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Abstract— Quantized signals are widely used in engineering
applications. Although quantization can potentially degrade
system performances, previous research has demonstrated its
usage to preserve privacy of the signals that are quantized.
In this paper, we investigate the privacy-preserving properties
of two types of quantizers: deterministic and stochastic ones.
Specifically, for deterministic quantizers, we demonstrate that
an eavesdropper cannot uniquely determine the initial state of a
system if the system is Schur stable. Additionally, we propose a
necessary condition on the system matrix A to ensure the initial
state remains private. For stochastic quantizers, we investigate
their differential privacy properties and show that appropriate
quantization steps can guarantee differential privacy. However,
the quantization step can lead to impreciseness of the quantized
signal and we therefore also examine the trade-off between
differential privacy and system performance. To optimize the
quantization step, we formulate a convex optimization problem,
which can be solved efficiently.

I. INTRODUCTION

Data sharing is a fundamental feature of the Internet
of Things (IoT), which greatly enhances the efficiency of
modern industry. However, this can create risks of private
information leakage; for example, Google Maps can be used
to monitor its user’s motion [1]. To address such concerns,
various mechanisms have been proposed to preserve users’
privacy [2]–[5]. In the realm of systems and control, re-
searchers typically focus on the privacy of the states of a
system of interest [6], [7]. In many engineering applica-
tions, measurements are quantized before transmission due
to communication capacity constraints, and then sent to a
remote fusion center for signal processing and decision-
making. As communication channels can be vulnerable to
unintended third-party inquiry, eavesdroppers may be able to
infer system states from the sensor outputs; in this context,
quantization mechanisms have been shown to be effective in
preserving the privacy of states [8], [9].

In this paper, we investigate the relationship between
quantization mechanisms and privacy, specifically focusing
on initial state privacy, which is a common concern in the
control community [10]–[12]. The authors of [10] propose
a dynamic output mask approach to maintain the privacy
of the initial state, while in [11], a state decomposition
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method is used to preserve the initial state privacy of each
agent. A coarser quantizer is more likely to preserve the
initial state privacy, as it provides a higher level of privacy
protection. However, using a coarser quantizer may also have
a negative impact on system performances. Therefore, it is
crucial to consider the trade-off between privacy and system
performance.

The objective of this manuscript is to explore the relation-
ship between initial state privacy and quantization mecha-
nisms. Specifically, we investigate the privacy of the initial
state in an autonomous system equipped with deterministic
quantizers. Due to quantization, the initial state of the system
is subject to linear inequality constraints, and the volume of
the resulting set can be used to measure the privacy level.
We begin by presenting an example that shows how a larger
quantization step may not always result in higher privacy.
Subsequently, we prove that the initial state is private when
the spectrum of the system matrix is less than 1, and we
provide a necessary condition which states the initial state
can be private only if the system matrix’s spectrum is less
than or equal to 1. Moreover, for the case where the spectrum
of the system matrix is equal to 1, we provide two examples
that demonstrate that the initial state’s privacy preservation
cannot be determined by the spectrum.

In addition to the privacy properties of deterministic quan-
tizers, we also investigate the differential privacy properties
of stochastic quantizers. It is shown that the (0, r) differential
privacy for a finite time t can be guaranteed via choosing an
appropriate quantization step. Moreover, we show that under
mild conditions, the (0, r) differential privacy with infinite
time steps can also be achieved if the quantization step is
chosen according to system matrices and r.

To illustrate the trade-off between quantization steps and
system performance, we start by designing a Luenberger
observer to estimate the system state. Then, we design an
output tracking controller and analyze the tracking error. By
computing the upper bound of the tracking error covariance,
we establish a direct correlation between the covariance
and the quantization step. To optimize this trade-off, we
formulate a convex optimization problem to find the opti-
mal quantization step d that balances the system tracking
performance and the privacy of the initial state.

