or control-gain tuning. Simulation results
verify the theoretical findings.

I. INTRODUCTION

Control of systems with uncertain dynamics has been a
central research focus for decades, with applications in areas
like autonomous robots, self-driving cars, and biological
networks, where systems face modelling uncertainties and
unknown disturbances

Robust and adaptive control has been the primary approach
for handling systems with uncertain dynamics [1]. However,
most results offer “practical stability”, where errors converge
to a residual set near zero [2]–[4], with the set’s size
dependent on gain selection and system dynamics, requiring
large gains to minimize. In contrast, asymptotic stability —
where errors converge to zero — is more desirable but more
challenging to achieve, particularly for systems with uncer-
tain dynamics. Asymptotic stability guarantees often requires
conservative assumptions like linear parametrizations of the
dynamics, where the uncertainty is restricted to constant
terms [5], gain tuning with known parts or bounds of the
dynamics [6]–[8], growth conditions [6], or a priori available
data [9]. Works avoiding these assumptions typically provide
only local results, with the region of attraction limited by the
system’s dynamics [10].

An essential property of control systems is ensuring com-
pliance with predefined trajectory specifications. Methods
like Prescribed Performance Control (PPC) [11] and funnel
control [12] guarantee the confinement of the tracking errors
within a pre-specified funnel independently of control gains
or the system dynamics. However, these approaches often fail
to achieve asymptotic stability unless the funnel converges to
zero [13], which can lead to numerical issues or impractically
large inputs. Other methods that achieve asymptotic stability
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typically focus on linear systems [14], limit uncertainties to
unknown parameters [15], or rely on neural-network approx-
imation [16] that yield local results. The works [17]–[19]
have removed these assumptions but require discontinuous
control laws, which are not applicable in practice.

This paper considers the problem of asymptotic stabi-
lization with predefined funnel-type transient specifications
for control-affine nonlinear MIMO systems with entirely
unknown dynamics. We introduce Barrier Integral Control
(BRIC), which ensures that the system’s stabilization error
evolves within a predefined funnel and converges asymp-
totically to zero. BRIC is based on a novel integration of
reciprocal barrier functions and the integral of the error’s
squared norm. It does not employ any information from the
system’s dynamics and does not require any gain tuning,
growth/boundedness conditions or approximation schemes
for the the dynamic terms. Furthermore and unlike [17]–
[19], it is a smooth-feedback controller. The BRIC guarantees
are established for three different kinds of nonlinear MIMO
systems, based on the structure of the control-input matrix
and the drift term. Such guarantees are practically global, in
the sense that the initial conditions need only comply with
the funnel-based transient specifications. Finally, we illus-
trate the effectiveness of BRIC via comparative simulations.

The rest of the paper is organized as follows. Section II
provides notation and preliminary background, and Section
III gives the main results of the paper. Section IV is devoted
to simulation examples and Section V concludes the paper.

II. PRELIMINARIES
Notation: The sets of real, positive real, and non-negative
real numbers are denoted by R, R>0, and R≥0, respectively;
‖ · ‖ denotes the vector 2-norm. The derivative of a function
f : Rn → Rm is denoted by f ′ and we use N := {1, . . . , n}.

Lemma 1 ([20]): Let x = [x1, . . . , xn]> ∈ Rn and x̄i =
[x1, . . . , xi]

> for i ∈ {1, 2, . . . , n− 1}. Further let a(t) and
b(t) be continuous scalar functions, and φ : Rn → R a
continuous function satisfying 0 < am ≤ φ(x) ≤ aM for all
x ∈ Rn and for positive constants am, aM . Define P (t) :=∫ a(t)

0
sφ(x̄n−1, s+ b(t))ds. Then it holds that

1

2
ama(t)2 ≤ P (t) ≤ 1

2
aMa(t)2 (1a)

Ṗ (t) = a(t)φ(x)ȧ(t)− ḃ(t)a(t)

∫ 1

0

φ(x̄n−1, θa(t) + b(t))dθ

+ a(t)φ(x)ḃ(t) + a(t)2
n−1∑
i=1

ẋi

∫ 1

0

θ
∂φ(x̄n−1, θa(t) + b(t))

∂xi
dθ.

(1b)
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Lemma 2: It holds that 1
2y ln

(
1+y
1−y

)
≥ y2, ∀y ∈ (−1, 1).