The remainder of this paper is given as follows. In Section
II, we formulate the system models and give the definitions
of differential privacy. In Section III, we consider a deter-
ministic quantizer and give a sufficient condition to keep the
initial state private. A necessary condition is also provided to
analyze the initial state privacy. Furthermore, the differential
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privacy properties of stochastic quantizers are investigated.
We give an explicit connection between differential privacy
and the quantization step over finite time and infinite time.
In Section IV, we analyze the output tracking problem
when the system is equipped with the stochastic quantizer.
Specifically, we show the trade-off between the privacy and
the system performance. Section V provides a numerical
example, which shows the validity of the proposed stochastic
quantizers. Finally, Section VI concludes the paper.

Notation: We denote the sets of real numbers and non-
negative integer as R and Z+, respectively. 1 represents the
vector with 1 in each coordinate. For two vectors a and b
with the same size, a ⪯ b (a ≺ b) stands for the element-
wise inequality, i.e., ai ≤ bi (ai < bi) for all elements. Γ(·)
is the Gamma function, i.e., Γ(z) ≡

∫∞
0

t−1e−tdt. λmax(X)
and λmin(X) represent the largest and smallest eigenvalue
for a positive semi-definite matrix X . ρ(X) is the spectrum
of a matrix X .

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the system model and the
definitions about differential privacy. For simplicity, we con-
sider a discrete-time, linear, time invariant model, which is
commonly discussed in papers considering the privacy issues,
e.g., [7], [6] and [13]. Let x0 ∈ Rn1 be a variable that the
system wants to keep private. The model is given as follows:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 (1a)
y(k) = Cx(k), (1b)
yp(k) = Hpx(k), (1c)

and the estimator system is given by:

x̂(k + 1) = Ax̂(k) +Bu(k)

+ L

(
Cx̂(k)− v(k)

)
, x̂(0) = x̂0, (2)

u(k) = Kxx̂(k) +Krxr(k), (3)

where x ∈ Rn1 , x̂ ∈ Rn1 are states and estimates respec-
tively, u ∈ Rm, xr ∈ Rn2 are control inputs and reference
signals respectively, y ∈ Rp is the measured output, and
yp ∈ Rq is the tracking output. The matrix dimensions
are compatible. Instead of assuming that the systems can
communicate with each other perfectly, we consider the
sensors can only transmit quantized signals, i.e.,

v = Qv(y) (4)

where Qv is the chosen quantizer subject to communication
capacity constraints and privacy requirements. For the control
input, we assume the fusion center have enough energy to
transmit accurate u(k) (One can also consider the case where
u(k) is quantized and the results will be similar to those
in this paper). In this paper, we will consider the system
is eavesdropped by an eavesdropper. The corresponding
diagram is shown in Figure 1. In what follows, we assume
the eavesdropper has full information about the system
model and has the ability to eavesdrop control inputs, i.e.,

A,B,C, L,Kx,Kr and u(k). Furthermore, the eavesdropper
has the ability to eavesdrop the quantized measurements
v(k). We would like to protect the initial state x0 with the
quantizers in the sensors. It should be noted that we discuss
two different types of privacy notions in this paper, the
volume of possible initial states and the differential privacy.

Sensor Network Fusion

eavesdrop

QuantizationSystem

Fig. 1. The Diagram of Quantized Communications and an Eavesdropper

Let us define

Ot :=
[
C⊤ (CA)⊤ · · · (CAt)⊤

]⊤
,

Nt :=



0 0 · · · · · · 0

CB 0
. . .

...

CAB CB 0
. . .

...
...

...
. . . . . . 0

CAt−1B CAt−2B · · · CB 0


.

These two matrices are useful to introduce the following
definitions of differential privacy.

Definition 2.1: Given ζ > 0, a pair of initial states
(x0, x

′
0) ∈ Rn1 ×Rn1 is said to belong to the binary relation

ζ-adjacency if ||x0 − x′
0||1 ≤ ζ. The set of all pairs of the

initial states that are ζ-adjacent under the 1-norm is denoted
by Adjζ1. ◁

Definition 2.2: Let
(
R(t+1)p,F ,P

)
be a probability space.