Proof: Let f : (−1, 1) → R, with f(y) :=
1
2 ln

(
1+y
1−y

)
− y. The derivative of f is f ′(y) = 1

1−y2 − 1,
which satisfies f ′(0) = 0 and f ′(y) > 0, for all y ∈
(−1, 1)\{0}, implying that f(y) is increasing in (−1, 1).
Hence, we conclude that y ≥ 0 ⇒ f(y) ≥ f(0) = 0 ⇒
yf(y) ≥ 0 and y ≤ 0⇒ f(y) ≤ f(0) = 0⇒ yf(y) ≥ 0.

III. MAIN RESULTS

A. Problem Formulation

Consider the nonlinear MIMO system

ẋi = fi(x, t) + gi(xi)ui, ∀i ∈ N , (2)

where xi, ui ∈ R are the system’s ith state and input,
respectively, and fi : Rn × R≥0 → R, gi : R → R are
unknown nonlinear functions, for all i ∈ N . By defining
x := [x1, . . . , xn]> ∈ Rn, u := [u1, . . . , un]> ∈ Rn, and
f := [f1, . . . , fn] ∈ Rn, g := diag{g1, . . . , gn} ∈ Rn×n, we
can write (2) as

ẋ = f(x, t) + g(x)u. (3)

The problem we consider is the design of a smooth feedback
control algorithm u(x, t) that stabilizes asymptotically the
state x to a configuration xd := [xd1 , . . . , xdn ]> ∈ Rn
despite the unknown terms f(·) and g(·), while at the same
time establishing prescribed specifications on the evolution
of x(t). We consider the following assumptions:

Assumption 1: The maps x 7→ f(x, t) : Rn → Rn and
x 7→ g(x) : Rn → Rn×n, i ∈ N , are locally Lipschitz for
each fixed t ≥ 0, and the map t 7→ f(x, t) : R≥0 → Rn is
continuous and bounded for each fixed x ∈ Rn.

Assumption 2: There exist positive constants g
i
, ḡi such

that 0 < g
i
≤ gi(xi) ≤ ḡi <∞, for all xi ∈ R and i ∈ N .

Assumption 3: It holds that f(xd, t) = 0 for all t ≥ 0.
Assumption 1 provides mild regularity conditions for the
solution of (2). Assumption 2 is a sufficient controllability
condition, also encountered in numerous works (e.g., [11],
[13]; the constants g

i
and ḡi are assumed to be unknown.

Finally, Assumption 3 is necessary for (3) to have an equi-
librium point at xd. The diagonality of g(x) and Assumpt. 3
are relaxed in Sections III-C and III-D, respectively.

As mentioned before, the control objective is the design
of a smooth control algorithm that achieves asymptotic
stabilization to xd. Moreover, as discussed in Section I,
we aim at imposing a certain predefined behavior for the
transient response of the system. More specifically, motivated
by funnel control techniques, given n predefined funnels,
described by the smooth functions (also called performance
functions in [11]) ρi : R≥0 → [ρ

i
, ρ̄i] ⊂ R>0, where ρ

i
,

ρ̄i ∈ R>0 are positive lower and upper bounds, respectively,
we aim at guaranteeing that −ρi(t) < xi(t)−xdi < ρi(t), for
all t ≥ 0, given that −ρi(0) < xi(0)− xdi < ρi(0), i ∈ N .
We further require ρi(t) to have bounded first derivatives ρ̇i,
i ∈ N . These functions can encode maximum overshoot or
convergence rate properties. Note that, compared to the ma-
jority of the related works on funnel control (e.g., [11]–[13]),

we do not require arbitrarily small final values limt→∞ ρi(t),
which would achieve convergence of xi(t) − xdi arbitrarily
close to zero, since one of the objectives is actual asymptotic
stability. Formally, the problem statement is as follows:

Problem 1: Consider the system (2) and let xd ∈ Rn as
well as n prescribed funnels, described by ρi(t), ∀i ∈ N ,
and satisfying −ρi(0) > xi(0)−xi,d > ρi(0), i ∈ N . Design
a smooth control protocol u : Rn × R≥0 → Rn such that

1) limt→∞(xi(t)− xdi) = 0,
2) −ρi(t) < xi(t)− xdi < ρi(t), ∀t ≥ 0,

for all i ∈ N , and all closed loop signals remain bounded.

B. Barrier Integral Control

We introduce Barrier Integral Control (BRIC), which
consists of two main elements: A reciprocal barrier term,
which establishes the boundedness of x(t) within the ρi(t)
funnel, and an integral term that guarantees asymptotic
convergence to xd. BRIC is considered to establish semi-
global results, since its region of attraction is constrained in
the set (−ρ1(0),−ρ1(0))×· · ·×(−ρn(0),−ρn(0)). However,
we claim that it achieves “practically global” results since,
given the initial error xi(t) − xdi , one can always choose
ρi(t) such that ρi(0) > |xi(t)− xdi |, without relying on the
system dynamics or necessitating tuning of the control gains.

We begin by defining the stabilization and normalized
errors, where we denote ρ := diag{ρ1, . . . , ρn},

e := [e1, . . . , en]> := x− xd (4a)

ξ := [ξ1, . . . , ξn]> := ρ(t)−1e, (4b)

Consider now the transformation χ := [χ1, . . . , χN ]>, with

χi(ξ) := T (ξi) , (5)

for i ∈ N , where T : (−1, 1)→ R is the smooth, increasing
map T(∗) := 1

2 ln
(

1+∗
1−∗

)
, with inverse T−1(∗) = tanh(∗).

We now design the BRIC law as

u =− k1χ(ξ)− k2

∫ t

0

∥∥e(τ)
∥∥2

dτ χ(ξ) (6)

where k1 and k2 are positive constant gains.
The first term of (6) constitutes the barrier term that aims

to establish the boundedness of x(t) and retain the errors
ei within the prescribed funnel formed by ρi, i ∈ N . The
second term of (6) aims to compensate for the uncertainties
in f(·) and g(·) and accomplish limt→∞ e(t) = 0.

Remark 1: The control law (6) does not involve any in-
formation from f(·) and g(·) or any approximation schemes.
The main difference with respect to standard funnel-type
controllers [11], [12] is the incorporation of the integral term∫ t

0
‖e(τ)‖2dτ , which enforces asymptotic convergence of the

errors to zero. A similar term was used in our previous
work [18], coupled, however, with a discontinuous signal,
and in the PI funnel control of [21], without, however,
accommodating the uncertainty considered here. Finally, the
proposed control algorithm can further handle stable internal
dynamics in (3), by following the techniques of [18].

The theoretical properties of (6) are given as follows.
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Theorem 1: Consider system (3), Assumption 1-3, and
functions ρi(t) satisfying −ρi(0) < ei(0) < ρi(0) for all
i ∈ N . The control law (6) guarantees that −ρi(t) < ei(t) <
ρi(t), for all t ≥ 0, and limt→∞ e(t) = 0, as well as the
boundedness of all closed-loop signals, for all t ≥ 0.

Proof: The proof proceeds in two parts; first, we
establish that xi(t) − xdi evolves within (−ρi(t), ρi(t)),
which implies the boundedness of x(t); second, we show
the asymptotic convergence of e(t) to zero.

We first compute the dynamics of the error e = x− xd:

ė = f(e+ xd, t) + g(e+ xd)u =: fe(e, t) + ge(e)u, (7)

with fe(e, t) = [fe1(e, t), . . . , fen(e, t)]>, ge(e, t) =
diag{ge1(e1), . . . , gen(en)}, and fei(e, t) = fi(e + xd, t),
gei(ei) = gi(ei + xdi), for all i ∈ N .
A) Funnel confinement: Consider first the open set Ω :=
(−1, 1)n. Since |ei(0)| < ρi(0) for all i ∈ {1, . . . , n}, Ω is
non-empty. Furthermore, by differentiating (4b) and using (3)
and (6), we obtain ξ̇ = fξ(ξ, t), where fξ : (−1, 1)n × R≥0

is is a locally Lipschitz map in ξ in Ω for each fixed t ≥ 0
and continuous in t in R≥0 for each fixed ξ ∈ Ω. Therefore,
according to [22, Theorem 54], we conclude the existence
of a unique maximal solution ξ : [0, tmax)→ Ω that satisfies
ξ(t) ∈ Ω, for all t ∈ [0, tmax), where tmax is a positive
constant. Note that, for all t ∈ [0, tmax),

‖e(t)‖ ≤
√
nmax
i∈N

ρ̄i. (8)

Consider now the positive definite function W (χ) :=
1
2‖χ‖

2 = 1
2

∑
i∈N χ

2
i , which is well-defined for t ∈

[0, tmax). Differentiating W and substituting (6) yields

Ẇ =−
∑
i∈N

(
k1 + k2

∫ t

0

‖e(τ)‖2dτ
)
JTi(ξi)

ρi(t)
gei(ei)χi(ξi)

2

+
∑
i∈N

χi(ξi)
JTi(ξi)

ρi(t)