The mechanism (1) and (4) is said to be (ε, δ)-differentially
private for Adjζ1 at a finite time instant t ∈ Z+if there exist
ε > 0 and δ ≥ 0 such that

P (Qv(Otx0 +NtUt) ∈ S)
≤ eεP (Qv(Otx

′
0 +NtUt) ∈ S) + δ, ∀S ∈ F

for any (x0, x
′
0) ∈ Adjζ1. ◁

Roughly speaking, the definitions above show that the
probability of getting the same output sequence is larger
when the distance between two different initial states, i.e., x0

and x′
0 is smaller. One can find that the privacy increases in

the sense that distinguishing the initial state from the output
sequence is harder. Therefore, for smaller constants ϵ and δ,
the system will be more private.

The above definitions are important in stochastic quantiz-
ers. As for deterministic quantizers, we will introduce a new
privacy definition in the next section. Moreover, as it can be
seen in the next section, the system is more private when
a stochastic quantizer is coarser. Accordingly, the tracking
control performance for the system is worse. Therefore,
there should be a trade-off between the tracking control
performance and the privacy. Such a trade-off is discussed
in Section IV.
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III. MAIN RESULTS

A. Deterministic Quantizer and Privacy Analysis

In this section, we will discuss some privacy properties in
autonomous systems with deterministic quantizers. Suppose
the quantizer is given by

Qv(z + nd) = nd for z ∈
(
−d

2
,
d

2

]
, n ∈ Z, d > 0,

(5)
where d is the quantization step. The system model is given
by the following equations.{

x(k + 1) = Ax(k), x(0) = x0,
v(t) = Qv(Cx(t)).

(6)

We define

vt =


v(0)
v(1)

...
v(t)

 .

Then, it is trivial to see from the definition that if vt is
observed, the initial state x0 is in the following set:

St(vt) :=

{
x0 ∈ Rn : −d

2
1 ≺ Otx0 − vt ⪯

d

2
1

}
, (7)

It should be noticed that when the system is not observable,
an eavesdropper cannot determine the exact value of x0 even
if the quantization step is arbitrarily small. Therefore, in the
following part, we will assume the system is observable.

Consider the state space of x0 is equipped with Lebesgue
measure. Let µ(St) denote the Lebesgue measure of St(vt).
Then, it is intuitive to give the following privacy definition
with deterministic quantizers.

Definition 3.1: The system (6) equipped with determinis-
tic quantizers (5) is said to be private at time t if µ(St) > 0.
◁

It is worth pointing out that there are infinitely many
possible initial states in St if µ(St) > 0. Furthermore, it
should be noticed that µ(St) is a decreasing sequence of t.
Therefore, the initial state is private for any time index t if
the volume of limt→∞ µ(St) > 0.

Intuitively, one may consider the initial state will be more
private with a larger d. However, this intuition is wrong as
illustrated by the following example.

Example 3.2: Suppose the system is specified by the
following parameters:

A = 1, C =
[
1 0.6

]⊤
, d = 1 + ϵ, x0 =

3

2
+ δ,

where δ > 0 is a sufficiently small number and ϵ ≥ 0. Obvi-
ously, this system is observable. First we consider the case
where ϵ = 0. One can obtain v(t) = v(0) =

[
2 1

]⊤
,∀t

and

St(Vt) =

{
x0 ∈ R :

5

2
≥ x0 >

3

2

}
.

It follows that
µ(St) = 1.

Then, we consider the case where ϵ = δ. In this case, v(t) =
v(0) =

[
2 + δ 1 + δ

]⊤
,∀t and

St(Vt) = {x0 ∈ R :
3(1 + δ)

2
≥ x0 >

5(1 + δ)

6
}.

One can also calculate that

µ(St) =
2(1 + δ)

3
.