(
fei(ei, t))− ρ̇i(t)ξi

)
(9)

where JTi
(ξi) := dχi(ξi)

dξi
= 1

1−ξ2i
≥ 1, for t ∈ [0, tmax), i ∈

N . Further, we observe that |fei(ei(t), t)− ρ̇i(t)ξi(t)| ≤ F̄ ,
for all i ∈ N , due to Assumption 1, (8), and the boundedness
of ρ̇i(t). Note that F̄ is independent of tmax. By further
noting that

∫ t
0
‖e(τ)‖2dτ ≥ 0, gei > 0, JTi

(ξi) > 0, ρi(t) >
0, i ∈ N , and completing the squares, we obtain

Ẇ ≤ −
∑
i∈N

Ri(ξi, t)

{
κχi(ξi)

2 − F̄

2α

}
,

for all t ∈ [0, tmax), where g := mini∈N {gi}, α is a positive

constant satisfying α < 2gk1, Ri(ξi, t) :=
JTi

(ξi)

ρi(t)
> 0,

i ∈ N , and κ := g
(
k1 − α

2g

)
> 0. Therefore, we conclude

that Ẇ < 0 when |χi(ξ)| >
√

F̄
2ακ for at least one

i ∈ N . Hence, we conclude that χ(ξ(t)) is bounded as
‖χ(ξ(t))‖ ≤ χ̄, for all t ∈ [0, tmax), where χ̄ is a positive
constant. Consequently, by inverting T, as defined in (5), we
obtain that |ξi(t)| = | tanh(χi)| ≤ ξ̄ := | tanh(χ̄)| < 1, for
all i ∈ N and t ∈ [0, tmax). Finally, note that ξ(t) ∈ Ω′ :=

[−ξ̄, ξ̄]n ⊂ (−1, 1)n for all t ∈ [0, tmax). Therefore, [22,
Prop. C.3.6] dictates that tmax = ∞. Hence, it holds that
−ρi(t) < ei(t) = xi(t)− xdi < ρi(t), for t ≥ 0 and i ∈ N .
B) Asymptotic convergence: We define first he(e, t) :=
ge(e)

−1fe(e, t). From the previous analysis, we obtain that
e(t) ∈ (−maxi∈N {ρ̄i},maxi∈N {ρ̄i})n, for all t ≥ 0.
Hence, by further using the Lipschitz property and time-
boundedness from Assumption 1, the positive definiteness
of ge(·) from Assumption 2, and the fact that f(xd, t) = 0 -
and hence he(0, t) = 0 - from Assumption 3, we obtain

‖he(e(t), t)‖ = ‖he(e(t), t)− he(0, t)‖ ≤ L‖e(t)‖, (10)

for all t ≥ 0 and a positive constant L. Additionally, let˜̀(t) := k2

∫ t
0
‖e(τ)‖2dτ − L and consider the function

V (e, ˜̀) =
∑
i∈N

∫ ei

0

1

gei(s)
s ds +

1

2k2

˜̀2
In view of Assumption 2, it holds that 0 < gm ≤ 1

gei (e) ≤
gM for some positive constants gm and gM and all i ∈ N .
Hence, according to Lemma 1, it holds that 1

2gme
2
i ≤∫ ei

0
1

gei (s)s ≤
1
2gMe

2
i , for all i ∈ N , and therefore

1

2
gm‖e‖2 +

1

2k2

˜̀2 ≤ V (e, ˜̀) ≤ 1

2
gM‖e‖2 +

1

2k2

˜̀2
By differentiating V , using Lemma 1 with b(t) = 0 and
a(t) = ei, and using (7), (10), and (6), we obtain

V̇ ≤L‖e‖2 − k1e>χ(ξ)− k2
∫ t

0

‖e(τ)‖2 dτ e>χ(ξ) + ˜̀‖e‖2.
Next, in view of (4b), it holds that eiχi(ξi) = ρi(t)ξiχi(ξi),
which, according to (5), Lemma 2 and the positiveness of
ρi(t), is greater than or equal to ρi(t)ξ2

i = ρi(t)
−1e2

i , i ∈ N .
Therefore it holds that −e>χ(ξ) ≤ −ρ̃‖e‖2 and V̇ becomes

V̇ ≤ −k1ρ̃‖e‖2 −
(
k2

∫ t

0

‖e(τ)‖2dτ − L
)
‖e‖2 + ˜̀‖e‖2

where ρ̃ := mini∈N {ρ̄−1
i }. Finally, by using ˜̀(t) :=

k2

∫ t
0
‖e(τ)‖2 − L, V̇ becomes V̇ ≤ −k1‖e‖2 ≤ 0, i.e.,

V is non-increasing and that V (e(t), ˜̀(t)) ≤ V (e(0), ˜̀(0)),
for all t ≥ 0, implying that V has a finite limit as t → ∞.
Further note that ˜̀(t) and

∫ t
0
‖e(τ)‖2 remains bounded for

all t ≥ 0. By differentiating V̇ and using the boundedness of
χ(t), ˜̀(t), we conclude that V̈ (e(t), ˜̀(t)) remains bounded
for all t ≥ 0, which implies the uniform continuity of V̇ .
Therefore, by invoking Barbalat’s Lemma ([23, Lemma 8.2]),
we conclude that limt→∞ V̇ (e(t), ˜̀(t)) = 0, which implies
that limt→∞ e(t) = 0, leading to the conclusion of the proof.

C. Extension to non-diagonal g(x)

In this section, we extend the results to systems of the
form (3) but with a more general control-input matrix g(x),
not requiring it to be diagonal. We do need, however, the
following additional assumptions concerning g(x) and the
vector q(x) := [q1(x), . . . , qn(x)]> := g(x)−1x:
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Assumption 4: The matrix g(x) is symmetric and there
exist constants g and ḡ such that 0 < gIn ≤ g(x) ≤ ḡIn <
∞, for all x ∈ Rn.

Assumption 5: It holds that, for all i, j ∈ N with i 6= j,

∂qi(x)

∂xj
=
∂qj(x)

∂xi
. (11)

Assumption 4 is equivalent to Assumption 2. Assumption 5
implies that q(x) is the gradient of a scalar function, which
is needed in the subsequent analysis. We note that such a
condition is only sufficient, and not necessary, as verified by
the simulations of Sec. IV.

The control law is designed similar to (6), but with the
additional gains JTi(ξi) and ρ(t)−1:

u =− k1R(ξ, t)χ(ξ)− k2

∫ t

0

∥∥e(τ)
∥∥2

dτ R(ξ, t)χ(ξ) (12)

where k1 and k2 are positive constant gains, and R(ξ, t) :=
ρ(t)−1JT (ξ), where JT (ξ) := diag{[JTi

(ξi)]i∈{1,...,n}}, and
JTi(ξi) = dχi(ξi)

dξi
= 1

1−ξ2i
for all i ∈ N , as defined in (9).

We are now ready to state the main results of this section.
Theorem 2: Consider system (3) with a non-diagonal

g(x), Assumptions 1, 3, 4, and 5, and functions ρi(t) satis-
fying −ρi(0) < ei(0) < ρi(0), i ∈ N . The control law (12)
guarantees −ρi(t) < ei(t) < ρi(t), t ≥ 0, limt→∞ e(t) = 0,
and boundedness of all closed-loop signals.

Proof: We follow similar steps as in Th. 1.
A) Funnel confinement: Following the proof of Theorem
1, we conclude the existence of a unique maximal solution
ξ(t) ∈ (−1, 1)n for all [0, tmax), implying (8) for [0, tmax).
By differentiating W (χ) = 1

2‖χ‖
2, we obtain

Ẇ ≤−
(
k1 + k2

∫ t

0

‖e(τ)‖2dτ
)
χ(ξ)>R(ξ, t)g(x)R(ξ, t)χ(ξ)

+ ‖JT (ξ)χ(ξ)‖F̄

for all t ∈ [0, tmax), where F̄ is a positive constant, indepen-
dent of tmax, satisfying F̄ ≥ maxi∈N {ρ−1

i
}‖(f(x(t), t) −

ρ̇(t)ξ)‖, t ∈ [0, tmax). By further using Assumption 4 and∫ t
0
‖e(τ)‖dτ ≥ 0, we obtain

Ẇ ≤− k1gρ̃‖JT (ξ)χ(ξ)‖2 + ‖JT (ξ)χ(ξ)‖F̄

for all t ∈ [0, tmax), where ρ̃ = mini∈N {ρ̄−1
i }. Hence, we

conclude that Ẇ < 0 when ‖JT (ξ)χ(ξ)‖ ≥ F̄
k1gρ̃

. Therefore,
since JTi

(ξi) ≥ 1, for all t ∈ [0, tmax) and i ∈ N , we
conclude the boundedness of χ(ξ(t)) as ‖χ(ξ(t))‖ ≤ χ̄,
where χ̄ is a positive constant. By following similar steps
with the proof of Theorem 1, we conclude that tmax = ∞
as well as −ρi(t) < ei(t) < ρi(t), for all t ≥ 0 and i ∈ N .