Therefore, the system is even less private with d = 1 + δ if
δ < 1

2 . ◁
From the example, it can be concluded that a larger d does

not always guarantee more privacy. Therefore, it is hard to
find the relationship between d and µ(St) for abitrary x0.
However, privacy under Definition 3.1 can be preserved with
deterministic quantizers under mild conditions.

The following theorem provides some connections be-
tween privacy and the spectral radius of the system matrix
A.

Theorem 3.3: Suppose (A,C) is observable. Then, the
initial state is private at any time step t if ρ(A) < 1.
Moreover, the initial state is private at any time step t only
if ρ(A) ≤ 1.

Proof: The proof will in the full version of this paper.

We have shown that deterministic quantized output can
preserve the initial state in the sense that the eavesdropper
cannot deduce the initial state after eavesdropping the out-
puts. In the next section, we will discuss the differential pri-
vacy property when the sensors are equipped with stochastic
quantizers.

B. Stochastic Quantizer and Privacy Analysis

In this section, we consider the differential privacy prop-
erty of the system (1a) and (1b) with the stochastic quantizer
Qv (function on each element of a vector) designed as

Qv(z + nd)

=

{
nd,with Prob. 1− z

d
(n+ 1)d,with Prob. z

d

for z ∈ (0, d], n ∈ Z, d > 0.

(8)

It is worth pointing out that the quantization step d is the
parameter to be designed. Considering the notion of the
differential privacy, we have the following theorem:

Theorem 3.4: For a fixed time step t and a given r ∈
(0, 1),(0, r) differential privacy for Adjζ1 can be achieved if
the quantizer Qv in the form of (8) chooses the quantization
step d ≥ ||Ot||1ζ

r .
Proof: The proof is reported in Appendix I.

The above theorem investigates the differential privacy
property for a finite time instant t. As for the infinite time
case, we have the following theorem :

Theorem 3.5: Suppose the system matrix A is Schur sta-
ble. Let ||O∞||1 denote limt→∞ ||Ot||1. Then, for all t ≥ 0,
(0, r) differential privacy for Adjζ1 can be achieved if the
quantizer Qv in the form of (8) chooses the quantization
step d ≥ ||O∞||1ζ

r .
Proof: The proof is directly from Theorem 3.4.
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IV. TRADE-OFF BETWEEN SYSTEM PERFORMANCE AND
PRIVACY

In this section, we consider an output tracking control
problem and analyze the trade-off between the privacy and
the tracking error. The reference model is given by the
following equation [14].

xr(k + 1) = Arxr(k), (9a)
yr(k) = Hrxr(k) (9b)

where xr ∈ Rn2 is the reference signal and yr ∈ Rq . Ar ∈
Rn2×n2 , Hr ∈ Rq×n2 are the corresponding matrices. Let
ξ(k) = yp(k)− yr(k). The control objective can be written
as limk→∞ ξ(k) = 0.

To establish the reference model tracking control, we have
the following standard assumptions [14].

Assumption 4.1: Ar has no eigenvalues with modulus
smaller than 1. ◁

Assumption 4.2: The pair (A,B) is stabilizable. ◁
Assumption 4.3: The pair (C,A) is detectable. ◁
Assumption 4.4: The following two equations:

XAr = AX +BU,

0 = HpX −Hr

have a pair of solutions X ∈ Rn1×n2 and U ∈ Rm×n2 . ◁
We evaluate the tracking error by the following control

performance index:

J = lim
T→∞

T∑
k=0

1

T
E[ξ(k)⊤Qξ(k)], (10)

where Q ∈ Rn×n is a given matrix. Its upper bound is
obtained as follows.

Theorem 4.5: Suppose Assumptions 4.1-.4.4 hold, Kx is
designed such that A+BKx is asymptotically stable, Kr =
U−KxX and L is designed according to Lemma 2.2. Then,
the performance index J in (10) is upper bounded, i.e.,

J ≤ pd2γ2

4
trace(H⊤

p QHpX ),

where (A+BKx)X (A+BKx)
⊤ +BKxK

⊤
x B⊤ = X .

Proof: The proof is in Appendix II.
Let β > 0 denote the weight parameter between the

privacy index r and system tracking performance index J .
Using the bounds, one can obtain the following optimization
problem if A is Schur stable, which also shows the trade-off
between privacy and the system performance.

Optimization problem 1

min
d

p2d2γ2

4
trace(H⊤

p QHpX ) + β
||O∞||1ζ

d
subject to d > 0. (11)

One can check that this is a convex optimization problem
and hence can be solved efficiently.

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Fig. 2. The Tracking Outputs of the System

V. SIMULATION

In this section, we give a simulation to show the efficiency
of the stochastic quantizers. The system parameters are given
as below:

A =

[
0.2 1
0 0.4

]
, B =

[
1
1

]
, C =

[
1 0

]
, γ = 1,

Hp =
[
0 1

]
, Ar = 1, Hr = 1, xr ≡ 1, Q = 1

and
Kx =

[
0 −0.2

]
.

One can compute that L =

[
−0.1503
−0.0087

]
and Kr = U −

KxX = 0.8. One can also obtain ||O∞||1 = 3.7500. If
we wish to protect privacy with parameters ζ = 0.1, r =
0.1, β1 = 1, β2 = 50, solving Optimization Problem 1 gives

d∗1 = 1.4620, d∗2 = 5.3602 respectively. Assume x0 =

[
0
0.8

]
and x̂0 =

[
0
0

]
. The system tracking outputs are given in

Figure 2.
From Figure 2, it can be concluded that the tracking

outputs are very close to the reference signal. Moreover, it
can be observed that tracking performance is worse with a
larger β, which shows the trade-off between the privacy and
the system performance.

VI. CONCLUSIONS

This paper aims to investigate the privacy properties of
networked control systems equipped with quantizers and an-
alyze the trade-off between privacy and system performance.
We first analyze the privacy of the system with deterministic
quantizers and establish that the system is private when
it is Schur stable. We also provide a necessary condition
based on the spectrum of the system matrix to study the
privacy of the initial state. Additionally, we investigate the
differential privacy properties of stochastic quantizers and
demonstrate that differential privacy can be guaranteed with
a well-designed quantization step. To further study the trade-
off between privacy and system performance, we design
an output tracking controller and compute the upper bound
of the tracking error covariance. As for the design of the
quantization step, we propose an optimization problem to
balance the trade-off. The optimization problem is convex
and can be solved efficiently.
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APPENDIX I
PROOF OF THEOREM 3.4

It should be noticed that since the control inputs can be
eavesdropped, Ut is the same for different initial states from
the viewpoint of the eavesdropper. Let yt = Otx0 + NtUt,
y′t = Otx

′
0 + NtUt, vt = Qv(yt) and v′t = Qv(y

′
t). Then,

we have
Lemma 1.1: If s ≤ ||Ot||1ζ, we have

sup∥yt,1−y′
t,1∥1≤ s

∣∣P (vt,1 ∈ S1 | yt,1)− P
(
v′t,1 ∈ S1 | y′t,1

)∣∣ ≤
s
d .

Proof: The proof will be in the full version of this
paper.

Next, we prove Theorem 3.4.
Proof of Theorem 3.4: It can be firstly observed that

||yt − y′t||1 = ||Otx0 −Otx
′
0||1 ≤ ||Ot||1ζ ≤ d.

This means that each coordinate differs at most one quanti-
zation level.