Similar to the proof of Theorem 1, we define he(e, t) :=
ge(e)

−1fe(e, t), where fe(e, t) = f(e + xd, t) and ge(e) =
g(e + xd). The function he(e, t) satisfies ‖he(e(t), t)‖ ≤
L‖e(t)‖, for all t ≥ 0 and a positive constant L, as shown
in (10). Additionally, let ˜̀(t) := k2

∫ t
0
‖e(τ)‖2dτ − ρ̃−2L.

Next, it can be verified that (11) holds for qe(e) := ge(e)
−1e

as well. Therefore, in view of Assumption 5, the term
qe(e) is the gradient of a scalar function [23, Example 4.4],

i.e., there exists a function Vg : Rn → R that satisfies
dVg(e)/de = g(e)−1e, i.e., Vg(e) =

∫ e
0
ge(s)

−1sds. Since
ge(e)

−1e is a gradient vector, its line integral from 0 to e is
independent of the path [24]. Let such a parametrized path
be γ : [0, 1] → Rn with γ(∗) = ∗e, such that γ(0) = 0 and
γ(1) = e. Then, Vg can be written as

Vg =

∫ 1

0

γ(τ)>ge(γ(τ))−1γ(τ)′dτ =

∫ 1

0

τe>ge(τe)
−1e dτ

In view of Assumption 4, it holds that ḡ−1‖e‖2 ≤
e(t)>ge(e(t))

−1e(t) ≤ g−1‖e‖2 and hence 1
2ḡ‖e‖

2 ≤
Vg(e) ≤ 1

2g‖e‖
2. Consider now the positive definite function

V =
Vg(e)

ρ̃2
+

1

2k2

˜̀2
where ρ̃ = mini∈N {ρ̄−1

i }, as defined before. Differentiation
of V and use of (7) and (10) yields

V̇ ≤ρ̃−2L‖e‖2 − ρ̃−2k2

∫ t

0

‖e(τ)‖2dτ e>R(ξ, t)χ(ξ) + ˜̀‖e‖2
− k1ρ̃

−2e>R(ξ, t)χ(ξ)

In view of Lemma 2 and the positiveness of ρi(t), it holds
that eiχi(ξi) = ρi(t)ξiχi(χi) ≥ ρi(t)ξ

2
i = ρi(t)

−1e2
i

for all i ∈ N . Since JTi
(ξi) ≥ 1, we conclude

that JTi
(ξi)eiχi(ξi) ≥ eiχi(ξi) ≥ ρi(t)

−1e2
i and hence

ρi(t)
−1JTi

(ξi)eiχi(ξi) ≥ ρi(t)
−2e2

i ≥ mini∈N {ρ̄−2
i }e2

i , for
all i ∈ N . Hence, we conclude that e>R(ξ, t)χ(ξ) ≥ ρ̃2‖e‖2.
Therefore, since

∫ t
0
‖e(τ)‖2dτ ≥ 0, V̇ becomes

V̇ ≤ρ̃−2L‖e‖2 − k2

∫ t

0

‖e(τ)‖2dτ‖e‖2 + ˜̀‖e‖2 − k1‖e‖2

which, by employing ˜̀(t) := k2

∫ t
0
‖e(τ)‖2dτ−ρ̃−2L, finally

becomes V̇ ≤ −k1‖e‖2. By following similar steps as in the
proof of Theorem 1, we conclude that limt→∞ e(t) = 0 and
the boundedness of all closed-loop signals, for all t ≥ 0.

D. Extension to non-zero f(xd, t)

We now remove Assumption 3, considering a non-zero
f(xd, t), requiring it, however, to be constant.

Assumption 6: It holds that f(xd, t) = const for all t ≥ 0.
Furthermore, we relax the transient constraints to encode
boundedness by constant terms ρi = const, for all i ∈ N .

The control law is now designed as

u = −k1χ(ξ)− k`1
(∫ t

0

‖R(ξ(τ))χ(ξ(τ))‖2dτ
)
R(ξ)χ(ξ)

− k`2
∫ t

0

R(ξ(τ))χ(ξ(τ))dτ (13)

where k1 and k`1 , and k`2 are positive constant gains, and
R(ξ) := ρ−1JT (ξ), as defined in (12). The stabilization
properties of (13) are given in the following theorem.