Suppose the stochastic quantizer output set from time 0
to time t − 1 is given by S and S = S1 × · · · × Stp. Since
P (vt ∈ S) is uniquely determined by x0 and Ut, we have

P (vt ∈ S | x0) =

tp∏
i=1

P (vt,i ∈ Si | x0) ,

where vt,i is the ith element of vt. Based on the mechanism
of the stochastic quantizer (8), it can be obtained that

sup
∥x0−x′

0∥1≤ζ

|P (vt ∈ S | x0)− P (v′t ∈ S | x′
0)|

≤ sup
∥yt−y′

t∥1≤||Ot||1ζ
|P (vt ∈ S | x0)− P (v′t ∈ S | x′

0)|

= sup
∥yt−y′

t∥1≤||Ot||1ζ

∣∣∣∣ tp∏
i=1

P (vt,i ∈ Si | x0)

−
tp∏
i=1

P
(
v′t,i ∈ Si | x′

0

) ∣∣∣∣
= sup

∥yt−y′
t∥1≤||Ot||1ζ

∣∣∣∣P (vt,1 ∈ S1 | x0)

tp∏
i=2

P (vt,i ∈ Si | x0)

− P
(
v′t,1 ∈ S1 | x′

0

) tp∏
i=2

P
(
v′t,i ∈ Si | x′

0

) ∣∣∣∣
= sup

∥yt−y′
t∥1≤||Ot||1ζ

∣∣∣∣(P (vt,1 ∈ S1 | x0)−

P
(
v′t,1 ∈ S1 | x′

0

)) tp∏
i=2

P (vt,i ∈ Si | x0) + P
(
v′t,1 ∈ S1 | x′

0

)
×

(
tp∏
i=2

P (vt,i ∈ Si | x0)−
tp∏
i=2

P
(
v′t,i ∈ Si | x′

0

)) ∣∣∣∣

By the property of the absolute value, we have

sup
∥x0−x′

0∥1≤ζ

|P (vt ∈ S | x0)− P (v′t ∈ S | x′
0)|

≤ sup
∥yt−y′

t∥1≤||Ot||1ζ

∣∣∣∣ (P (vt,1 ∈ S1 | x0)− P
(
v′t,1 ∈ S1 | x′

0

))
×

tp∏
i=2

P (vt,i ∈ Si | x0)

∣∣∣∣+ ∣∣∣∣P (v′t,1 ∈ S1 | x′
0

)
×

(
tp∏
i=2

P (vt,i ∈ Si | x0)−
tp∏
i=2

P
(
v′t,i ∈ Si | x′

0

)) ∣∣∣∣,
Since

∏tp
i=2 P (vt,i ∈ Si | x0) ≤ 1 and P

(
v′t,1 ∈ S1 | x′

0

)
≤

1, it follows that

sup
∥xt−x′

t∥1≤ζ

|P (vt ∈ S | x0)− P (v′t ∈ S | x′
0)|

≤ sup
∥yt−y′

t∥1≤||Ot||1ζ

∣∣∣∣P (vt,1 ∈ S1 | x0)− P
(
v′t,1 ∈ S1 | x′

0

) ∣∣∣∣
+

∣∣∣∣ tp∏
i=2

P (vt,i ∈ Si | x0)−
tp∏
i=2

P
(
v′t,i ∈ Si | x′

0

) ∣∣∣∣.
With a similar process as before, one can obtain

sup
∥xt−x′

t∥1≤ζ

|P (vt ∈ S | x0)− P (v′t ∈ S | x′
0)|

≤ sup
∥yt−y′

t∥1≤||Ot||1ζ

tp∑
i=1

∣∣∣∣P (vt,i ∈ Si | x0)

− P
(
v′t,i ∈ Si | x′

0

) ∣∣∣∣
= sup∑tp

i=1 ci≤||Ot||1ζ

tp∑
i=1

sup
|yt,i−y′

t,i|≤ci

∣∣∣∣P (vt,i ∈ Si | x0)

− P
(
v′t,i ∈ Si | x′

0

) ∣∣∣∣
≤r.

The last inequality follows from Lemma 1.1.

APPENDIX II
PROOF OF THEOREM 4.5

First, we have the following lemma which characterizing
the property of wv(k) := Qv(y(k))−y(k), which is a vector
version of Proposition 1 in [15].