Theorem 3: Consider system (3), Assumptions 1, 2, and
6, and constants ρi satisfying −ρi < ei(0) < ρi for i ∈ N .
Then, the control law (13) guarantees that −ρi < ei(t) <
ρi, for all t ≥ 0, and limt→∞ e(t) = 0, as well as the
boundedness of all closed-loop signals, for all t ≥ 0.
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Proof: First, by following similar steps as in the proofs
of Theorems 1 and 2, we conclude the existence of a unique
maximal solution ξ(t) ∈ (−1, 1)n, i.e., |ei(t)| < ρi for all
i ∈ N and t ∈ [0, tmax), where tmax is a positive constant.

Similar to the proof of Theorem 1, we use he(e, t) :=
ge(e)

−1fe(e, t), with fe(e, t) = f(e + xd, t) and ge(e) =
g(e+ xd). In view of Assumptions 1, 2, 6, and the fact that
|ei(t)| < ρi for i ∈ N and t ∈ [0, tmax), he(e, t) satisfies

‖he(e(t), t)− he(0, t)‖ ≤ L‖e(t)‖ (14)

for t ∈ [0, tmax) and a positive constant L independent of
tmax. In view of Lemma 2 and by following similar steps
with the proofs of Th. 1 and 2, we conclude that ‖e(t)‖ ≤
maxi∈N {ρ̄2}‖R(ξ(t))χ(ξ(t))‖, for t ∈ [0, tmax). Further let

˜̀
1(t) :=k`1

∫ t

0

‖R(ξ(τ))χ(ξ(τ))‖2dτ −max
i∈N
{ρ̄2}L (15a)

˜̀
2(t) :=k`2

∫ t

0

R(ξ(τ))χ(ξ(τ))dτ − he(0, t) (15b)

Note that he(0, t) = g(xd)−1f(xd, t) is constant due to
Assumption 6. Let now the function V (χ, `1, `2, t), with

V =
∑
i∈N

∫ χi

0

1

gei(ρi tanh(s))
sds +

1

2k`1
˜̀2
1 +

1

2k`2
‖˜̀2‖2

Setting s = θχi and using (5) and Assumption 2 yields∫ χi

0

1

gei(ρi tanh(s))
sds = χ2

i

∫ 1

0

1

gei(ei)
dθ ∈

[
1

2ḡi
χ2
i ,

1

2g
i

χ2
i

]
,

for all i ∈ N , implying the positive definiteness of
V (χ, `1, `2, t). Differentiation of V leads to

V̇ =χ(ξ)>R(ξ)(he(e, t) + u) + ˜̀1‖R(ξ), χ(ξ)‖2 + ˜̀>2 R(ξ)χ(ξ)

By adding and subtracting χ(ξ)>R(ξ)he(0, t) and us-
ing (13), (14), and (15) and the fact that R(ξ) ≥
mini∈N {ρ−1

i }In, it can be concluded that, for t ∈ [0, tmax),

V̇ ≤ −k1χ(ξ)R(ξ)χ(ξ) ≤ −k1 min
i∈N
{ρ−1
i }‖χ(ξ)‖2

Therefore, ‖χ(t)‖, |˜̀1(t)| and ‖˜̀2(t)‖ are bounded by V0 :=
V (χ(ξ(0), ˜̀1(0), ˜̀2(0), 0), implying the boundedness of u(t)
for t ∈ [0, tmax). Hence, |ei(t)| ≤ ρi tanh(V0) < ρi for
t ∈ [0, tmax) and i ∈ N , which means that ξ(t) evolves
in a compact subset of (−1, 1)n, leading to the conclusion
that tmax =∞. Finally, by using similar arguments as in the
proof of Theorem 1, we conclude via Barbalat’s Lemma [23,
Lemma 8.2] that limt→∞ χ(ξ(t)) = 0 and limt→∞ e(t) = 0.

IV. SIMULATION RESULTS

We present three simulation examples to illustrate the
control design of Sec. III-B, III-C, and III-D, respectively.
Case I: We consider first a system of the form (2) with
n = 2, x(0) = [0, 0]>, xd = [4,−5]>, and

f(x, t) =

[
e2e

2
1 + cos(t)‖e‖2

sin(t)e2
2 − (2 + sin(t− π/5))e1e2

]
gi(xi) = x2

i + 1, i ∈ {1, 2}

0 1 2 3

-10

-5

0

5

10

0 1 2 3

-15

-10

-5

0

5

Fig. 1. Simulation results for Case I for BRIC and PPC; Left: error e(t),
along with funnels ±ρi(t) (dashed black lines); Right: control input u(t).