Lemma 2.1: For the stochastic quantizer Qv defined in
(8), we have

(i)E[wv(k)] = 0

(ii)E[wv(k)wv(k)
⊤] ≤ pd2

4 I
(iii)

E[wv(k1)wv(k2)
⊤] =

{
0, k1 ̸= k2,

E[wv(k1)wv(k1)
⊤], k1 = k2.

Proof: The proof will be in the full version of this
paper.

Let e(k) = x̂(k) − x(k). The system dynamics in the
estimator can be written as

e(k + 1) = (A+ LC)e(k)− Lwv(k). (12)
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Since E[wv(k)] = 0, one can immediately see that

||E[e(k + 1)]|| ≤ ||(A+ LC)E[e(k)]||.

This shows that if A + LC is Schur stable, the expectation
of the state will converge to the origin. Compared to the
deterministic quantizers that may have a periodic behavior
[16], the stochastic quantizers have the potential to increase
the system performance. Moreover, we can consider the
quantization error as a bounded noise here. It is desirable
to design estimator gain L here to satisfy the H∞-norm
performance, which is given by the following proposition.

Lemma 2.2: The H∞-norm from the quantization error
wv(k) to the state e(k) is not greater than γ > 0 if the
following LMI has solutions P and Y .

P 0 (PA+ Y C)⊤ I
0 γ2I Y ⊤ 0

PA+ Y C Y P 0
I 0 0 I

 ≻ 0.

Moreover, the estimator gain L is given by L := P−1Y
Proof: This is a simple application of bounded real

lemma [17] and hence the proof is omitted here.
The next lemma evaluates the performance of the proposed

estimator.
Lemma 2.3: Consider the system with quantized error.

Suppose A + LC is Schur stable, and the estimator H∞-
norm is not greater than γ. Then, it follows that

lim
k→∞

E[(e(k)⊤e(k)] ≤ p2d2γ2

4
. (13)

Proof: The proof will be in the full version of this
paper.

Now, we are ready to provide the proof of Theorem 4.5.
Proof of Theorem 4.5: Let x̄(k) = x(k) − Xxr(k). One

can check that

x̄(k + 1) = (A+BKx)x̄(k) +BKxe(k)

and

ξ(k) = Hpx̄(k) + (HpX −Hr)xr(k) = Hpx̄(k).

Let Ã = A + BKx. Since Ã is Schur stable, we can
assume x̄(0) = 0 without loss of generality. ξ(T +1) can be
rewritten as

ξ(T + 1) = Hp

T∑
k=0

ÃT−k+1BKxe(k). (14)

Then, it follows that

E[(ξ(T + 1)⊤Qξ(T + 1)]

=E[trace(H⊤
p QHp

T∑
k=0

ÃT−k+1BKxe(k)

× e(k)⊤K⊤
x B⊤(ÃT−k+1)⊤)]

≤pd2γ2

4
trace(H⊤

p QHp

T∑
k=0

ÃT−k+1BKxK
⊤
x B⊤(ÃT−k+1)⊤)

Then, taking the limit will give the result, i.e.,

lim
T→∞

E[(ξ(T +1)⊤Qξ(T +1)] ≤ pd2γ2

4
trace(H⊤

p QHpX ).

This ends the proof.
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[5] Y. Wang and T. Başar, “Quantization enabled privacy protection in de-
centralized stochastic optimization,” IEEE Transactions on Automatic
Control, 2022.

[6] Y. Kawano and M. Cao, “Design of privacy-preserving dynamic
controllers,” IEEE Transactions on Automatic Control, vol. 65, no. 9,
pp. 3863–3878, 2020.

[7] Y. Kawano, K. Kashima, and M. Cao, “Modular control under privacy
protection: Fundamental trade-offs,” Automatica, vol. 127, p. 109518,
2021.

[8] C. Murguia, I. Shames, F. Farokhi, and D. Nešić, “On privacy of
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