We impose the transient behaviour dictated by ρ1(t) =
ρ2(t) = ‖e(0)‖ exp−0.5t +1. We apply the BRIC control law
(6) with k1 = 1, k2 = 0.1 and we further compare with the
standard PPC u = −k1χ(ξ). The results are depicted in Fig.
1 for 3 seconds, depicting e(t) and u(t) for both BRIC and
PPC. Note that e(t) converges to zero while remaining inside
the funnel in both schemes. However, the PPC performance
is significantly deteriorated since e2(t) approaches the upper
funnel boundary causing a spike in u2(t).
Case II: Next, we consider a robotic manipulator with 2 ro-
tational degrees of freedom q = [q1, q2]> ∈ [−π, π]2, q(0) =
[0, 0]>, and Lagrangian dynamics M(q)q̈ + C(q, q̇)q̇ +
G(q) = u, where M(q) = [Mij(q)]i,j∈{1,2} ∈ R2×2 is the
positive definite inertia matrix

M11 =IZ1 + IZ2 +m1
l21
4

+m2

(
l21 +

l22
4

+ l1l2c2

)
M12 =M21 = IZ2 +m2

(
l22
4

+
1

2
l1l2c2

)
, M22 = IZ2 +m2

l22
4

C(q, q̇) is the Coriolis matrix C(q, q̇) =[
caq̇2 + 1 ca(q̇1 + q̇2)
caq̇1 1

]
with ca = − 1

2m2l1l2s2, and

G(q) = [ 1
2m1grl1c1 + m2gr(l1c1 + 1

2 l2c12), 1
2m2grl2c12]>

is the gravity vector where c1 = cos(q1), c2 = cos(q2),
s2 = sin(s2), c12 = cos(q1 + q2), and IZ1 = 0.96,
IZ2

= 0.81, m1 = 3.2, m2 = 2, l1 = 0.5, l2 = 0.4,
gr = 9.81 are geometrical and inertial parameters. To
bring the system to the first-order form of (3), we use the
transformation x = q + q̇, whose double differentiation
leads to form (3), appended with the internal dynamics
of q̇ = x − q. We aim to stabilize the manipulator
to the upright configuration qd = [π2 , 0]> with zero
velocity. Hence, we set xd = [π2 , 0]>, which complies
with Assumption 3. Note that x = q + q̇ creates a stable
filter with output q and input x. Therefore, stabilization
of x(t) to xd translates to the boundedness of q(t). We
impose the transient behaviour of the system via the
functions ρ1(t) = ρ2(t) = ‖e(0)‖ exp−0.5t +1. We apply
the BRIC control law (12) with k1 = 3 and k2 = 2
and we further compare with the standard PPC scheme
u = −k1R(ξ, t)χ(ξ). The results are depicted in Fig. 2 for
10 seconds, depicting e(t) and u(t) for both BRIC and PPC.
Note that e(t) remains within the funnel while converging to
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Fig. 2. Simulation results for Case II for BRIC and PPC; Left: error e(t),
along with funnels ±ρi(t) (dashed black lines); Right: control input u(t).

Fig. 3. Simulation results for Case II for BRIC and PPC; Left: error e(t),
along with bounds ±ρi (dashed black lines); Right: control input u(t).

zero only for the BRIC scheme. Further notice that M(q)q
does not satisfy Assumption 5, implying it is not necessary
for the convergence results.
Case III: Finally, to illustrate the BRIC of Section III-D,
we consider a 2nd-order system of two inverted pendulums
connected by a spring and a damper, with angles θ =
[θ1, θ2]> ∈ [−π, π]2, θ(0) = [0, 0]> - the dynamic equations
and parameters can be found in [18].

Similarly to the previous section, we use the transfor-
mation x = θ + θ̇ to bring the system to the form (3)
with the internal dynamics θ̇ = x − θ. We set the desired
configuration at θd = xd = [π2 ,

π
2 ]>, and impose a maximum

error overshoot via ρ1 = ρ2 = ‖e(0)‖+1. We further set the
control gains k1 = 10, k`1 = 1, k`2 = 10, and we compare
the performance with the standard PPC u = −k1χ(ξ). The
results are depicted in Fig. 3 for 25 seconds, depicting
e(t) and u(t) for both BRIC and PPC, showing that e(t)
converges to zero only for the BRIC scheme.

V. CONCLUSION AND FUTURE WORK

This paper presents Barrier Integral Control, a control
scheme that achieves asymptotic stabilization while comply-
ing with funnel-type transient-response specifications. The
controller is smooth and does not use any information
from the system’s dynamics. Future directions will consider
higher-order systems and relax the respective assumptions.
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